Learn by doing: less theory, more results

NumPy 1.5

An action-packed guide for the easy-to-use, high performance, Python based free open source NumPy mathematical library using real-world examples

Beginner’s Guide

Ivan Idris
NumPy 1.5
Beginner’s Guide

An action-packed guide for the easy-to-use, high performance, Python based free open source NumPy mathematical library using real-world examples

Ivan Idris
Credits

Author
Ivan Idris

Reviewers
Lorenzo Bolla
Seth Brown
John Douglas
Finn Arup Nielsen
Ryan R. Rosario
Stefan Scherfke

Senior Acquisition Editor
Usha Iyer

Development Editor
Hyacintha D’Souza

Technical Editors
Apoorva Bolar
Aaron Rosario

Copy Editor
Brandt D’Mello

Project Coordinator
Srimoyee Ghoshal

Proofreader
Stephen Swaney

Indexer
Tejal Daruwale

Graphics
Valentina D'silva

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat
About the Author

Ivan Idris has a degree in Experimental Physics and several certifications (SCJP, SCWCD and other). His graduation thesis had a strong emphasis on Applied Computer Science. After graduating, Ivan worked for several companies as Java developer, Datawarehouse developer, and Test Analyst.

More information and a blog with a few NumPy examples can be found on ivanidris.net

I would like to take this opportunity to thank the reviewers and the team at Packt for making this book possible.

Also, thanks goes to my teachers, professors and colleagues who taught me about science and programming.

Last, but not least; I would like to acknowledge my parents, family, and friends for their support.
About the Reviewers

Lorenzo Bolla works as Software Engineer in a successful start-up in London. His main interests are large scale web applications, numerical modelling, and functional programming.

Seth Brown is a scientist and educator with a Ph.D. in genetics/genomics from Dartmouth Medical School. He is currently employed as a bioinformatician working on deciphering novel mechanisms of human gene regulation. He has used the Python programming language in his research since 2006. He discusses his research and computational methods in his blog — drbunsen.org.

Finn Arup Nielsen is a senior researcher at the Technical University of Denmark. He has a background in machine learning and has written a PhD thesis about neuroinformatics with neuroimaging data. He has previously been using the Matlab and Perl programming languages for data processing and analysis of complex data from brain science and the Internet, but now uses more Python. Nielsen works within neuroinformatics and social media mining projects funded by the Lundbeck Foundation and The Danish Council for Strategic Research.
Ryan Rosario is a Doctoral Candidate at the University of California, Los Angeles. He works in industry as a Data Scientist and he enjoys turning large quantities of massive, messy data into gold. Ryan is heavily involved in the open-source community, particularly R, Python, Hadoop, and Machine Learning. He has also contributed code to various Python and R projects. Ryan maintains a blog dedicated to Data Science and related topics at http://www.bytemining.com.

Stefan Scherfke studied Computer Science with an emphasis on Environmental Computer Science at the Carl von Ossietzky University Oldenburg, Germany and received his Diplom (equiv. to M.Sc.) in 2009. Since then, he has been working in the R&D Division Energy at OFFIS—Institute for Information Technology.

In 2008, after learning various other languages (including Java, C/C++ and PHP), Stefan discovered Python and instantly fell in love with it. He has been using Python mainly to implement various simulations within the energy domain, but also to run his website and day-to-day scripting needs. He uses libraries like NumPy, SciPy, Matplotlib, SimPy, PyQt4, and Django for this. He also likes `py.test` and `mock`.
Support files, eBooks, discount offers and more

You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

- Fully searchable across every book published by Packt
- Copy & paste, print and bookmark content
- On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
To my family and friends
Table of Contents

Preface

Chapter 1: NumPy Quick Start

Python
Time for action – installing Python on different operating systems
Windows
Time for action – installing NumPy on Windows
Linux
Time for action – installing NumPy on Linux
Mac OS X
Time for action – installing NumPy on Mac OS X with a GUI installer
Time for action – installing NumPy with MacPorts or Fink
Building from source
Vectors
Time for action – adding vectors
IPython—an interactive shell
Online resources and help
Summary

Chapter 2: Beginning with NumPy Fundamentals

NumPy array object
Time for action – creating a multidimensional array
Selecting elements
NumPy numerical types
Data type objects
Character codes
dtype constructors
dtype attributes
Time for action – creating a record data type
Table of Contents

One-dimensional slicing and indexing 33
Time for action – slicing and indexing multidimensional arrays 34
Time for action – manipulating array shapes 36
Stacking 38
Time for action – stacking arrays 38
Splitting 41
Time for action – splitting arrays 41
Array attributes 43
Time for action – converting arrays 46
Summary 47

Chapter 3: Get into Terms with Commonly Used Functions 49
File I/O 49
Time for action – reading and writing files 50
Identity matrix creation 50
CSV files 50
Time for action – loading from CSV files 51
Volume weighted average price 51
Time for action – calculating volume weighted average price 52
The mean function 52
Time weighted average price 52
Value range 53
Time for action – finding highest and lowest values 53
Statistics 54
Time for action – doing simple statistics 54
Stock returns 56
Time for action – analyzing stock returns 57
Dates 58
Time for action – dealing with dates 58
Weekly summary 61
Time for action – summarizing data 61
Average true range 65
Time for action – calculating the average true range 65
Simple moving average 66
Time for action – computing the simple moving average 67
Exponential moving average 68
Time for action – calculating the exponential moving average 69
Bollinger bands 70
Time for action – enveloping with Bollinger bands 71
Linear model 72
Time for action – predicting price with a linear model 73
Table of Contents

Trend lines 74
Time for action – drawing trend lines 75
Methods of ndarray 78
Time for action – clipping and compressing arrays 78
Factorial 79
Time for action – calculating the factorial 79
Summary 80

Chapter 4: Convenience Functions for Your Convenience 81
Correlation 82
Time for action – trading correlated pairs 82
Polynomials 85
Time for action – fitting to polynomials 85
On-balance volume 88
Time for action – balancing volume 88
The mode 90
Time for action – determining the mode of stock returns 90
Simulation 93
Time for action – avoiding loops with vectorize 93
Smoothing 95
Time for action – smoothing with the hanning function 95
Summary 98

Chapter 5: Working with Matrices and ufuncs 99
Matrices 99
Time for action – creating matrices 100
Creating a matrix from other matrices 101
Time for action – creating a matrix from other matrices 101
Universal functions 102
Time for action – creating universal function 102
Universal function methods 103
Time for action – applying the ufunc methods on add 104
Arithmetic functions 105
Time for action – dividing arrays 106
Modulo operation 107
Time for action – computing the modulo 107
Fibonacci numbers 108
Time for action – computing Fibonacci numbers 108
Lissajous curves 109
Time for action – drawing Lissajous curves 110
Square waves 111
Time for action – drawing a square wave 111
Table of Contents

Sawtooth and triangle waves 112
Time for action – drawing sawtooth and triangle waves 113
Bitwise and comparison functions 114
Time for action – twiddling bits 114
Summary 116

Chapter 6: Move Further with NumPy Modules 117

- Linear algebra 117
 Time for action – inverting matrices 117
 Solving linear systems 119
 Time for action – solving a linear system 119
 Finding eigenvalues and eigenvectors 120
 Time for action – determining eigenvalues and eigenvectors 120
 Singular value decomposition 121
 Time for action – decomposing a matrix 122
 Pseudo inverse 123
 Time for action – computing the pseudo inverse of a matrix 123
 Determinants 124
 Time for action – calculating the determinant of a matrix 124
 Fast Fourier transform 124
 Time for action – calculating the Fourier transform 125
 Shifting 126
 Time for action – shifting frequencies 126
 Random numbers 127
 Time for action – gambling with the binomial 127
 Hypergeometric distribution 129
 Time for action – simulating a game show 129
 Continuous distributions 130
 Time for action – drawing a normal distribution 130
 Lognormal distribution 131
 Time for action – drawing the lognormal distribution 132
 Summary 133

Chapter 7: Peeking Into Special Routines 135

- Sorting 135
 Time for action – sorting lexically 136
 Complex numbers 137
 Time for action – sorting complex numbers 137
 Searching 138
 Time for action – using searchsorted 138
 Array elements extraction 139
 Time for action – extracting elements from an array 139
Financial functions
- Financial functions
- Time for action – determining future value
- Present value
- Time for action – getting the present value
- Net present value
- Time for action – calculating the net present value
- Internal rate of return
- Time for action – determining the internal rate of return
- Periodic payments
- Time for action – calculating the periodic payments
- Number of payments
- Time for action – determining the number of periodic payments
- Interest rate
- Time for action – figuring out the rate

Window functions
- Window functions
- Time for action – plotting the Bartlett window
- Blackman window
- Time for action – smoothing stock prices with the Blackman window
- Hamming window
- Time for action – plotting the Hamming window
- Kaiser window
- Time for action – plotting the Kaiser window

Special mathematical functions
- Special mathematical functions
- Time for action – plotting the modified Bessel function
- Sinc
- Time for action - plotting the sinc function

Summary
- Summary

Chapter 8: Assure Quality with Testing
- Assert functions
- Time for action – asserting almost equal
- Approximately equal arrays
- Time for action – asserting approximately equal
- Almost equal arrays
- Time for action – asserting arrays almost equal
- Equal arrays
- Time for action – comparing arrays
- Ordering arrays
- Time for action – checking the array order
- Objects comparison
- Time for action – comparing objects
String comparison 160
Time for action – comparing strings 160
Floating point comparisons 161
Time for action – comparing with assert_array_almost_equal_nulp 161
Comparison of floats with more ULPs 162
Time for action – comparing using maxulp of 2 162
Summary 163

Chapter 9: Plotting with Matplotlib 165
Simple plots 165
Time for action – plotting a polynomial function 166
Plot format string 167
Time for action – plotting a polynomial and its derivative 167
Subplots 168
Time for action – plotting a polynomial and its derivatives 168
Finance 170
Time for action – plotting a year’s worth of stock quotes 171
Histograms 172
Time for action – charting stock price distributions 173
Logarithmic plots 174
Time for action – plotting stock volume 174
Scatter plots 175
Time for action – plotting price and volume returns with scatter plot 175
Fill between 176
Time for action – shading plot regions based on a condition 176
Legend and annotations 178
Time for action – using legend and annotations 178
Summary 180

Chapter 10: When NumPy is Not Enough: SciPy and Beyond 181
Matlab and Octave 181
Time for action – saving and loading a .mat file 182
Statistics 183
Time for action – analyzing random values 183
Samples comparison and SciKits 185
Time for action – comparing stock log returns 185
Signal processing 187
Time for action – detecting a trend in QQQ 187
Fourier analysis 189
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time for action – filtering a detrended signal</td>
<td>189</td>
</tr>
<tr>
<td>Optimization</td>
<td>191</td>
</tr>
<tr>
<td>Time for action – fitting to a sine</td>
<td>191</td>
</tr>
<tr>
<td>Numerical integration</td>
<td>194</td>
</tr>
<tr>
<td>Time for action – calculating the Gaussian integral</td>
<td>194</td>
</tr>
<tr>
<td>Interpolation</td>
<td>194</td>
</tr>
<tr>
<td>Time for action – interpolating in one dimension</td>
<td>194</td>
</tr>
<tr>
<td>Image processing</td>
<td>196</td>
</tr>
<tr>
<td>Time for action – manipulating Lena</td>
<td>196</td>
</tr>
<tr>
<td>Summary</td>
<td>197</td>
</tr>
<tr>
<td>Pop Quiz Answers</td>
<td>199</td>
</tr>
<tr>
<td>Chapter 1, NumPy Quick Start</td>
<td>199</td>
</tr>
<tr>
<td>Chapter 2, Beginning with NumPy Fundamentals</td>
<td>199</td>
</tr>
<tr>
<td>Chapter 3, Get into Terms with Commonly Used Functions</td>
<td>199</td>
</tr>
<tr>
<td>Chapter 4, Convenience Functions for Your Convenience</td>
<td>199</td>
</tr>
<tr>
<td>Chapter 5, Working with Matrices and ufuncs</td>
<td>200</td>
</tr>
<tr>
<td>Chapter 6, Move Further with NumPy Modules</td>
<td>200</td>
</tr>
<tr>
<td>Chapter 7, Peeking into Special Routines</td>
<td>200</td>
</tr>
<tr>
<td>Chapter 8, Assured Quality with Testing</td>
<td>200</td>
</tr>
<tr>
<td>Chapter 9, Plotting with Matplotlib</td>
<td>200</td>
</tr>
<tr>
<td>Chapter 10, When NumPy is not enough SciPy and Beyond</td>
<td>200</td>
</tr>
<tr>
<td>Index</td>
<td>201</td>
</tr>
</tbody>
</table>
Scientists, engineers, and quantitative data analysts face many challenges nowadays.
Data scientists want to be able to do numerical analysis of large datasets with minimal
programming effort. They want to write readable, efficient, and fast code, that is as close
as possible to the mathematical language package they are used to. A number of accepted
solutions are available in the scientific computing world.

The C, C++, and Fortran programming languages have their benefits, but they are not
interactive and are considered too complex by many. The common commercial alternatives
are, among others, Matlab, Maple, and Mathematica. These products provide powerful
scripting languages, however, they are still more limited than any general purpose
programming language. There are other open source tools similar to Matlab such as R, GNU
Octave, and Scilab. Obviously, they also lack the power of a language such as Python.

Python is a popular general purpose programming language widely used by in the scientific
community. You can access legacy C, Fortran, or R code easily from Python. It is object-
oriented and considered more high-level than C or Fortran. Python allows you to write
readable and clean code with minimal fuss. However, it lacks a Matlab equivalent out of the
box. That’s where NumPy comes in. This book is about NumPy and related Python libraries
such as SciPy and Matplotlib.

What is NumPy?

NumPy (from Numerical Python) is an open source Python library for scientific computing.
NumPy lets you work with arrays and matrices in a natural way. The library contains
a long list of useful mathematical functions including some for linear algebra, Fourier
transformation, and random number generation routines. LAPACK, a linear algebra library,
is used by the NumPy linear algebra module if you have LAPACK installed on your system;
otherwise NumPy provides its own implementation. LAPACK is a well known library originally
written in Fortran—which Matlab relies on as well. In a sense, NumPy replaces some of the
functionality of Matlab and Mathematica, allowing rapid interactive prototyping.
We will not be discussing NumPy from a developing contributor’s perspective, but more from a user’s perspective. NumPy is a very active project and has a lot of contributors. Maybe, one day you will be one of them!

History

NumPy is based on its predecessor, Numeric. Numeric was first released in 1995 and has a deprecated status now. Neither Numeric nor NumPy made it into the standard Python library for various reasons. However, you can install NumPy separately. More about that in the next chapter.

In 2001, a number of people inspired by Numeric created SciPy—an open source Python scientific computing library that provides functionality similar to that of Matlab, Maple, and Mathematica. Around this time, people were growing increasingly unhappy with Numeric. Numarray was created as alternative for Numeric. Numarray is currently also deprecated. Numarray was better in some areas than Numeric, but worked very differently. For that reason, SciPy kept on depending on the Numeric philosophy and the Numeric array object. As is customary with new "latest and greatest" software, the arrival of Numarray led to the development of an entire whole ecosystem around it with a range of useful tools. Unfortunately, the SciPy community could not enjoy the benefits of this development. It is quite possible that some Pythonista has decided to neither choose neither one nor the other camp.

In 2005, Travis Oliphant, an early contributor to SciPy, decided to do something about this situation. He tried to integrate some of the Numarray features into Numeric. A complete rewrite took place that culminated into the release of NumPy 1.0 in 2006. At this time, NumPy has all of the features of Numeric and Numarray and more. Upgrade tools are available to facilitate the upgrade from Numeric and Numarray. The upgrade is recommended since Numeric and Numarray are not actively supported any more.

Originally the NumPy code was part of SciPy. It was later separated and is now used by SciPy for array and matrix processing.

Why use NumPy?

NumPy code is much cleaner than "straight" Python code that tries to accomplish the same task. There are fewer loops required because operations work directly on arrays and matrices. The many convenience and mathematical functions make life easier as well. The underlying algorithms have stood the test of time and have been designed with high performance in mind.
NumPy's arrays are stored more efficiently than an equivalent data structure in base Python such as a list of lists. Array I/O is significantly faster too. The performance improvement scales with the number of elements of an array. It really pays off to use NumPy for large arrays. Files as large as several terabytes can be memory-mapped to arrays leading to optimal reading and writing of data. The drawback of NumPy arrays is that they are more specialized than plain lists. Outside of the context of numerical computations, NumPy arrays are less useful. The technical details of NumPy arrays will be discussed in later chapters.

Large portions of NumPy are written in C. That makes NumPy faster than pure Python code. A NumPy C API exists as well. It allows further extension of the functionality with the help of the C language of NumPy. The C API falls outside the scope of the book. Finally, since NumPy is open source, you get all the added advantages. The price is the lowest possible—free as in 'beer'. You don't have to worry about licenses every time somebody joins your team or you need an upgrade of the software. The source code is available to everyone. This, of course, is beneficial to the code quality.

Limitations of NumPy

There is one important thing to know if you are planning to create Google App Engine applications. NumPy is not supported within the Google App Engine sandbox. NumPy is deemed "unsafe" partly because it is written in C.

If you are a Java programmer, you may be interested in Jython, the Java implementation of Python. In that case, I have bad news for you. Unfortunately, Jython runs on the Java Virtual Machine and cannot access NumPy because NumPy's modules are mostly written in C. You could say that Jython and Python are from two totally different worlds, although they do implement the same specification.

The stable release of NumPy, at the time of writing, supported Python 2.4 to 2.6.x, and now also supports Python 3.

What this book covers

Chapter 1, NumPy Quick Start, will guide you through the steps needed to install NumPy on your system and create a basic NumPy application.

Chapter 2, Beginning with NumPy Fundamentals, introduces you to NumPy arrays and fundamentals.

Chapter 3, Get into Terms with Commonly Used Functions, will teach you about the most commonly used NumPy functions—the basic mathematical and statistical functions.
Chapter 4, *Convenience Functions for Your Convenience*, will teach you about functions that make working with NumPy easier. This includes functions that select certain parts of your arrays, for instance based on a Boolean condition. You will also learn about polynomials and manipulating the shape of NumPy objects.

Chapter 5, *Working with Matrices and ufuncs*, covers matrices and universal functions. Matrices are well known in mathematics and have their representation in NumPy as well. Universal functions (ufuncs) work on arrays element-by-element or on scalars. Ufuncs expect a set of scalars as input and produce a set of scalars as output.

Chapter 6, *Move Further with NumPy Modules*, discusses how universal functions can typically be mapped to mathematical counterparts such as add, subtract, divide, multiply, and so on. NumPy has a number of basic modules that will be discussed in this chapter.

Chapter 7, *Peeking into Special Routines*, describes some of the more specialized NumPy functions. As NumPy users, we sometimes find ourselves having special needs. Fortunately, NumPy provides for most of our needs.

Chapter 8, *Assured Quality with Testing*, will teach you how to write NumPy unit tests.

Chapter 9, *Plotting with Matplotlib*, discusses how NumPy on its own cannot be used to create graphs and plots. This chapter covers (in-depth) Matplotlib, a very useful Python plotting library. Matplotlib integrates nicely with NumPy and has plotting capabilities comparable to Matlab.

Chapter 10, *When NumPy is Not Enough: SciPy and Beyond*, discuss how SciPy and NumPy are historically related. This chapter goes into more detail about SciPy. SciPy, as mentioned in the *History* section, is a high level Python scientific computing framework built on top of NumPy. It can be used in conjunction with NumPy.

What you need for this book

To try out the code samples in this book, you will need a recent build of NumPy. This means that you will need to have one of the Python versions supported by NumPy as well. Some code samples make use of Matplotlib for illustration purposes. Matplotlib is not strictly required to follow the examples, but it is recommended that you install it too. The last chapter is about SciPy and has one example involving SciKits.

Here is a list of software used to develop and test the code examples:

- Python 2.6
- NumPy 2.0.0.dev20100915
- SciPy 0.9.0.dev20100915
Needless to say, you don't need to have exactly this software and these versions on your computer. Python and NumPy is the absolute minimum you will need.

Who this book is for

This book is for you the scientist, engineer, programmer, or analyst looking for a high quality open source mathematical library. Knowledge of Python is assumed. Also, some affinity or at least interest in mathematics and statistics is required.

Conventions

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading

1. Action 1
2. Action 2
3. Action 3

Instructions often need some extra explanation so that they make sense, so they are followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading

These are short multiple choice questions intended to help you test your own understanding.
Have a go hero – heading

These set practical challenges and give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of the include directive."

A block of code is set as follows:

```python
def pythonsum(n):
a = range(n)
b = range(n)
c = []
for i in range(len(a)):
a[i] = i ** 2
b[i] = i ** 3
c.append(a[i] + b[i])
return c
```

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

```python
def pythonsum(n):
a = range(n)
b = range(n)
c = []
for i in range(len(a)):
a[i] = i ** 2
b[i] = i ** 3
c.append(a[i] + b[i])
return c
```

Any command-line input or output is written as follows:

```
sudo apt-get install python
```

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "clicking the Next button moves you to the next screen".
Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.
Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any aspect of the book, and we will do our best to address it.
1

NumPy Quick Start

Let's get started. We will install NumPy on different operating systems and have a look at some simple code that uses NumPy. The IPython interactive shell is introduced briefly. As mentioned in the preface, SciPy is closely related to NumPy, so you will see the SciPy name appearing here and there. At the end of this chapter, you will find pointers on how to find additional information online if you get stuck or are uncertain about the best way to solve problems.

In this chapter, we shall:

- Install Python and NumPy on Windows
- Install Python and NumPy on Linux
- Install Python and NumPy on Macintosh
- Write simple NumPy code
- Get to know IPython
- Browse online documentation and resources

Python

NumPy is based on Python, so it is required to have Python installed. On some operating systems, Python is already installed. You, however, need to check whether the Python version corresponds with the NumPy version you want to install.
Time for action – installing Python on different operating systems

NumPy has binary installers for Windows, various Linux distributions and Mac OS X. There is also a source distribution, if you prefer that. You need to have Python 2.4.x or above installed on your system. We will go through the various steps required to install Python on the following operating systems:

1. **Debian and Ubuntu**: Python might already be installed on Debian and Ubuntu but the development headers are usually not. On Debian and Ubuntu install python and python-dev with the following commands:

   ```
   sudo apt-get install python
   sudo apt-get install python-dev
   ```

2. **Windows**: The Windows Python installer can be found at www.python.org/download. On this website, we can also find installers for Mac OS X and source tarballs for Linux, Unix, and Mac OS X.

3. **Mac**: Python comes pre-installed on Mac OS X. We can also get Python through MacPorts, Fink, or similar projects.

 We can install, for instance, the Python 2.6 port by running the following command:

   ```
   sudo port install python26
   ```

 LAPACK does not need to be present but, if it is, NumPy will detect it and use it during the installation phase. It is recommended to install LAPACK for serious numerical analysis.

What just happened?

We installed Python on Debian, Ubuntu, Windows, and the Mac.

Download the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.PacktPub.com. If you purchased this book elsewhere, you can visit http://www.PacktPub.com/support and register to have the files e-mailed directly to you.

Windows

Installing NumPy on Windows is straightforward. You only need to download an installer, and a wizard will guide you through the installation steps.
Time for action – installing NumPy on Windows

Installing NumPy on Windows is necessary but, fortunately, a straightforward task. The actions we will take are as follows:

1. **Download the NumPy installer**: Download a NumPy installer for Windows from the SourceForge website http://sourceforge.net/projects/numpy/files/. Choose the appropriate version. In this example, we chose `numpy-1.5.1-win32-superpack-python2.6.exe`.

2. **Open the installer**: Open the EXE installer by double clicking on it.

3. **NumPy features**: Now, we see a description of NumPy and its features. Click Next.
NumPy Quick Start

4. **Install Python:** If you have Python installed, it should automatically be detected. If it is not detected, maybe your path settings are wrong. At the end of this chapter, resources are listed in case you have problems with installing NumPy:

![Image of Python installation window]

5. **Finish the installation:** In this example, Python 2.6 was found. Click **Next** if Python is found; otherwise, click **Cancel** and install Python (NumPy cannot be installed without Python). Click **Next**. This is the point of no return. Well, kind of, but it is best to make sure that you are installing to the proper directory and so on and so forth. Now the real installation starts. This may take a while:

![Image of Python installation window continued]

[121]
What just happened?
We installed NumPy on Windows.

Linux

Installing NumPy on Linux depends on the distribution you have. We will discuss how you
would install NumPy from the command line, although you could probably use graphical
installers; it depends on your distribution (distro).

Time for action – installing NumPy on Linux

Most Linux distributions have NumPy packages. We will go through the necessary steps for
some of the popular Linux distros:

1. **Installing NumPy on Red Hat**: Run the following instructions from the
 command line:

   ```bash
   yum install python-numpy
   ```

2. **Installing NumPy on Mandriva**: To install NumPy on Mandriva, run the following
 command line instruction:

   ```bash
   urpmi python-numpy
   ```

3. **Installing NumPy on Gentoo**: To install NumPy on Gentoo run the following
 command line instruction:

   ```bash
   sudo emerge numpy
   ```

4. **Installing NumPy on Debian and Ubuntu**: On Debian or Ubuntu, we need to type
 the following:

   ```bash
   sudo apt-get install python-numpy
   ```

The following table gives an overview of the Linux distributions and corresponding NumPy
package names.

<table>
<thead>
<tr>
<th>Linux distribution</th>
<th>Package name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arch Linux</td>
<td>python-numpy</td>
</tr>
<tr>
<td>Debian</td>
<td>python-numpy</td>
</tr>
<tr>
<td>Fedora</td>
<td>numpy</td>
</tr>
<tr>
<td>Gentoo</td>
<td>dev-python/numpy</td>
</tr>
<tr>
<td>OpenSUSE</td>
<td>python-numpy, python-numpy-devel</td>
</tr>
<tr>
<td>Slackware</td>
<td>numpy</td>
</tr>
</tbody>
</table>
NumPy Quick Start

What just happened?
We installed NumPy on various Linux distributions.

Mac OS X
You can install NumPy on the Mac with a graphical installer or from the command-line from a port manager such as MacPorts or Fink, depending on your preference.

Time for action – installing NumPy on Mac OS X with a GUI installer
We will install NumPy with a GUI installer.

1. **Download the GUI installer:** We can get a NumPy installer from the SourceForge website http://sourceforge.net/projects/numpy/files/. Download the appropriate DMG file. Usually the latest one is the best:

 ![SourceForge NumPy](sourceforge.png)

2. **Open the DMG file:** Open the DMG file (in this example, `numpy-1.5.1-py2.6-python.org-macosx10.3.dmg`):
Double-click on the icon of the opened box, the one having a subscript that ends with .mpkg. We will be presented with the welcome screen of the installer.

Click on the Continue button to go to the Read Me screen, where we will be presented with a short description of NumPy:

Continue to the License screen.
NumPy Quick Start

3. Accept the license: Read the license, click Continue and then the Accept button, when prompted to accept the license. Continue through the next screens and click Finish at the end.

What just happened?
We installed NumPy on Mac OS X with a GUI installer.

Time for action – installing NumPy with MacPorts or Fink
Alternatively we can install NumPy through the MacPorts route. It is shown as follows:

1. Installing with MacPorts: Type the following command:


   ```
   sudo port install py-numpy
   ```

2. Installing with Fink: Fink also has packages for NumPy—scipy-core-py24, scipy-core-py25, and scipy-core-py26. We can install the one for Python 2.6 with the following package:

   ```
   fink install scipy-core-py26
   ```

What just happened?
We installed NumPy on Mac OS X with MacPorts and Fink.

Building from source
We can retrieve the source code for NumPy with git. This is shown as follows:

```
git clone git://github.com/numpy/numpy.git numpy
```

Install /usr/local with the following command:

```
python setup.py build
sudo python setup.py install --prefix=/usr/local
```

To build, we need a C compiler such as GCC and the Python header files in the python-dev or python-devel package.

Vectors
NumPy arrays are more efficient than Python lists, when it comes to numerical operations. NumPy code requires less explicit loops than equivalent Python code.
Time for action – adding vectors

Imagine that we want to add two vectors called a and b. Vector a holds the squares of integers 0 to n, for instance, if n = 3, then a = (0, 1, 4). Vector b holds the cubes of integers 0 to n, so if n = 3, then b = (0, 1, 8). How would you do that using plain Python? After we come up with a solution, we will compare it with the NumPy equivalent.

1. Adding vectors using pure Python: The following function solves the vector addition problem using pure Python without NumPy:

```python
def pythonsum(n):
    a = range(n)
    b = range(n)
    c = []
    for i in range(len(a)):
        a[i] = i ** 2
        b[i] = i ** 3
        c.append(a[i] + b[i])
    return c
```

2. Adding vectors using NumPy: Following is a function that achieves the same with NumPy.

```python
def numpysum(n):
    a = numpy.arange(n) ** 2
    b = numpy.arange(n) ** 3
    c = a + b
    return c
```

Notice that `numpysum()` does not need a for loop. Also, we used the `arange` function from NumPy that creates a NumPy array for us with integers 0 to n. The `arange` function was imported; that is why it is prefixed with `numpy`.

Now comes the fun part. Remember that it is mentioned in the preface that NumPy is faster when it comes to array operations. How much faster is Numpy, though? The following program will show us by measuring the elapsed time in microseconds, for the `numpysum` and `pythonsum` functions. It also prints the last two elements of the vector sum. Let’s check that we get the same answers by using Python and NumPy:

```python
import sys
from datetime import datetime
import numpy

def numpysum(n):
    a = numpy.arange(n) ** 2
```
NumPy Quick Start

```python
b = numpy.arange(n) ** 3
c = a + b
return c
```

def pythonsum(n):
a = range(n)
b = range(n)
c = []
for i in range(len(a)):
a[i] = i ** 2
b[i] = i ** 3
c.append(a[i] + b[i])
return c

size = int(sys.argv[1])
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "PythonSum elapsed time in microseconds", delta.microseconds
start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "NumPySum elapsed time in microseconds", delta.microseconds
```

The output of the program for 1000, 2000, and 3000 vector elements is as follows:

```
$ python vectorsum.py 1000
The last 2 elements of the sum [995007996, 998001000]
PythonSum elapsed time in microseconds 707
The last 2 elements of the sum [995007996 998001000]
NumPySum elapsed time in microseconds 171
```

```
$ python vectorsum.py 2000
The last 2 elements of the sum [7980015996, 7992002000]
PythonSum elapsed time in microseconds 1420
The last 2 elements of the sum [7980015996 7992002000]
NumPySum elapsed time in microseconds 168
```

```
$ python vectorsum.py 4000
The last 2 elements of the sum [63920031996, 63968004000]
PythonSum elapsed time in microseconds 2829
The last 2 elements of the sum [63920031996 63968004000]
NumPySum elapsed time in microseconds 274

What just happened?
Clearly, NumPy is much faster than the equivalent normal Python code. One thing is certain; we get the same results whether we are using NumPy or not. However, the result that is printed differs in representation. Notice that the result from the `numpysum` function does not have any commas. How come? Obviously we are not dealing with a Python list but with a NumPy array. It was mentioned in the preface that NumPy arrays are specialized data structures for numerical data. We will learn more about NumPy arrays in the next chapter.

Pop Quiz - functioning of arange function

1. What does `arange(5)` do?
 - Creates a Python list of 5 elements with values 1 to 5.
 - Creates a Python list of 5 elements with values 0 to 4.
 - Creates a NumPy array with values 1 to 5.
 - Creates a NumPy array with values 0 to 4.
 - None of the above.

Have a go hero – continue the analysis

The program we used here to compare the speed of NumPy and regular Python is not very scientific. We should at least repeat each measurement a couple of times. It would be nice to be able to calculate some statistics such as average times, and so on. Also, you might want to show plots of the measurements to friends and colleagues.

Hints to help you can be found throughout this book and in the online documentation and resources listed at the end of this chapter. NumPy has, by the way, statistical functions that can calculate averages for you. I recommend using `matplotlib` to produce plots.
IPython—an interactive shell

Scientists and engineers are used to experimenting. IPython was created by scientists with experimentation in mind. The interactive environment that IPython provides is viewed by many as a direct answer to Matlab, Mathematica, and Maple. You can find more information, including installation instructions, at: http://ipython.org/

IPython is free, open source, and available for Linux, Unix, Mac OS X, and Windows. The IPython authors only request that you cite IPython in scientific work where IPython was used. Here is the list of features of IPython:

- Tab completion
- History mechanism
- Inline editing
- Ability to call external Python scripts with %run
- Access to system commands
- Pylab switch
- Access to Python debugger and profiler

The Pylab switch imports all the Scipy, NumPy, and Matplotlib packages. Without this switch, we would have to import every package we need ourselves.

All we need to do is enter the following instruction on the command line:

```bash
$ ipython -pylab
Type "copyright", "credits" or "license" for more information.
IPython 0.10 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object'. ?object also works, ?? prints more.
            Welcome to pylab, a matplotlib-based Python environment.
            For more information, type 'help(pylab)'.
In [1]: quit()
quit() or Ctrl + D quits the IPython shell. We might want to be able to go back to our experiments. In IPython, it is easy to save a session for later.

In [1]: %logstart
Activating auto-logging. Current session state plus future input saved.
Let's say we have the vector addition program that we made in the current directory. We can run the script as follows:

In [1]: ls
README        vectorsum.py

In [2]: %run -i vectorsum.py 1000

As you probably remember, 1000 specifies the number of elements in a vector. The -d switch of %run starts an ipdb debugger with 'c' the script is started. 'n' steps through the code. Typing quit at the ipdb prompt exits the debugger.

In [2]: %run -d vectorsum.py 1000

*** Blank or comment
*** Blank or comment

Enter c at the ipdb> prompt to start your script.

><string>(1)<module>()
ipdb> c
> /Users/ivanidris/Documents/numpyBeginnersGuide/book/ch1code/vectorsum.py(3)<module>()
    2
1--> 3 import sys
   4 from datetime import datetime
ipdb> n
>
1   3 import sys
---> 4 from datetime import datetime

---
import numpy

from datetime import datetime

import numpy

We can also profile our script by passing the -p option to %run.

In [4]: %run -p vectorsum.py 1000
1058 function calls (1054 primitive calls) in 0.002 CPU seconds
Ordered by: internal time
ncallstottimepercallcumtimepercallfilename:lineno(function)
1 0.001 0.001 0.001 0.001 vectorsum.py:28(pythonsum)
1 0.001 0.001 0.002 0.002 {execfile}
1000 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.002 0.002 vectorsum.py:3(<module>)
1 0.000 0.000 0.000 0.000 vectorsum.py:21(numpysum)
3 0.000 0.000 0.000 0.000 {range}
1 0.000 0.000 0.000 0.000 arrayprint.py:175(_array2string)
3/1 0.000 0.000 0.000 0.000 arrayprint.py:246(array2string)
2 0.000 0.000 0.000 0.000 {method 'reduce' of 'numpy.ufunc' objects}
4 0.000 0.000 0.000 0.000 {built-in method now}
2 0.000 0.000 0.000 0.000 arrayprint.py:486(_formatInteger)
2 0.000 0.000 0.000 0.000 {numpy.core.multiarray.arange}
1 0.000 0.000 0.000 0.000 arrayprint.py:320(_formatArray)
3/1 0.000 0.000 0.000 0.000 numeric.py:1390(array_str)
1 0.000 0.000 0.000 0.000 numeric.py:216(asarray)
2 0.000 0.000 0.000 0.000 arrayprint.py:312(_extendLine)
1 0.000 0.000 0.000 0.000 fromnumeric.py:1043(ravel)
2 0.000 0.000 0.000 0.000 arrayprint.py:208(<lambda>)
1 0.000 0.000 0.002 0.002<string>:1(<module>)
11 0.000 0.000 0.000 0.000 {len}
2 0.000 0.000 0.000 0.000 {isinstance}
1 0.000 0.000 0.000 0.000 {reduce}
Chapter 1

This gives us a bit more insight in the workings of our program. In addition, we can now identify performance bottlenecks. The %hist command shows the commands history.

```
In [2]: a=2+2
In [3]: a
Out[3]: 4
In [4]: %hist
1: _ip.magic("hist ")
2: a=2+2
3: a
```

I hope you agree that IPython is a really useful tool!

**Online resources and help**

When we are in IPython's pylab mode, we can open manual pages for NumPy functions with the help command. It is not necessary to know the name of a function. We can type a few characters and then let tab completion do its work. Let's, for instance, browse the available information for the arange function.

```
In [2]: help ar<Tab>
```

```
arangearccosarccosharcsinarcsinh
arctan arctan2 arctanhargmaxargmin
argsortargwhere around array2string array_equal
array_equivarray_reprarray_splitarray_str arrow
```

```
In [2]: help arange
```

Another option is to put a question mark behind the function name.

```
In [3]: arange?
```
NumPy Quick Start

The main documentation website for NumPy and SciPy is at http://docs.scipy.org/doc/. Through this webpage, we can browse the NumPy reference at http://docs.scipy.org/doc/numpy/reference/ and the user guide as well as several tutorials.

NumPy has a wiki with lots of documentation at http://docs.scipy.org/numpy/Front%20Page/.

The NumPy and SciPy forum can be found at http://ask.scipy.org/en.

The popular Stack Overflow software development forum has hundreds of questions tagged "numpy". To view them, go to http://stackoverflow.com/questions/tagged/numpy.

If you are really stuck with a problem or you want to be kept informed of NumPy development, you can subscribe to the NumPy discussion mailing list. The e-mail address is numpy-discussion@scipy.org. The number of e-mails per day is not too high and there is almost no spam to speak of. Most importantly, developers actively involved with NumPy also answer questions asked on the discussion group. The complete list can be found at http://www.scipy.org/Mailing_Lists.

For IRC users, there is an IRC channel on irc.freenode.net. The channel is called #scipy, but you can also ask NumPy questions since SciPy users also have knowledge of NumPy, as SciPy is based on NumPy. There are at least 50 members on the scipy channel at all times.

Summary

In this chapter, we installed NumPy. We got a vector addition program working and convinced ourselves that NumPy has superior performance. We were introduced to the IPython interactive shell. In addition, we explored the available NumPy documentation and online resources.

In the next chapter, we will take a look under the hood and explore some fundamental concepts including arrays and data types.
2

Beginning with NumPy Fundamentals

After installing NumPy and getting some code to work, it's time to cover NumPy basics.

The topics we shall cover in this chapter are:

- Data types
- Array types
- Type conversions
- Array creation
- Indexing
- Slicing
- Shape manipulation

Before we start, let me make a few remarks about the code examples in this chapter. The code snippets in this chapter show input and output from several IPython sessions. Recall that IPython was introduced in the previous chapter as the interactive Python shell of choice for scientific computing. The advantages of IPython are pylab switch of many scientific computing Python packages, including NumPy, and the fact that it is not necessary to explicitly call the `print` function to display variable values. However, the source code delivered alongside the book is regular Python code that uses imports and print statements.
NumPy array object

NumPy has a multi-dimensional array object called ndarray. It consists of two parts:

1. The actual data
2. Some metadata describing the data

The majority of array operations leave the raw data untouched. The only aspect that changes is the metadata.

We have already learned, in the previous chapter, how to create an array using the `arange` function. Actually, we created a one-dimensional array that contained a set of numbers. `ndarray` can have more than one dimension.

The NumPy array is homogeneous—the items in the array have to be of the same type. The advantage is that, if we know that the items in the array are of the same type, then it is easy to determine the storage size required for the array.

NumPy arrays are indexed just like in Python, starting from 0. Data types are represented by special objects. These objects will be discussed comprehensively in this chapter.

We will create an array with the `arange` function again. Here’s how to get the data type of an array:

```
In: a = arange(5)
In: a.dtype
Out: dtype('int64')
```

The data type of array `a` is `int64` (at least on my machine), but you may get `int32` as output if you are using 32-bit Python. In both cases, we are dealing with integers (64-bit or 32-bit). Besides the data type of an array, it is important to know its shape. The following diagram will give us a better understanding of a NumPy array object:

```
ndarray
 ▼
 | Dtype
 ▼
 | Shape
```

The example in Chapter 1, NumPy Quick Start, demonstrated how to create a vector (actually, a one-dimensional NumPy array). A vector is commonly used in mathematics but, most of the time, we need higher-dimensional objects. Let's determine the shape of the vector we created a few minutes ago:

```
In [4]: a
Out[4]: array([0, 1, 2, 3, 4])
In: a.shape
Out: (5,)
```
As you can see, the vector has five elements with values ranging from 0 to 4. The shape attribute of the array is a tuple, in this case a tuple of 1 element, which contains the length in each dimension.

**Time for action – creating a multidimensional array**

Now that we know how to create a vector, we are ready to create a multidimensional NumPy array. After we create the matrix, we would again want to display its shape and data type.

1. Create a multidimensional array.
2. Show the array shape and data type:
   ```python
 In: m = array([arange(2), arange(2)])
 In: m
 Out:
 array([[0, 1],
 [0, 1]])
 In: m.shape
 Out: (2, 2)
   ```

**What just happened?**

We created a 2-by-2 array with the `arange` function we have come to trust and love. Without any warning, the `array` function appeared on the stage.

The `array` function creates an array from an object that you give to it. The object needs to be array-like, for instance, a Python list. In the preceding example, we passed in a list of arrays. The object is the only required argument of the `array` function. NumPy functions tend to have a lot of optional arguments with predefined defaults.

**Pop quiz – the shape of ndarray**

1. How is the shape of an `ndarray` stored?
   a. It is stored in a comma-separated string.
   b. It is stored in a list.
   c. It is stored in a tuple.
Have a go hero – create a 3-by-3 matrix

It shouldn't be too hard now to create a 3-by-3 matrix. Give it a go and check whether the array shape is as expected.

Selecting elements

From time to time, we will want to select a particular element of an array. We will take a look at how to do this, but first, let's create a 2-by-2 matrix again:

```
In: a = array([[1,2],[3,4]])
In: a
Out: array([[1, 2],
 [3, 4]])
```

The matrix was created this time by passing the `array` function a list of lists. We will now select each item of the matrix one-by-one. Remember, the indices are numbered starting from 0.

```
In: a[0,0]
Out: 1
In: a[0,1]
Out: 2
In: a[1,0]
Out: 3
In: a[1,1]
Out: 4
```

As you can see, selecting elements of the array is pretty simple. For the array `a`, we just use the notation `a[m,n]`, where `m` and `n` are the indices of the item in the array.

```
[0,0] [0,1]
[1,0] [1,1]
```

NumPy numerical types

Python has an integer type, a float type, and a complex type, however, this is not enough for scientific computing and, for this reason, NumPy has a lot more data types. In practice, we need even more types with varying precision and, therefore, different memory size of the type. The majority of the NumPy numerical types end with a number. This number indicates the number of bits associated with the type. The following table (adapted from the NumPy user guide) gives an overview of NumPy numerical types:

---

[28]
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bool</td>
<td>Boolean (True or False) stored as a bit</td>
</tr>
<tr>
<td>inti</td>
<td>Platform integer (normally either int32 or int64)</td>
</tr>
<tr>
<td>int8</td>
<td>Byte (-128 to 127)</td>
</tr>
<tr>
<td>int16</td>
<td>Integer (-32768 to 32767)</td>
</tr>
<tr>
<td>int32</td>
<td>Integer (-2 ** 31 to 2 ** 31 -1)</td>
</tr>
<tr>
<td>int64</td>
<td>Integer (-2 ** 63 to 2 ** 63 -1)</td>
</tr>
<tr>
<td>uint8</td>
<td>Unsigned integer (0 to 255)</td>
</tr>
<tr>
<td>uint16</td>
<td>Unsigned integer (0 to 65535)</td>
</tr>
<tr>
<td>uint32</td>
<td>Unsigned integer (0 to 2 ** 32 - 1)</td>
</tr>
<tr>
<td>uint64</td>
<td>Unsigned integer (0 to 2 ** 64 - 1)</td>
</tr>
<tr>
<td>float16</td>
<td>Half precision float: sign bit, 5 bits exponent, 10 bits mantissa</td>
</tr>
<tr>
<td>float32</td>
<td>Single precision float: sign bit, 8 bits exponent, 23 bits mantissa</td>
</tr>
<tr>
<td>float64 or float</td>
<td>Double precision float: sign bit, 11 bits exponent, 52 bits mantissa</td>
</tr>
<tr>
<td>complex64</td>
<td>Complex number, represented by two 32-bit floats (real and imaginary components)</td>
</tr>
<tr>
<td>complex128 or complex</td>
<td>Complex number, represented by two 64-bit floats (real and imaginary components)</td>
</tr>
</tbody>
</table>

For each data type, there exists a corresponding conversion function:

```python
In: float64(42)
Out: 42.0
In: int8(42.0)
Out: 42
In: bool(42)
Out: True
In: bool(42.0)
Out: True
In: float(True)
Out: 1.0
```

Many functions have a data type argument, which is often optional:

```python
In: arange(7, dtype=uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)
```
It is important to know that you are not allowed to convert a complex number into an integer. Trying to do that triggers a `TypeError`. This is shown as follows:

```python
In: int(42.0 + 1.j)

TypeError Traceback (most recent call last)
TypeError: can't convert complex to int; use int(abs(z))
```

The same goes for conversion of a complex number into a float. By the way, the `.j` part is the imaginary coefficient of the complex number. See the following code:

```python
In: float(42.0 + 1.j)

TypeError Traceback (most recent call last)
TypeError: can't convert complex to float; use abs(z)
```

**Data type objects**

Data type objects are instances of the `numpy.dtype` class. Once again, arrays have a data type. To be precise, every element in a NumPy array has the same data type. The data type object can tell you the size of the data in bytes. The size in bytes is given by the `itemsize` attribute of the `dtype` class:

```python
In: a.dtype.itemsize
Out: 8
```

The following diagram gives us a better understanding of data type objects:

![Data type diagram](image)

**Character codes**

Character codes are included for backward compatibility with Numeric. Numeric is the predecessor of NumPy. Their use is not recommended, but the codes are provided here because they pop up in several places. You should instead use `dtype` objects.
Look at the following code to create an array of single precision floats:

\[
\begin{align*}
\text{In: } & \ \text{arange}(7, \text{dtype}='f') \\
\text{Out: } & \ \text{array}([0., 1., 2., 3., 4., 5., 6.], \text{dtype=float32})
\end{align*}
\]

Likewise this creates an array of complex numbers

\[
\begin{align*}
\text{In: } & \ \text{arange}(7, \text{dtype}='D') \\
\text{Out: } & \ \text{array}([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j, 6.+0.j])
\end{align*}
\]

### dtype constructors

We have a variety of ways to create data types. Take the case of floating point data:

- We can use the general Python float:
  
  \[
  \begin{align*}
  \text{In: } & \ \text{dtype(float)} \\
  \text{Out: } & \ \text{dtype('float64')}
  \end{align*}
  \]

- We can specify a single precision float with a character code:
  
  \[
  \begin{align*}
  \text{In: } & \ \text{dtype('f')} \\
  \text{Out: } & \ \text{dtype('float32')}
  \end{align*}
  \]

- We can use a double precision float character code:
  
  \[
  \begin{align*}
  \text{In: } & \ \text{dtype('d')} \\
  \text{Out: } & \ \text{dtype('float64')}
  \end{align*}
  \]

- We can give the data type constructor a two-character code. The first character signifies the type; the second character is a number specifying the number of bytes in the type:
  
  \[
  \begin{align*}
  \text{In: } & \ \text{dtype('f8')} \\
  \text{Out: } & \ \text{dtype('float64')}
  \end{align*}
  \]
A listing of all full data type names can be found in `sctypeDict.keys()`:

```
In: dtype('Float64')
Out: dtype('float64')
```

**dtype attributes**

The `dtype` class has a number of useful attributes. For example, we can get information about the character code of a data type through the attributes of `dtype`:

```
In: t = dtype('Float64')
In: t.char
Out: 'd'
```

The type attribute corresponds to the type of object of the array elements:

```
In: t.type
Out: <type 'numpy.float64'>
```

The `str` attribute of `dtype` gives a string representation of the data type. It starts with a character representing endianness, if appropriate, then a character code, followed by a number corresponding to the number of bytes that each array item requires. Endianness, here, means the way bytes are ordered within a 32 or 64-bit word. In big-endian order, the most significant byte is stored first. In little-endian order, the least significant byte is stored first.

```
In: t.str
Out: '<f8'
```

**Time for action – creating a record data type**

The record data type is a heterogeneous data type—think of it as representing a row in a spreadsheet or a database. To give an example of a record data type, we will create a record for a shop inventory. The record contains the name of the item, a 40-character string, the number of items in the store represented by a 32-bit integer and, finally, a price represented by a 32-bit float. The following steps show how to create a record data type:
1. Create the record:

   In: `t = dtype([('name', str, 40), ('numitems', int32), ('price', float32)])`
   
   In: `t`
   
   Out: `dtype([('name', '|S40'), ('numitems', '<i4'), ('price', '<f4')])`

2. View the type (we can view the type of a field as well):

   In: `t['name']`
   
   Out: `dtype('|S40')`

If you don’t give the `array` function a data type, it will assume that it is dealing with floating point numbers. To create the array now, we really have to specify the data type; otherwise, we will get a `TypeError`:

   In: `itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13, 2.72)], dtype=t)`
   
   In: `itemz[1]`
   
   Out: `('Butter', 13, 2.7200000286102295)`

What just happened?

We created a record data type, which is a heterogeneous data type. The record contained a name as a character string, a number as an integer and a price represented by a float.

One-dimensional slicing and indexing

Slicing of one-dimensional NumPy arrays works just like slicing of Python lists. We can select a piece of an array from index 3 to 7 that extracts the elements 3 through 6:

   In: `a = arange(9)`
   
   In: `a[3:7]`
   
   Out: `array([3, 4, 5, 6])`

We can select elements from index 0 to 7 with a step of 2:

   In: `a[:7:2]`
   
   Out: `array([0, 2, 4, 6])`

Similarly as in Python, we can use negative indices and reverse the array:

   In: `a[::-1]`
   
   Out: `array([8, 7, 6, 5, 4, 3, 2, 1, 0])`
Time for action – slicing and indexing multidimensional arrays

An ndarray supports slicing over multiple dimensions. For convenience, we refer to many dimensions at once, with an ellipsis.

1. **Create an array and reshape it:** To illustrate, we will create an array with the `arange` function and reshape it:
   
   ```
 In: b = arange(24).reshape(2,3,4)
 In: b.shape
 Out: (2, 3, 4)
 In: b
 Out:
 array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
   ```

   The array `b` has 24 elements with values 0 to 23 and we reshaped it to be a 2-by-3-by-4, three-dimensional array. We can visualize this as a two-story building with 12 rooms on each floor, 3 rows and 4 columns. As you have probably guessed, the `reshape` function changes the shape of an array. You give it a tuple of integers, corresponding to the new shape. If the dimensions are not compatible with the data, an exception is thrown.

2. **Selecting a single cell:** We can select a single room by using its three coordinates, namely, the floor, column, and row. For example, the room on the first floor, in the first row, and in the first column (you can have floor 0 and room 0—it’s just a matter of convention) can be represented by:
   
   ```
 In: b[0,0,0]
 Out: 0
   ```

3. **Selecting slices:** If we don’t care about the floor, but still want the first column and row, we replace the first index by a `: (colon)` because we just need to specify the floor number and omit the other indices:
   
   ```
 In: b[:,0,0]
 Out: array([0, 12])
   ```

   This selects the first floor
   
   ```
 In: b[0]
 Out:
 array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]])
   ```
We could also have written:

In: \( b[0, :, :] \)
Out:

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11
\end{array}
\]

An ellipsis replaces multiple colons, so, the preceding code is equivalent to:

In: \( b[0, \ldots] \)
Out:

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11
\end{array}
\]

Further, we get the second row on the first floor with:

In: \( b[0,1] \)
Out: \( \begin{array}{cccc} 4 & 5 & 6 & 7 \end{array} \)

4. **Using steps to slice:** Furthermore, we can also select each second element of this selection:

In: \( b[0,1,:,2] \)
Out: \( \begin{array}{cccc} 4 & 6 \end{array} \)

5. **Using ellipsis to slice:** If we want to select all the rooms on both floors that are in the second column, regardless of the row, we will type the following code snippet:

In: \( b[\ldots,1] \)
Out:

\[
\begin{array}{cccc}
1 & 5 & 9 \\
13 & 17 & 21
\end{array}
\]

Similarly, we can select all the rooms on the second row, regardless of floor and column, by writing the following code snippet:

In: \( b[:,1] \)
Out:

\[
\begin{array}{cccc}
4 & 5 & 6 & 7 \\
16 & 17 & 18 & 19
\end{array}
\]

If we want to select rooms on the ground floor second column, then type the following code snippet:

In: \( b[0,:,1] \)
Out: \( \begin{array}{cccc} 1 & 5 & 9 \end{array} \)
6. **Using negative indices:** If we want to select the first floor, last column, then type the following code snippet:

   In: b[0,:,-1]
   Out: array([ 3,  7, 11])

   If we want to select rooms on the ground floor, last column reversed, then type the following code snippet:

   In: b[0,:,:-1, -1]
   Out: array([11,  7,  3])

   Every second element of that slice:

   In: b[0,:2,-1]
   Out: array([ 3, 11])

   The command that reverses a one-dimensional array puts the top floor following the ground floor:

   In: b[::-1]
   Out: array([[[[12, 13, 14, 15],
                 [16, 17, 18, 19],
                 [20, 21, 22, 23]],
                [[ 0,  1,  2,  3],
                 [ 4,  5,  6,  7],
                 [ 8,  9, 10, 11]]])

**What just happened?**
We sliced a multidimensional NumPy array using several different methods.

**Time for action – manipulating array shapes**

We already learned about the `reshape` function. Another recurring task is flattening of arrays.

1. **Ravel:** We can accomplish this with the `ravel` function:

   In: b
   Out:
   array([[[0, 1, 2, 3],
            [4, 5, 6, 7],
            [8, 9, 10, 11]],
           [[12, 13, 14, 15],
            [16, 17, 18, 19],
            [20, 21, 22, 23]]])
In: b.ravel()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

2. Flatten: The appropriately-named function, flatten, does the same as ravel, but flatten always allocates new memory whereas ravel might return a view of the array.
In: b.flatten()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

3. Setting the shape with a tuple: Besides the reshape function, we can also set the shape directly with a tuple, which is shown as follows:
In: b.shape = (6,4)
In: b
Out:
array([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]])

As you can see, this changes the array directly. Now, we have a 6-by-4 array.

4. Transpose: In linear algebra, it is common to transpose matrices. We can do that too, by using the following code:
In: b.transpose()
Out:
array([[ 0,  4,  8, 12, 16, 20],
        [ 1,  5,  9, 13, 17, 21],
        [ 2,  6, 10, 14, 18, 22],
        [ 3,  7, 11, 15, 19, 23]])

5. Resize: The resize method works just like the reshape method, but modifies the array it operates on:
In: b.resize((2,12))
In: b
Out:
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11],
        [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
Beginning with NumPy Fundamentals

**What just happened?**

We manipulated the shapes of NumPy arrays using the `ravel` function, function `flatten`, the `reshape` function, and the `resize` method.

**Stacking**

Arrays can be stacked horizontally, depth-wise, or vertically. We can use, for that purpose, the `vstack`, `dstack`, `hstack`, `column_stack`, `row_stack`, and `concatenate` functions.

**Time for action – stacking arrays**

First, let's set up some arrays:

```python
In: a = arange(9).reshape(3,3)
In: a
Out:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
In: b = 2 * a
In: b
Out:
array([[0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])
```

1. **Horizontal stacking**: Starting with horizontal stacking, we will form a tuple of ndarrays and give it to the `hstack` function. This is shown as follows:

   ```python
 In: hstack((a, b))
 Out:
 array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])
   ```

   We can achieve the same with the `concatenate` function, which is shown as follows:

   ```python
 In: concatenate((a, b), axis=1)
 Out:
 array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])
   ```
2. **Vertical stacking**: With vertical stacking, again, a tuple is formed. This time, it is given to the `vstack` function. This can be seen as follows:

In: `vstack((a, b))`

Out:
```python
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])
```

The `concatenate` function produces the same result with the axis set to 0. This is the default value for the axis argument.

In: `concatenate((a, b), axis=0)`

Out:
```python
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])
```

3. **Depth stacking**: Additionally, there is the depth-wise stacking using `dstack` and a tuple, of course. This means stacking of a list of arrays along the third axis (depth). For instance, we could stack 2D arrays of image data on top of each other.

In: `dstack((a, b))`

Out:
```python
array([[[0, 0],
 [3, 0],
 [6, 0]],
 [[1, 0],
 [4, 0],
 [7, 0]],
 [[2, 0],
 [5, 0],
 [8, 0]]])
```
Beginning with NumPy Fundamentals

```
[1, 2],
[2, 4]],
[[3, 6],
[4, 8],
[5, 10]],
[[6, 12],
[7, 14],
[8, 16]])
```

4. **Column stacking:** The `column_stack` function stacks 1D arrays column-wise. It’s shown as follows:

```
In: oned = arange(2)
In: oned
Out: array([0, 1])
In: twiceoned = 2 * oned
In: twiceoned
Out: array([0, 2])
In: column_stack((oned, twiceoned))
Out:
array([[0, 0],
 [1, 2]])
```

2D arrays are stacked the way `hstack` stacks them:

```
In: column_stack((a, b))
Out:
array([[0, 1, 2, 0, 2, 4],
 [3, 4, 5, 6, 8, 10],
 [6, 7, 8, 12, 14, 16]])
In: column_stack((a, b)) == hstack((a, b))
Out:
array([[True, True, True, True, True, True],
 [True, True, True, True, True, True],
 [True, True, True, True, True, True]], dtype=bool)
```

Yes, you guessed it right! We compared two arrays with the `==` operator. Isn’t it beautiful?

5. **Row stacking:** NumPy, of course, also has a function that does row-wise stacking. It is called `row_stack` and, for 1D arrays, it just stacks the arrays in rows into a 2D array.

```
In: row_stack((oned, twiceoned))
Out:
array([[0, 1],
 [0, 2]])
```
The `row_stack` function results for 2D arrays are equal to. Yes, exactly the `vstack` function results.

In: `row_stack((a, b))`
Out:
```
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [0, 2, 4],
 [6, 8, 10],
 [12, 14, 16]])
```

In: `row_stack((a,b)) == vstack((a, b))`
Out:
```
array([[True, True, True],
 [True, True, True]], dtype=bool)
```

What just happened?

We stacked arrays horizontally, depth-wise, or vertically. We used the `vstack`, `dstack`, `hstack`, `column_stack`, `row_stack`, and `concatenate` functions.

Splitting

Arrays can be split vertically, horizontally, or depth wise. The functions involved are `hsplit`, `vsplit`, `dsplit`, and `split`. We can either split into arrays of the same shape or indicate the position after which the split should occur.

Time for action – splitting arrays

1. **Horizontal splitting**: The ensuing code splits an array along its horizontal axis into three pieces of the same size and shape. This is shown as follows:

   In: `a`
   Out:
```
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8]])
```

   In: `hsplit(a, 3)`
   Out:
```
[array([[0],
 [3],
 [6]])
```
Beginning with NumPy Fundamentals

[6]),
array([[1],
    [4],
    [7]]),
array([[2],
    [5],
    [8]])
]

Compare it with a call of the `split` function, with extra parameter `axis=1`:
In: `split(a, 3, axis=1)`
Out:
[array([[0],
    [3],
    [6]]),
array([[1],
    [4],
    [7]]),
array([[2],
    [5],
    [8]])]

2. **Vertical splitting**: vsplit splits along the vertical axis:
In: `vsplit(a, 3)`
Out: `[array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

The `split` function, with `axis=0`, also splits along the vertical axis:
In: `split(a, 3, axis=0)`
Out: `[array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

3. **Depth-wise splitting**: The `dsplit` function, unsurprisingly, splits depth-wise. We will need an array of rank 3 first:
In: `c = arange(27).reshape(3, 3, 3)`
In: `c`
Out:
array([[[ 0,  1,  2],
    [ 3,  4,  5],
    [ 6,  7,  8]],
[[ 9, 10, 11],
    [12, 13, 14],
    [15, 16, 17]],
[[18, 19, 20],
    [21, 22, 23],
    [24, 25, 26]]])
In: `dsplit(c, 3)`
Out:

```python
[[[0],
 [3],
 [6]],
[[9],
 [12],
[15]],
[[18],
 [21],
[24]]],
array([[1],
 [4],
 [7]],
[[10],
 [13],
[16]],
[[19],
 [22],
[25]]],
array([[2],
 [5],
 [8]],
[[11],
 [14],
[17]],
[[20],
 [23],
[26]])
```
Beginning with NumPy Fundamentals

```
In: b.ndim
Out: 2

- `size` contains the number of elements. This is shown as follows:
 In: b.size
 Out: 24

- `itemsize` gives the number of bytes for each element in the array:
 In: b.itemsize
 Out: 8

- If you want the total number of bytes the array requires, you can have a look at
 `nbytes`. This is just a product of the `itemsize` and `size` attributes:
 In: b.nbytes
 Out: 192
 In: b.size * b.itemsize
 Out: 192

- The `T` attribute has the same effect as the `transpose` function, which is shown
 as follows:
 In: b.resize(6,4)
 In: b
 Out:
 array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
 In: b.T
 Out:
 array([[0, 4, 8, 12, 16, 20],
 [1, 5, 9, 13, 17, 21],
 [2, 6, 10, 14, 18, 22],
 [3, 7, 11, 15, 19, 23]])

- If the array has a rank lower than 2, we will just get a view of the array:
 In: b.ndim
 Out: 1
 In: b.T
 Out: array([[0, 1, 2, 3, 4]])
```
Complex numbers in NumPy are represented by `.j`. For example, we can create an array with complex numbers:

```python
In: b = array([1.j + 1, 2.j + 3])
In: b
Out: array([1.+1.j, 3.+2.j])
```

- The `real` attribute gives us the real part of the array, or the array itself if it only contains real numbers:
  ```
 In: b.real
 Out: array([1., 3.])
  ```

- The `imag` attribute contains the imaginary part of the array:
  ```
 In: b.imag
 Out: array([1., 2.])
  ```

- If the array contains complex numbers, then the data type is automatically also complex:
  ```
 In: b.dtype
 Out: dtype('complex128')
 In: b.dtype.str
 Out: '<c16'
  ```

- The `flat` attribute returns a `numpy.flatiter` object. This is the only way to acquire a `flatiter`—we do not have access to a `flatiter` constructor. The flat iterator enables us to loop through an array as if it is a flat array, as shown next:
  ```
 In: b = arange(4).reshape(2,2)
 In: b
 Out:
 array([[0, 1],
 [2, 3]])
 In: f = b.flat
 In: f
 Out: <numpy.flatiter object at 0x103013e00>
 In: for item in f: print item

 0
 1
 2
 3
  ```

- It is possible to directly get an element with the `flatiter` object:
  ```
 In: b.flat[2]
 Out: 2
  ```
Beginning with NumPy Fundamentals

or multiple elements:

In: b.flat[[1,3]]
Out: array([1, 3])

The `flat` attribute is settable. Setting the value of the `flat` attribute leads to overwriting the values of the whole array:

In: b.flat = 7
In: b
Out:
array([[7, 7],
       [7, 7]])

or selected elements

In: b.flat[[1,3]] = 1
In: b
Out:
array([[7, 1],
       [7, 1]])

Time for action – converting arrays

We can convert a NumPy array to a Python list with the `tolist` function. This is shown as follows:

1. Convert to a list:
   
   In: b
   
   Out: array([ 1.+1.j,  3.+2.j])
   
   In: b.tolist()
   
   Out: [(1+1j), (3+2j)]

2. `astype` function: The `astype` function converts the array to an array of the specified type:

   In: b
   
   Out: array([ 1.+1.j,  3.+2.j])
In: b.astype(int)
Out: array([1, 3])

We are losing the imaginary part when casting from complex type to int. The astype function also accepts the name of a type as a string.

In: b.astype('complex')
Out: array([1+1j, 3+2j])

It won't show any warning this time, because we used the proper data type.

**What just happened?**

We converted NumPy arrays to a list and to arrays of different data types.

**Summary**

We learned a lot in this chapter about the NumPy fundamentals: data types and arrays. Arrays have several attributes describing them. We learned that one of these attributes is the data type, which, in NumPy, is represented by a full-fledged object.

NumPy arrays can be sliced and indexed in an efficient manner, just like Python lists. NumPy arrays have the added ability of working with multiple dimensions.

The shape of an array can be manipulated in many ways—stacking, resizing, reshaping, and splitting. A great number of convenience functions for shape manipulation were demonstrated in this chapter.

Having learned about the basics, it’s time to move on to the study of commonly-used functions in Chapter 3, *Get to terms with commonly used functions*. This includes basic statistical and mathematical functions.
In this chapter, we will have a look at common NumPy functions. In particular, we will learn how to load data from files using a historical stock prices example. Also, we will get to see the basic NumPy mathematical and statistical functions.

We will learn how to read from, and write to, files. Also, we will get a taste of the functional programming and linear algebra possibilities in NumPy.

In this chapter, we shall cover the following topics:

- Functions working on arrays
- Loading arrays from files
- Writing arrays to files
- Simple mathematical and statistical functions

**File I/O**

First, we will learn about file I/O with NumPy. Data is usually stored in files. You would not get far if you are not able to read from and write to files.
Get into Terms with Commonly Used Functions

**Time for action – reading and writing files**

As an example of file I/O, we will create an identity matrix and store its contents in a file.

**Identity matrix creation**

1. **Creating an identity matrix**: The identity matrix is a square matrix with ones on the diagonal and zeroes for the rest.

   \[
   \begin{bmatrix}
   1 & 0 \\
   0 & 1
   \end{bmatrix}
   \]

   The identity matrix can be created with the `eye` function. The only argument we need to give the `eye` function is the number of ones. So, for instance, for a 2-by-2 matrix, write the following code:

   ```python
 i2 = numpy.eye(2)
 print i2
   ```

   The output is:

   \[
   \begin{bmatrix}
   1. & 0. \\
   0. & 1.
   \end{bmatrix}
   \]

2. **Saving data**: Save the data with the `savetxt` function. We obviously need to specify the name of the file that we want to save the data in and the array containing the data itself:

   ```python
 numpy.savetxt("eye.txt", i2)
   ```

   A file called `eye.txt` should have been created. You can check for yourself whether the contents are as expected.

**What just happened?**

Reading and writing files is a necessary skill for data analysis. We wrote to a file with `savetxt`. We made an identity matrix with the `eye` function.

**CSV files**

Files in the **comma separated values (CSV)** format are encountered quite frequently. Often, the CSV file is just a dump from a database file. Usually, each field in the CSV file corresponds to a database table column. As we all know, spreadsheet programs, such as Excel, can produce CSV files as well.
Chapter 3

Time for action – loading from CSV files

How do we deal with CSV files? Luckily, the `loadtxt` function can conveniently read CSV files, split up the fields and load the data into NumPy arrays. In the following example, we will load historical price data for Apple (the company, not the fruit). The data is in CSV format. The first column contains a symbol that identifies the stock. In our case, it is AAPL, next in our case. The date is in dd-mm-yyyy format. The third column is empty. Then, in order, we have the open, high, low, and close price. Last, but not least, is the volume of the day. This is what a line looks like:

```
AAPL,28-01-2011, ,344.17,344.4,333.53,336.1,21144800
```

- **Loading data**: For now, we are only interested in the close price and volume. In the preceding sample, that would be 336.1 and 21144800. Store the close price and volume in two arrays as follows:

  ```python
c,v=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True)
  ```

As you can see, data is stored in the `data.csv` file. We have set the delimiter to `,` (comma), since we are dealing with a comma separated value file. The `usecols` parameter is set through a tuple to get the seventh and eighth fields, which correspond to the close price and volume. Unpack is set to `True`, which means that data will be unpacked and assigned to the `c` and `v` variables that will hold the close price and volume, respectively.

**What just happened?**

CSV files are a special type of file that we have to deal with frequently. We read a CSV file containing stock quotes with the `loadtxt` function. We indicated to the `loadtxt` function that the delimiter of our file was a comma. We specified which columns we were interested in, through the `usecols` argument, and set the `unpack` parameter to `True` so that the data was unpacked for further use.

**Volume weighted average price**

Volume weighted average price (VWAP) is a very important quantity. The higher the volume, the more significant a price move typically is. VWAP is calculated by using volume values as weights.
Time for action – calculating volume weighted average price

These are the actions that we will take:

1. Read the data into arrays.
2. Calculate VWAP:

   ```python
 import numpy
 c,v=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,7), unpack=True)
 vwap = numpy.average(c, weights=v)
 print "VWAP =", vwap
 The output is
 VWAP = 350.589549353
   ```

What just happened?

That wasn't very hard, was it? We just called the `average` function and set its `weights` parameter to use the `v` array for weights. By the way, NumPy also has a function to calculate the arithmetic mean.

The mean function

The `mean` function is quite friendly and not so mean. This function calculates the arithmetic mean of an array. Let's see it in action:

   ```python
 print "mean =", numpy.mean(c)
 mean = 351.037666667
   ```

Time weighted average price

Now that we are at it, let's compute the time weighted average price too. It is just a variation on a theme really. The idea is that recent price quotes are more important, so we should give recent prices higher weights. The easiest way is to create an array with the `arange` function of increasing values from zero to the number of elements in the close price array. This is not necessarily the correct way. In fact, most of the examples concerning stock price analysis in this book are only illustrative. The following is the TWAP code:

   ```python
 t = numpy.arange(len(c))
 print "twap =", numpy.average(c, weights=t)
   ```

   It produces this output:

   ```
 twap = 352.428321839
   ```

   The TWAP is even higher than the mean.
Pop quiz – computing the weighted average

1. Which function returns the weighted average of an array?
   a. weighted average
   b. waverage
   c. average
   d. avg

Have a go hero – calculating other averages

Try doing the same calculation using the open price. Calculate the mean for the volume and the other prices.

Value range

Usually, we don't only want to know the average or arithmetic mean of a set of values, which are sort of in the middle; we also want the extremes, the full range—the highest and lowest values. The sample data that we are using here already has those values per day—the high and low price. However, we need to know the highest value of the high price and the lowest price value of the low price. After all, how else would we know how much our Apple stocks would gain or lose.

Time for action – finding highest and lowest values

The min and max functions are the answer to our requirement.

1. **Reading from a file:** First, we will need to read our file again and store the values for the high and low prices into arrays:
   ```python
 h, l = numpy.loadtxt('data.csv', delimiter=',', usecols=(4,5), unpack=True)
 ``
 The only thing that changed is the usecols parameter, since the high and low prices are situated in different columns.

2. **Getting the range:** The following code gets the price range:
   ```python
   print "highest =", numpy.max(h))
   print "lowest =", numpy.min(l)
   ``
   These are the values returned:
   ```
 highest = 364.9
 lowest = 333.53
   ```
   Now, it's trivial to get a midpoint, so it is left as an exercise for the reader to attempt.
Get into Terms with Commonly Used Functions

3. Calculating the spread: NumPy allows us to compute the spread of an array with a function called The \texttt{ptp} function returns the difference between the maximum and minimum values of an array. In other words, it is equal to \( \text{max}(\text{array}) - \text{min}(\text{array}) \). Call the \texttt{ptp} function:

   
   ```
 print "Spread high price", numpy.ptp(h)
 print "Spread low price", numpy.ptp(l)
   ```

   You will see this:
   Spread high price 24.86
   Spread low price 26.97

   **What just happened?**

   We defined a range of highest to lowest values for the price. The highest value was given by applying the \texttt{max} function to the high price array. Similarly, the lowest value was found by calling the \texttt{min} function to the low price array. We also calculated the peak to peak distance with the \texttt{ptp} function.

   **Statistics**

   Stock traders are interested in the most probable close price. Common sense says that this should be close to some kind of an average. The arithmetic mean and weighted average are ways to find the center of a distribution of values. However, both are not robust and sensitive to outliers. For instance, if we had a close price value of a million dollars, this would have influenced the outcome of our calculations.

   **Time for action – doing simple statistics**

   One thing that we can do is use some kind of threshold to weed out outliers, but there is a better way. It is called the median, and it basically picks the middle value of a sorted set of values. For example, if we have the values of 1, 2, 3, 4 and 5. The median would be 3, since it is in the middle. These are the steps to calculate the median:

   1. Determine the median of the close price: Create a new Python script and call it \texttt{simplestats.py}. You already know how to load the data from a CSV file into an array. So, copy that line of code and make sure that it only gets the close price. The code should appear like this, by now:

      ```python
 c=numpy.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)
      ```
The function that will do the magic for us is called `median`. We will call it and print the result immediately. Add the following line of code:

```python
print "median =", numpy.median(c)
```

The program prints the following output:

```
median = 352.055
```

Since it is our first time using the `median` function, we would like to check whether this is correct. Not because we are paranoid or anything! Obviously, we could do it by just going through the file and finding the correct value, but that is no fun. Instead we will just mimic the median algorithm by sorting the close price array and printing the middle value of the sorted array. The `msort` function does the first part for us. We will call the function, store the sorted array, and then print it:

```python
sorted_close = numpy.msort(c)
print "sorted =", sorted_close
```

This prints the following output:

```
sorted = [336.1 338.61 339.32 342.62 342.88 343.44 344.32 345.03 346.5 346.67 348.16 349.31 350.56 351.88 351.99 352.12 352.47 353.21 354.54 355.2 355.36 355.76 356.85 358.16 358.3 359.18 359.9 360. 363.13]
```

Yup, it works! Let's now get the middle value of the sorted array:

```python
N = len(c)
print "middle =", sorted[(N - 1)/2]
```

It gives us the following output:

```
middle = 351.99
```

Hey, that's a different value than the one the `median` function gave us. How come? Upon further investigation we find that the `median` function return value doesn't even appear in our file. That's even stranger! Before filing bugs with the NumPy team, let's have a look at the documentation. This mystery is easy to solve. It turns out that our naive algorithm only works for arrays with odd lengths. For even-length arrays, the `median` is calculated from the average of the two array values in the middle. Therefore, type the following code:

```python
print "average middle =", (sorted[N /2] + sorted[(N - 1) / 2]) / 2
```

This prints the following output:

```
average middle = 352.055
Success!
```
Another statistical measure that we are concerned with is **variance**. Variance tells us how much a variable varies. In our case, it also tells us how risky an investment is, since a stock price that varies too wildly is bound to get us into trouble.

2. **Calculate the variance of the close price:** With NumPy, this is just a one liner. See the following code:

   ```python
 print "variance =", numpy.var(c)
 ``

 This gives us the following output:

 `variance = 50.1265178889`

 Not that we don't trust NumPy or anything, but let's double-check using the definition of variance, as found in the documentation. Mind you, this definition might be different than the one in your statistics book, but that is quite common in the field of statistics. The variance is defined as the mean of the square of deviations from the mean, divided by the number of elements in the array. Some books tell us to divide by the number of elements in the array minus one.

   ```python
   print "variance from definition =", numpy.mean((c - c.mean())**2)
   ``

   The output is as follows:

   `variance from definition = 50.1265178889`

   Just as we expected!

**What just happened?**

Maybe you noticed something new. We suddenly called the `mean` function on the `c` array. Yes, this is legal, because the `ndarray` object has a `mean` method. This is for your convenience. For now, just keep in mind that this is possible.

**Stock returns**

In academic literature it is more common to base analysis on stock returns and log returns of the close price. Simple returns are just the rate of change from one value to the next. Logarithmic returns or log returns are determined by taking the log of all the prices and calculating the differences between them. In high school, we learned that the difference between the log of "a" and the log of "b" is equal to the log of "a divided by b". Log return, therefore, also measures rate of change. Returns are dimensionless, since, in the act of dividing, we divide dollar by dollar (or some other currency). Anyway, investors are most likely to be interested in the variance or standard deviation of the returns, as this represents risk.
Time for action – analyzing stock returns

Follow the ensuing steps to analyze stock returns:

1. **Simple returns**: First, let's calculate simple returns. NumPy has the `diff` function that returns an array built up of the difference between two consecutive array elements. This is sort of like differentiation in calculus. To get the returns, we also have to divide by the value of the previous day. We must be careful though. The array returned by `diff` is one element shorter than the close prices array. After careful deliberation, we get the following code:

   ```python
 returns = numpy.diff(arr) / arr[: -1]
   ```

   Notice that we don't use the last value in the divisor. Let's compute the standard deviation using the `std` function:

   ```python
 print "Standard deviation =", numpy.std(returns)
   ```

   This results in the following output:

   Standard deviation = 0.0129221344368

2. **Logarithmic returns**: The log return is even easier to calculate. We use the `log` function to get the log of the close price and then unleash the `diff` function on the result. This is shown as follows:

   ```python
 logreturns = numpy.diff(numpy.log(c))
   ```

   Normally, we would have to check that the input array doesn’t have zeroes or negative numbers. If it did we would have gotten an error. Stock prices are, however, always positive, so we didn’t have to check.

3. **Selecting positive returns**: Quite likely, we will be interested in days when the return is positive. In the current setup, we can get the next best thing with the `where` function, which returns the indices of an array that satisfies a condition. Just type the following code:

   ```python
 posretindices = numpy.where(returns > 0)
 print "Indices with positive returns", posretindices
   ```

   This gives us a number of indices for the array elements that are positive:

   Indices with positive returns (array([ 0,  1,  4,  5,  6,  7,  9, 10, 11, 12, 16, 17, 18, 19, 21, 22, 23, 25, 28]),)
4. **Annualized and monthly volatilities**: In investing, volatility measures price variation of a financial security. Historical volatility is calculated from historical price data. The logarithmic returns are interesting if you want to know the historical volatility—for instance, the annualized or monthly volatility. The annualized volatility is equal to the standard deviation of the log returns as a ratio of its mean, divided by one over the square root of the number of business days in a year, usually one assumes 252. Calculate it with the `std` and `mean` functions. See the following code:

```python
annual_volatility = numpy.std(logreturns)/numpy.mean(logreturns)
annual_volatility = annual_volatility / numpy.sqrt(1./252.).
print annual_volatility
```

Take notice of the division within the `sqrt` function. Since, in Python, integer division works differently than float division, we needed to use floats to make sure that we get the proper results. The monthly volatility is similarly given by:

```python
print "Monthly volatility", annual_volatility * numpy.sqrt(1./12.)
```

**What just happened?**

We calculated the simple stock returns with the `diff` function, which calculates differences between sequential elements. The `log` function computes the natural logarithms of array elements. We used it to calculate the logarithmic returns. At the end of the tutorial we calculated the annual and monthly volatility.

**Dates**

Do you sometimes have the Monday blues or the Friday fever? Ever wondered whether the stock market suffers from said phenomena? Well, I think this certainly warrants extensive research.

**Time for action – dealing with dates**

First, we will read the close price data. Second, we will split the prices according to the day of the week. Third, for each weekday, we will calculate the average price. Finally, we will find out which day of the week has the highest average and which has the lowest average. A health warning before we commence: you might be tempted to use the result to buy stock on one day and sell on the other. However, we don't have enough data to make these kind of decisions. Please consult a professional statistician first!

Coders hate dates because they are so complicated! NumPy is very much oriented towards floating point operations. For that reason, we need to take extra effort to process dates. Try it out yourself; put the following code in a script or use the one that comes with the book:

```python
dates, close=numpy.loadtxt('data.csv', delimiter=',',
 usecols=(1,6), unpack=True)
```
Execute the script and the following error will appear:

```
ValueError: invalid literal for float(): 28-01-2011
```

1. **Converter function**: Obviously, NumPy tried to convert the dates into floats. What we have to do is explicitly tell NumPy how to convert the dates. The `loadtxt` function has a special parameter for this purpose. The parameter is called `converters` and is a dictionary that links columns with so-called converter functions. It is our responsibility to write the converter function.

Let's write the function down:

```python
Sunday 6
Monday 0
Tuesday 1
Wednesday 2
Thursday 3
Friday 4
Saturday 5
def datestr2num(s):
 return datetime.datetime.strptime(s, "%d-%m-%Y").date().weekday()

We give the `datestr2num` function dates as a string, such as "28-01-2011". The string is first turned into a `datetime` object using a specified format "%d-%m-%Y". This is, by the way, standard Python and is not related to NumPy itself. Second, the `datetime` object is turned into a day. Finally the `weekday` method is called on the date to return a number. As you can read in the comments, the number is between 0 and 6. 0 is for instance Monday and 6 is Sunday. The actual number, of course, is not important for our algorithm; it is only used as identification.

2. **Load the data**: Now we will hook up our date converter function:

```python
dates, close = numpy.loadtxt('data.csv', delimiter=',', usecols=(1,6), converters={1: datestr2num}, unpack=True)
print "Dates = ", dates
```

This prints the following output:

```
Dates = [ 4.  0.  1.  2.  3.  4.  0.  1.  2.  3.  4.  0.  1.  2.  3.  4.  1.  2.  4.  0.  1.  2.  3.  4.  0.  1.  2.  3.  4.]
```

No Saturdays and Sundays, as you can see. Exchanges are closed over the weekend.
3. **Initialize the averages array:** We will now make an array that has five elements for each day of the week. The values of the array will be initialized to 0:

   ```python
   averages = numpy.zeros(5)
   ```

 This array will hold the averages for each weekday.

4. **Calculate the averages:** We already learned about the `where` function that returns indices of the array for elements that conform to a specified condition. The `take` function can use these indices and takes the values of the corresponding array items. We will use the `take` function to get the close prices for each week day. In the following loop we go through the date values which are 0 to 4, better known as Monday to Friday. We get the indices with the `where` function for each day and store it in the `indices` array. Then, we retrieve the values corresponding to the indices, using the `take` function. Finally we compute an average for each weekday and store it in the `averages` array, like so:

   ```python
   for i in range(5):
       indices = numpy.where(dates == i)
       prices = numpy.take(close, indices)
       avg = numpy.mean(prices)
       print "Day", i, "prices", prices, "Average", avg
       averages[i] = avg
   ```

 The loop prints the following output:

 Day 0 prices [[339.32 351.88 359.18 353.21 355.36]] Average 351.79
 Day 1 prices [[345.03 355.2 359.9 338.61 349.31 355.76]] Average 350.635
 Day 2 prices [[344.32 358.16 363.13 342.62 352.12 352.47]] Average 352.136666667
 Day 3 prices [[343.44 354.54 358.3 342.88 359.56 346.67]] Average 350.898333333
 Day 4 prices [[336.1 346.5 356.85 350.56 348.16 360.351.99]] Average 350.022857143

5. **Find the maxima and minima:** If you want, you can go ahead and find out which day has the highest, and which the lowest, average. However, it is just as easy to find this out with the `max` and `min` functions, as shown here:

   ```python
   top = numpy.max(averages)
   print "Highest average", top
   print "Top day of the week",  numpy.argmax(averages)
   bottom = numpy.min(averages)
   print "Lowest average", bottom
   print "Bottom day of the week",  numpy.argmin(averages)
   ```
The output is as follows:
Highest average 352.136666667
Top day of the week 2
Lowest average 350.022857143
Bottom day of the week 4

What just happened?
The \texttt{argmin} function returned the index of the lowest value in the \texttt{averages} array. The index returned was 4, which corresponds to Friday. The \texttt{argmax} function returned the index of the highest value in the \texttt{averages} array. The index returned was 2, which corresponds to Wednesday.

Have a go hero – looking at VWAP and TWAP
Hey, that was fun! For the sample data, it appears that Friday is the cheapest day and Wednesday is the day when your Apple stock will be worth the most. Ignoring the fact that we have very little data, is there a better method to compute the averages? Shouldn’t we involve volume data as well? Maybe it makes more sense to you to do a time-weighted average. Give it a go! Calculate the VWAP and TWAP. You can find some hints on how to go about doing this at the beginning of this chapter.

Weekly summary
The data that we used in the previous \textit{Time for action} tutorials is end-of-day data. In essence, it is summarized data compiled from trade data for a certain day. If you are interested in the cotton market and have decades of data, you might want to summarize and compress the data even further. Let’s do that. Let’s summarize the data of Apple stocks to give us weekly summaries.

Time for action – summarizing data
The data we will summarize will be for a whole business week from Monday to Friday. During the period covered by the data, there was one holiday on February 21st, President’s Day. This happened to be a Monday and the US stock exchanges were closed on this day. As a consequence, there is no entry for this day, in the sample. The first day in the sample is a Friday, which is inconvenient. Use the following instructions to summerize data:

1. Selecting the first three weeks: To simplify, we will just have a look at the first three weeks in the sample—you can later have a go at improving this:
 close = close[:16]
 dates = dates[:16]
 We will build on the code from the previous \textit{Time for action} tutorial.
2. **Finding the first Monday**: Commencing, we will find the first Monday in our sample data. Recall that Mondays have the code 0 in Python. This is what we will put in the condition of a `where` function. Then, we will need to extract the first element that has index 0. The result would be a multidimensional array. Flatten that with the `ravel` function:

```python
# get first Monday
first_monday = numpy.ravel(numpy.where(dates == 0))[0]
print "The first Monday index is", first_monday
```

This will print the following output:
The first Monday index is 1

3. **Finding the last Friday**: The next logical step is to find the Friday before last Friday in the sample. The logic is similar to the one for finding the first Monday, and the code for Friday is 4. Additionally, we are looking for the second-to-last element with index 2.

```python
# get last Friday
last_friday = numpy.ravel(numpy.where(dates == 4))[-2]
print "The last Friday index is", last_friday
```

This will give us the following output:
The last Friday index is 15

Creating arrays with multi-week indices: Next, create an array with the indices of all the days in the three weeks

```python
weeks_indices = numpy.arange(first_monday, last_friday + 1)
print "Weeks indices initial", weeks_indices
```

4. **Splitting the array**: Split the array in pieces of size 5 with the `split` function.

```python
weeks_indices = numpy.split(weeks_indices, 5)
print "Weeks indices after split", weeks_indices
```

It splits the array as follows:

Weeks indices after split [array([1, 2, 3, 4, 5]), array([6, 7, 8, 9, 10]), array([11, 12, 13, 14, 15])]
5. **Calling the apply_along_axis function:** In NumPy, dimensions are called axes. Now, we will get fancy with the `apply_along_axis` function. This function calls another function, which we will provide, to operate on each of the elements of an array. Currently, we have an array with three elements. Each array item corresponds to one week in our sample and contains indices of the corresponding items. Call the `apply_along_axis` function by supplying the name of our function, called `summarize`, that we will define shortly. Further specify the axis or dimension number (such as 1), the array to operate on, and a variable number of arguments for the `summarize` function, if any:

```python
weeksummary = numpy.apply_along_axis(summarize, 1, weeks_indices, open, high, low, close)
print "Week summary", weeksummary
```

6. **Write the summarize function:** The `summarize` function returns, for each week, a tuple that holds the open, high, low, and close price for the week, similarly to end-of-day data:

```python
def summarize(a, o, h, l, c):
    monday_open = o[a[0]]
    week_high = numpy.max( numpy.take(h, a) )
    week_low = numpy.min( numpy.take(l, a) )
    friday_close = c[a[-1]]
    return("APPL", monday_open, week_high, week_low, friday_close)
```

Notice that we used the `take` function to get the actual values from indices. Calculating the high and low values of the week was easily done with the `max` and `min` functions. The open for the week is the open for the first day in the week—Monday. Likewise, the close is the close for the last day of the week—Friday:

```
Week summary [['APPL' '335.8' '346.7' '334.3' '346.5']
['APPL' '347.89' '360.0' '347.64' '356.85']
['APPL' '356.79' '364.9' '349.52' '350.56']]
```

7. **Writing the date to a file:** Store the data in a file with the NumPy `savetxt` function:

```python
numpy.savetxt("weeksummary.csv", weeksummary, delimiter="", fmt="%s")
```

As you can see, we specify a filename, the array we want to store, a delimiter (in this case a comma), and the format we want to store floating point numbers in.
The format string starts with a percent sign. Second is an optional flag. The—flag means left justify, 0 means left pad with zeroes, + means precede with + or -. Third is an optional width. The width indicates the minimum number of characters. Fourth, a dot is followed by a number linked to precision. Finally, there comes a character specifier; in our example, the character specifier is a string.

<table>
<thead>
<tr>
<th>Character code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>character</td>
</tr>
<tr>
<td>d or i</td>
<td>signed decimal integer</td>
</tr>
<tr>
<td>e or E</td>
<td>scientific notation with e or E.</td>
</tr>
<tr>
<td>f</td>
<td>decimal floating point</td>
</tr>
<tr>
<td>g, G</td>
<td>use the shorter of e, E or f</td>
</tr>
<tr>
<td>o</td>
<td>signed octal</td>
</tr>
<tr>
<td>s</td>
<td>string of characters</td>
</tr>
<tr>
<td>u</td>
<td>unsigned decimal integer</td>
</tr>
<tr>
<td>x, X</td>
<td>unsigned hexadecimal integer</td>
</tr>
</tbody>
</table>

View the generated file in your favorite editor or type at the command line:

```
cat weeksummary.csv
APPL,335.8,346.7,334.3,346.5
APPL,347.89,360.0,347.64,356.85
APPL,356.79,364.9,349.52,350.56
```

What just happened?

We did something that is not even possible in some programming languages. We defined a function and passed it as an argument to the `apply_along_axis` function. Arguments for the `summarize` function were neatly passed by `apply_along_axis`.

Have a go hero – improving the code

Change the code to deal with a holiday. Time the code to see how big the speedup due to `apply_along_axis` is.
Average true range

The **average true range (ATR)** is a technical indicator that measures volatility of stock prices. The ATR calculation is not important further but will serve as an example of several NumPy functions, including the `maximum` function.

Time for action – calculating the average true range

To calculate the average true range, follow the ensuing steps:

1. **Selecting the last N days**: The ATR is based on the low and high price of N days, usually the last 20 days.

   ```python
   N = int(sys.argv[1])
   h = h[-N:]
   l = l[-N:]
   ```

2. **Retrieving the previous close days price**: We also need to know the close price of the previous day:

   ```python
   previousclose = c[-N-1:-1]
   ```

 For each day, we calculate the following:

 - The daily range—the difference between high and low price:
     ```python
     h - l
     ```
 - The difference between high and previous close:
     ```python
     h - previousclose
     ```
 - The difference between the previous close and the low price:
     ```python
     previousclose - l
     ```

3. **Computing the true range**: The `max` function returns the maximum of an array. Based on those three values, we calculate the so-called true range, which is the maximum of these values. We are now interested in the element-wise maxima across arrays — meaning the maxima of the first elements in the arrays, the second elements in the arrays, and so on. Use the NumPy `maximum` function instead of the `max` function for this purpose:

   ```python
   truerange = numpy.maximum(h - l, h - previousclose, previousclose - l)
   ```

4. **Initializing an atr array**: Create an atr array of size N and initialize its values to 0:

   ```python
   atr = numpy.zeros(N)
   ```
5. **Initializing the first element**: The first value of the array is just the average of the `truerange` array:

 \[atr[0] = \text{numpy.mean(truerange)} \]

 Calculate the other values with the following formula:

 \[
 \frac{((N-1)\text{PATR}+\text{TR})}{N}
 \]

 Here, \(\text{PATR} \) is the previous day’s ATR; \(\text{TR} \) is the true range:

   ```python
   for i in range(1, N):
       atr[i] = (N - 1) * atr[i - 1] + truerange[i]
   atr[i] /= N
   ```

What just happened?

We formed three arrays, one for each of the three ranges—daily range, the gap between the high of today and the close of yesterday, and the gap between the close of yesterday and the low of today. This tells us how much the stock price moved and, therefore, how volatile it is. The algorithm requires us to find the maximum value for each day. The `max` function that we used before can give us the maximum value within an array, but that is not what we want here. We need the maximum value across arrays, so we want the maximum value of the first elements in the three arrays, the second elements, and so on. In this *Time for action* tutorial, we saw that the `max` function can do this. After that, we computed a moving average of the true range values. In the following tutorials, we will learn better ways to calculate moving averages.

Have a go hero – taking the minimum function for a spin

Besides the `max` function, there is a `min` function. You can probably guess what it does. Make a small script or start an interactive session in IPython to prove your assumptions.

Simple moving average

The **simple moving average** is commonly used to analyze time-series data. To calculate it, we define a moving window of \(N \) periods, \(N \) days in our case. We move this window along the data and calculate the mean of the values inside the window.
Chapter 3

Time for action – computing the simple moving average

The moving average is easy enough to compute with a few loops and the mean function, but NumPy has a better alternative—the convolve function. The simple moving average is, after all, nothing more than a convolution with equal weights or, if you like, unweighted. Use the following steps to compute the simple moving average:

1. **Setting the weights**: Use the ones function to create an array of size N and elements initialized to 1; then, divide the array by N to give us the weights:

   ```python
   N = int(sys.argv[1])
   weights = numpy.ones(N) / N
   print "Weights", weights
   ```

 For N = 5, this gives us the following output:

   ```
   Weights [ 0.2  0.2  0.2  0.2  0.2]
   ```

2. **Using the convolve function**: Now call the convolve function with these weights:

   ```python
   c = numpy.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True)
   sma = numpy.convolve(weights, c)[N-1:-N+1]
   ```

3. **Plotting the simple moving average**: From the array that convolve returned, we extracted the data in the center of size N. The following code makes an array of time values and plots with the matplotlib that we will be covering in a later chapter:

   ```python
   t = numpy.arange(N - 1, len(c))
   plot(t, c[N-1:], lw=1.0)
   plot(t, sma, lw=2.0)
   show()
   ```
In the following chart, the smooth thick line is the 5-day simple moving average and the jagged thin line is the close price:

What just happened?

We computed the simple moving average for the close stock price. Truly great riches are within your reach. It turns out that the simple moving average is just a signal processing technique—a convolution with weights 1/N, where N is the size of the moving average window. We learned that the `ones` function can create an array with ones and the `convolve` function calculates the convolution of a data set with specified weights.

Exponential moving average

The exponential moving average is a popular alternative to the simple moving average. This method uses exponentially-decreasing weights. The weights for point in the past decrease exponentially but never reach zero. We will learn about the `exp` and `linspace` function while calculating the weights.
Time for action – calculating the exponential moving average

Given an array, the \texttt{exp} function calculates the exponential of each array element. For example, look at the following code:

\begin{verbatim}
x = numpy.arange(5)
print "Exp", numpy.exp(x)
\end{verbatim}

It gives the following output:

\begin{verbatim}
Exp [1. 2.71828183 7.3890561 20.08553692 54.59815003]
\end{verbatim}

The \texttt{linspace} function takes, as parameters, a start and a stop and optionally an array size. It returns an array of evenly-spaced numbers. Here is an example:

\begin{verbatim}
print "Linspace", numpy.linspace(-1, 0, 5)
\end{verbatim}

This will give us the following output:

\begin{verbatim}
Linspace [-1. -0.75 -0.5 -0.25 0.]
\end{verbatim}

Let’s calculate the exponential moving average for our data:

1. **Initialize the weights**: Now, back to the weights—calculate them with \texttt{exp} and \texttt{linspace}:

\begin{verbatim}
N = int(sys.argv[1])
weights = numpy.exp(numpy.linspace(-1., 0., N))
\end{verbatim}

2. **Normalization**: Normalize the weights. The \texttt{ndarray} object has a \texttt{sum} method that we will use:

\begin{verbatim}
weights /= weights.sum()
print "Weights", weights
\end{verbatim}

For \(N = 5\), we get these weights:

\begin{verbatim}
Weights [0.11405072 0.14644403 0.18803785 0.24144538 0.31002201]
\end{verbatim}

3. **Convolve**: After that, it’s easy going—we just use the \texttt{convolve} function that we learned about in the simple moving average tutorial. We will also plot the results:

\begin{verbatim}
c = numpy.loadtxt(\'data.csv\', delimiter=\',\', usecols=(6,), unpack=True)
ema = numpy.convolve(weights, c)[N-1:-N+1]
t = numpy.arange(N - 1, len(c))
plot(t, c[N-1:], lw=1.0)
plot(t, ema, lw=2.0)
show()
\end{verbatim}
That gives this nice chart where, again, the close price is the thin jagged line and the exponential moving average is the smooth thick line:

What just happened?

We calculated the exponential moving average of the close price. First, we computed exponentially-decreasing weights with the `exp` and `linspace` functions. `linspace` gave us an array with evenly-spaced elements, and then, we calculated the exponential for these numbers. We called the `ndarray sum` method in order to normalize the weights. After that, we applied the `convolve` trick that we learned in the simple moving average tutorial.

Bollinger bands

Bollinger bands are yet another technical indicator. Yes, there are thousands of them. This one is named after its inventor and consists of three parts: First, a simple moving average. Second, an upper band of two standard deviations above this moving average—the standard deviation is derived from the same data with which the moving average is calculated. Third, a lower band of two standard deviations below the moving average.
Time for action – enveloping with Bollinger bands

We already know how to calculate the simple moving average. So, if you need to, please review the Time for action tutorial in this chapter. This example will introduce the NumPy fill function. The fill function sets the value of an array to a scalar value. The function should be faster than array.flat = scalar or setting the values of the array one-by-one in a loop.

1. Calculate the Bollinger bands: Starting with an array called sma that contains the moving average values, we will loop through all the data sets corresponding to said values. After forming the data set, calculate the standard deviation. Note that it is necessary, at a certain point, to calculate the difference between each data point and the corresponding average value. If we did not have NumPy, we would loop through these points and subtract each of the values one-by-one from the corresponding average. However, the NumPy fill function allows us to construct an array having elements set to the same value. This enables us to save on one loop and subtract arrays in one go:

```python
def deviation = []
C = len(c)

for i in range(N - 1, C):
    if i + N < C:
        dev = c[i: i + N]
    else:
        dev = c[-N:]

    averages = numpy.zeros(N)
    averages.fill(sma[i - N - 1])
    dev = dev - averages
    dev = dev ** 2
    dev = numpy.sqrt(numpy.mean(dev)))
    deviation.append(dev)

deviation = 2 * numpy.array(deviation)
upperBB = sma + deviation
lowerBB = sma - deviation```

2. Plot the bands: To plot, we will use the following code (don’t worry about it now; we will see how this works in Chapter 9, Plotting with Matplotlib):

```python
t = numpy.arange(N - 1, C)
plot(t, c_slice, lw=1.0)
plot(t, sma, lw=2.0)
plot(t, upperBB, lw=3.0)
plot(t, lowerBB, lw=4.0)
show()```
Following is a chart of the Bollinger bands for our data. The jagged thin line in the middle represents the close price, the slightly thicker, smoother line crossing it is the moving average:

What just happened?
We worked out the Bollinger bands that envelope the close price of our data. More importantly, we got acquainted with the NumPy \texttt{fill} function. This function fills an array with a scalar value. This is the only parameter of the \texttt{fill} function.

Have a go hero – switching to exponential moving average
It is customary to choose the simple moving average to centre the Bollinger band on. The second-most popular choice is the exponential moving average, so try that as an exercise. You can find a suitable example in this chapter, if you need pointers.

Check that the \texttt{fill} function is faster or is as fast as \texttt{array.flat = scalar}, or setting the value in a loop.

Linear model
Many phenomena in science have a related linear relationship model. The NumPy \texttt{linalg} package deals with linear algebra computations. We will begin with the assumption that a price value can be derived from N previous prices based on a linear relationship relation.
Time for action – predicting price with a linear model

Keeping an open mind, let’s assume that we can express a stock price as a linear combination of previous values, that is, a sum of those values multiplied by certain coefficients that we need to determine. In linear algebra terms, this boils down to finding a least-squares solution. The recipe goes as follows.

1. **Form a price vector**: First, form a vector `bbx` containing `N` price values:

   ```python
   bbx = c[-N:]
   bbx = b[::-1]
   print "bbx", x
   ```

 The result is as follows:

   ```
   bbx [ 351.99  346.67  352.47  355.76  355.36]
   ```

2. **Pre-initialize the matrix**: Second, pre-initialize the matrix `A` to be `N`-by-`N` and contain zeroes:

   ```python
   A = numpy.zeros((N, N), float)
   print "Zeros N by N", A
   ```

 Zeros N by N [
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0.]
]

3. **Fill the matrix**: Third, fill the matrix `A` with `N` preceding price values for each value in `bbx`:

   ```python
   for i in range(N):
       A[i, ] = c[-N - 1 - i: - 1 - i]
   print "A", A
   ```

 Now, `A` looks like this:

   ```
   A [[ 360.  355.36  355.76  352.47  346.67]
       [ 359.56  360.  355.36  355.76  352.47]
       [ 352.12  359.56  360.  355.36  355.76]
       [ 349.31  352.12  359.56  360.  355.36]
       [ 353.21  349.31  352.12  359.56  360. ]]
   ```
4. **Get the least squares solution**: The objective is to determine the coefficients that satisfy our linear model, by solving the least-squares problem. Employ the `lstsq` function of the NumPy `linalg` package to do that:

```python
(x, residuals, rank, s) = numpy.linalg.lstsq(A, b)
print x, residuals, rank, s
```

The result is as follows:

```
[ 0.78111069 -1.44411737  1.63563225 -0.89905126  0.92009049]
[ 1.77736601e+03  1.49622969e+01  8.75528492e+00  5.15099261e+00  1.75199608e+00]
```

The tuple returned contains the coefficients \mathbf{x}_b that we were after, an array comprising of residuals, the rank of matrix \mathbf{A}, and the singular values of \mathbf{A}.

5. **Extrapolate to the next day**: Once we have the coefficients of our linear model, we can predict the next price value. GetCompute the dot product (with the NumPy `dot` function) of the coefficients and the last known N prices:

```python
print numpy.dot(b, x)
```

The dot product is the linear combination of the coefficients \mathbf{x}_b and the prices \mathbf{x}. As a result, we get:

```
357.939161015
```

I looked it up; the actual close price of the next day was 353.56. So, our estimate with $N = 5$ was not that far off.

What just happened?

We predicted tomorrow's stock price today. If this works in practice, we could retire early! See, this book was a good investment after all! We designed a linear model for the predictions. The financial problem was reduced to a linear algebraic one. NumPy's `linalg` package has a practical `lstsq` function that helped us with the task at hand—estimating the coefficients of a linear model. After obtaining a solution, we plugged the numbers in the NumPy `dot` function that presented us an estimate through linear regression.

Trend lines

A trend line is a line among a number of so-called pivot points on a stock chart. As the name suggests, the line's trend portrays the trend of the price development. In the past, traders drew trend lines on paper; but, nowadays, we can let a computer draw it for us. In this tutorial, we shall resort to a very simple approach that is probably not very useful in real life, but it should clarify the principle well.
Chapter 3

Time for action – drawing trend lines

Follow the ensuing steps to draw trend lines:

1. **Determine the pivots:** First, we need to determine the pivot points. We shall pretend they are equal to the arithmetic mean of the high, low, and close price:

   ```python
   h, l, c = numpy.loadtxt('data.csv', delimiter=',', usecols=(4, 5, 6), unpack=True)
   pivots = (h + l + c) / 3
   print "Pivots", pivots
   ```

 From the pivots, we can deduce the so-called resistance and support levels. The support level is the lowest level at which the price rebounds. The resistance level is the highest level at which the price bounces back. These are not natural phenomena, mind you, they are merely estimates. Based on these estimates, it is possible to draw support and resistance trend lines. We will define the daily spread to be the difference of the high and low price.

2. **Fit data to a line:** Define a function to fit line to data to a line where \(y = at + b \). The function should return \(a \) and \(b \). This is another opportunity to apply the `lstsq` function of the NumPy `linalg` package. Rewrite the line equation to \(y = Ax \), where \(A = [t \ 1] \) and \(x = [a \ b] \). Form \(A \) with the NumPy `ones` and `vstack` function:

   ```python
   def fit_line(t, y):
       A = numpy.vstack([t, numpy.ones_like(t)]).T
       return numpy.linalg.lstsq(A, y)[0]
   ```

3. **Determine the support and resistance levels:** Assuming that support levels are one daily spread below the pivots, and that resistance levels are one daily spread above the pivots, fit the support and resistance trend lines:

   ```python
   t = numpy.arange(len(c))
   sa, sb = fit_line(t, pivots - (h - l))
   ra, rb = fit_line(t, pivots + (h - l))
   support = sa * t + sb
   resistance = ra * t + rb
   ```

4. **Analyze the bands:** At this juncture, we have all the necessary information to draw the trend lines, however, it is wise to check how many points fall between the support and resistance levels. Obviously, if only a small percentage of the data is between the trend lines, then this setup is of no use to us. Make up a condition for points between the bands and select with the `where` function based on the condition:

   ```python
   condition = (c > support) & (c < resistance)
   print "Condition", condition
   between_bands = numpy.where(condition)
   ```
Get into Terms with Commonly Used Functions

These are the condition values:
Condition [False False True True True True True False False
True False False False False False False True True True True
False False True True True False True]
Double-check the values:
print support[between_bands]
print c[between_bands]
print resistance[between_bands]

The array returned by the where function has rank 2, so call the ravel function
before calling the len function:
between_bands = len(numpy.ravel(between_bands)))
print "Number points between bands", between_bands
print "Ratio between bands", float(between_bands)/len(c)

You will get the following result:
Number points between bands 15
Ratio between bands 0.5

As an extra bonus, we gained a predictive model. Extrapolate the next day resistance
and support levels:
print "Tomorrows support", sa * (t[-1] + 1) + sb
print "Tomorrows resistance", ra * (t[-1] + 1) + rb

This results in:
Tomorrows support 349.389157088
Tomorrows resistance 360.749340996

Another approach to figure out how many points are between the support and
resistance estimates is to use [] and intersect1d. Define selection criteria in the
[] operatpr and intersect the results with the intersect1d function.
a1 = c[c > support]
a2 = c[c < resistance]
print "Number of points between bands 2nd approach" ,len(numpy.
intersect1d(a1, a2))

Not surprisingly, we get:
Number of points between bands 2nd approach 15
5. **Plot the bands**: Once more, we will plot the results:

```python
plot(t, c)
plot(t, support)
plot(t, resistance)
show()
```

In the preceding plot, we have the price data and the corresponding support and resistance lines.

What just happened?

We drew trend lines without having to mess around with rulers, pencils, and paper charts. We defined a function that can fit data to a line with the NumPy `vstack`, `ones`, and `lstsq` functions. We fit the data in order to define support and resistance trend lines. Then we figured out how many points are within the support and resistance range. We did this using two separate methods that produced the same result.

The first method used the `where` function with a Boolean condition. The second method made use of the `[]` operator and the `intersect1d` function. The `intersect1d` function returns an array of common elements from two arrays.
Methods of ndarray

The NumPy ndarray class has a lot of methods that work on the array. Most of the time, these methods return an array. You may have noticed that many of the functions that are part of the NumPy library have a counterpart with the same name and functionality in the ndarray object. This is mostly due to the historical development of NumPy.

The list of ndarray methods is pretty long, so we cannot cover them all. The mean, var, sum, std, argmax, argmin, and mean functions that we saw earlier are also ndarray methods.

To clip and compress arrays, look at the following section:

Time for action – clipping and compressing arrays

1. Here are a few examples of ndarray methods. The clip method returns a clipped array, so that all values above a maximum value are set to the maximum and values below a minimum are set to the minimum value. Clip an array with values 0 to 4 to 1 and 2:

   ```python
   a = numpy.arange(5)
   print "a =", a
   print "Clipped", a.clip(1, 2)
   ```

 This gives the following output:
   ```
a = [0 1 2 3 4]
Clipped [1 1 2 2 2]
```

2. The ndarray compress method returns an array based on a condition. For instance, look at the following code:

   ```python
   a = numpy.arange(4)
   print a
   print "Compressed", a.compress(a > 2)
   ```

 This returns the following output:
   ```
   [0 1 2 3]
Compressed [3]
```
What just happened?

We created an array with values 0 to 3 and selected the last element with the `compress` function based on the condition `a > 2`.

Factorial

Many programming books have an example of calculating the factorial. We should not break with this tradition.

Time for action – calculating the factorial

The `ndarray` has the `prod` method, which computes the product of the elements in an array.

1. **Call the prod function**: Calculate the factorial of eight. To do that, generate an array with values 1 to 8 and call the `prod` function on it:

   ```python
   b = numpy.arange(1, 9)
   print "b =", b
   print "Factorial", b.prod()
   ```

 Check the result with your pocket calculator:

   ```
   b = [1 2 3 4 5 6 7 8]
   Factorial 40320
   ```

 This is nice, but what if we want to know all the factorials from 1 to 8?

2. **Call cumprod**: No problem! Call the `cumprod` method, which computes the cumulative product of an array:

   ```python
   print "Factorials", b.cumprod()
   ```

 It's pocket calculator time again:

   ```
   Factorials [ 1  2   6  24 120 720 5040 40320]
   ```

What just happened?

We used the `prod` and `cumprod` functions to calculate factorials.
Summary

This chapter informed us about a great number of common NumPy functions. We read a file with `loadtxt` and wrote to a file with `savetxt`. We made an identity matrix with the `eye` function. We read a CSV file containing stock quotes with the `loadtxt` function. The NumPy `average` and `mean` functions allow one to calculate the weighed average and arithmetic mean of a data set.

A few common statistics functions were also mentioned: First, the `min` and `max` functions we used to determine the range of the stock prices. Second, the `median` function that gives the median of a data set. Finally, the `std` and `var` functions that return the standard deviation and variance of a set of numbers.

We calculated the simple stock returns with the `diff` function that returns the back differences between sequential elements. The `log` function computes the natural logarithms of array elements.

By default, `loadtxt` tries to convert all data into floats. The `loadtxt` function has a special parameter for this purpose. The parameter is called `converters` and is a dictionary that links columns with the so-called converter functions.

We defined a function and passed it as an argument to the `apply_along_axis` function. We implemented an algorithm with the requirement to find the maximum value across arrays.

We learned that the `ones` function can create an array with ones and the `convolve` function calculates the convolution of a data set with specified weights.

We computed exponentially-decreasing weights with the `exp` and `linspace` functions. `Linspace` gave us an array with evenly-spaced elements, and then we calculated the exponential for these numbers. We called the `ndarray sum` method in order to normalize the weights.

We got acquainted with the NumPy `fill` function. This function fills an array with a scalar value, the only parameter of the `fill` function.

After this tour through the common NumPy functions, we will continue covering convenience NumPy functions in the next chapter.
Convenience Functions for Your Convenience

As we have noticed, NumPy has a great number of functions. Many of these functions are there just for your convenience. Knowing these functions will greatly increase your productivity. This includes functions that select certain parts of your arrays (based on a Boolean condition, for instance) or manipulate polynomials. An example of computing correlation of stock returns is given to give you a taste of data analysis in NumPy.

In this chapter, we shall cover the following topics:

- Data selection and extraction
- Simple data analysis
- Examples of correlation of returns
- Polynomials
- Linear algebra functions

In the previous chapter, we had one single data file to play around with. Things have significantly improved in this chapter—we now have two data files. Let’s go ahead and explore the data with NumPy.
Convenience Functions for Your Convenience

Correlation

Have you noticed that the stock price of some companies is closely followed by another one, usually a rival in the same sector? The theoretical explanation is that, because these two companies are in the same type of business, they share the same challenges, require the same materials and resources, and compete for the same type of customers.

You could think of many possible pairs, but you would want to check whether a real relationship exists. One way is to have a look at the correlation of the stock returns of both stocks. A high correlation implies a relationship of some sort. It is not proof though, especially if you don't use sufficient data.

Time for action – trading correlated pairs

For this tutorial, we will use two sample data sets, containing the bare minimum of end-of-day price data. The first company is BHP Billiton (BHP), which is active in mining of petroleum, metals, and diamonds. The second is Vale (VALE), which is also a metals and mining company. So there is some overlap, albeit not hundred percent. For trading correlated pairs, follow the ensuing steps:

1. **Load the data**: First, load the data, specifically the close price of the two securities, from the CSV files in the example code directory of this chapter and calculate the returns. If you don't remember how to do it, there are plenty of examples in the previous chapter.

2. **Covariance**: Covariance tells us how two variables vary together; it is nothing more than unnormalized correlation. Compute the covariance matrix from the returns with the cov function (it's not strictly necessary to do this, but it will allow us to demonstrate a few matrix operations):

   ```
   covariance = numpy.cov(bhp_returns, vale_returns)
   print "Covariance", covariance
   ```

 The covariance matrix is as follows:

 Covariance [[0.00028179 0.00019766]
 [0.00019766 0.00030123]]

3. **Diagonal values**: View the values on the diagonal with the diagonal function:

   ```
   print "Covariance diagonal", covariance.diagonal()
   ```

 The diagonal values of the covariance matrix are as follows:

 Covariance diagonal [0.00028179 0.00030123]

 Notice that the values on the diagonal are not equal to each other, this is different from the correlation matrix.
4. **Trace**: Compute the trace, the sum of the diagonal values, with the `trace` function:

```python
print "Covariance trace", covariance.trace()
```

The trace values of the covariance matrix are as follows:

```
Covariance trace 0.00058302354992
```

5. **Correlation from covariance**: The correlation of two vectors is defined as the covariance, divided by the product of the respective standard deviations of the vectors. The equation for vectors a and b is:

\[
\text{Corr}(a,b) = \frac{\text{cov}(a,b)}{\sigma_a \sigma_b}
\]

Try it out:

```python
print covariance / (bhp_returns.std() * vale_returns.std())
```

The correlation matrix is as follows:

```
[[ 1.00173366  0.70264666]  
  [ 0.70264666  1.0708476 ]]
```

6. **Correlation coefficients**: We will measure the correlation of our pair with the correlation coefficient. The correlation coefficient takes values between -1 to 1. The correlation of a set of values with itself is 1 by definition. This would be the ideal value; however, we will be also happy with a slightly lower value. Calculate the correlation coefficient (or, more accurately, the correlation matrix) with the `corrcoef` function:

```python
print "Correlation coefficient", numpy.corrcoef(bhp_returns, vale_returns)
```

The coefficients are as follows:

```
[[ 1.          0.67841747]  
  [ 0.67841747  1.        ]]
```

The values on the diagonal are just the correlations of the BHP and VALE with themselves and are, therefore, equal to 1. In all probability, no real calculation takes place. The other two values are equal to each other since correlation is symmetrical, meaning that the correlation of BHP with VALE is equal to the correlation of VALE with BHP. It seems that the correlation is not that strong.
7. **Breakout**: Another important point is whether the two stocks under consideration are in sync or not. Two stocks are considered out of sync if their difference is two standard deviations from the mean of the differences.

If they are out of sync, we could initiate a trade, hoping that they eventually will get back in sync again. Compute the difference between the close prices of the two securities to check the synchronization:

```
difference = bhp - vale
```

Check whether the last difference in price is out of sync; see the following code:

```
avg = numpy.mean(difference)
dev = numpy.std(difference)
print "Out of sync", numpy.abs(difference[-1] - avg) > 2 * dev
```

Unfortunately, we cannot trade yet:

```
Out of sync False
```

8. **Plotting**: Plotting requires Matplotlib; this will be discussed in Chapter 9, *Plotting with Matplotlib*. Plotting can be done as follows:

```
t = numpy.arange(len(bhp_returns))
plot(t, bhp_returns, lw=1)
plot(t, vale_returns, lw=2)
show()
```

The resulting plot:
What just happened?

We analyzed the relation of the closing stock prices of BHP and VALE. To be precise, we calculated the correlation of their stock returns. This was achieved with the `corrcoef` function. Further, we saw how the covariance matrix can be computed, from which the correlation can be derived. As a bonus, a demonstration was given of the diagonal and trace functions that can give us the diagonal values and the trace of a matrix, respectively.

Pop quiz – calculating covariance

1. Which function returns the covariance of two arrays?

 a. covariance
 b. covar
 c. cov
 d. cvar

Polynomials

Do you like calculus? Me, I love it! One of the ideas in calculus is Taylor expansion, that is, representing a differentiable function as an infinite series. In practice, this means that any differentiable, and therefore continuous, function can be estimated by a polynomial of a high degree. The terms of the higher degree would then be assumed to be negligibly small.

Time for action – fitting to polynomials

The NumPy `polyfit` function can fit a set of data points to a polynomial even if the underlying function is not continuous.

1. **Polynomial fit**: Continuing with the price data of BHP and VALE, let’s look at the difference of their close prices and fit it to a polynomial of the third power:

   ```python
   bhp = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,), unpack=True)
   vale = numpy.loadtxt('VALE.csv', delimiter=',', usecols=(6,), unpack=True)
   t = numpy.arange(len(bhp))
   poly = numpy.polyfit(t, bhp - vale, int(sys.argv[1]))
   print "Polynomial fit", poly
   ```

 The polynomial fit (in this example, a cubic polynomial was chosen):

 Polynomial fit [1.1165581e-03 -5.28581762e-02 5.80684638e-01 5.79791202e+01]
2. **Extrapolate to the next day**: The numbers you see are the coefficients of the polynomial. Extrapolate to the next value with the `polyval` function and the polynomial object we got from the fit:

```python
classifier.gbc.XGBClassifier
```

```python
print "Next value", numpy.polyval(poly, t[-1] + 1)
```

The next value we predict will be:

```
Next value 57.9743076081
```

3. **Find the roots**: Ideally, the difference between the close prices of BHP and VALE should be as small as possible. In an extreme case, it might be zero at some point. Find out when our polynomial fit reaches zero with the `roots` function:

```python
print "Roots", numpy.roots(poly)
```

The roots of the polynomial are as follows:

```
Roots [ 35.48624287+30.62717062j  35.48624287-30.62717062j -23.63210575 +0.j        ]
```

The roots are complex; that's no good.

4. **Differentiate**: Another thing we learned in calculus class was to find *extremums*—these could be potential maxima or minima. Remember, from calculus, that these are the points where the derivative of our function is zero. Differentiate the polynomial fit with the `polyder` function:

```python
der = numpy.polyder(poly)
print "Derivative", der
```

The coefficients of the derivative polynomial are as follows:

```
Derivative [ 0.00334967 -0.10571635  0.58068464]
```

The numbers you see are the coefficients of the derivative polynomial.

5. **Find the extrema**: Get the roots of the derivative:

```python
print "Extremas", numpy.roots(der)
```

The extremas that we get are:

```
Extremas [ 24.47820054   7.08205278]
```

Let's double check; compute the values of the fit with `polyval`:

```python
vals = numpy.polyval(poly, t)
```

6. **Double-check**: Now, find the maximum and minimum values with `argmax` and `argmin`:

```python
print numpy.argmax(vals)
print numpy.argmin(vals)
```
This gives us the expected results. Ok, not quite the same results, but, if we backtrack to step 1, we can see that `t` was defined with the `arange` function:

```
7 24
```

7. **Plot**: Plot the data and the fit it as follows:

```python
plot(t, bhp - vale)
plot(t, vals)
show()
```

It results in this plot:

![Plot](image)

Obviously, the smooth line is the fit and the jagged line is the underlying data. It's not that good a fit, so you might want to try a higher order polynomial.

What just happened?

We fit data to a polynomial with the `polyfit` function. We learned about the `polyval` function that computes the values of a polynomial, the `roots` function that returns the roots of the polynomial, and the `polyder` function that gives back the derivative of a polynomial.
Convenience Functions for Your Convenience

Have a go hero – improving the fit

There are a number of things you could do to improve the fit. Try a different power as, in this tutorial, a cubic polynomial was chosen. Consider smoothing the data before fitting it. One way you could smooth is with a moving average. Examples of simple and exponential moving average calculations can be found in the previous chapter.

On-balance volume

Volume is a very important variable in investing; it indicates how big a price move is. The on-balance volume indicator is one of the simplest stock price indicators. It is based on the close price of the current and previous days and the volume of the current day. For each day, if the close price today is higher than the close price of yesterday then the value of the on-balance volume is equal to the volume of today. On the other hand, if today’s close price is lower than yesterday’s close price then the value of the on-balance volume indicator is the difference between the on-balance volume and the volume of today. If the close price did not change then the value of the on-balance volume is zero.

Time for action – balancing volume

In other words we need to multiply the sign of the close price with the volume. In this tutorial, we will go over two approaches to this problem, one using the NumPy `sign` function, and the other using the NumPy `piecewise` function.

1. **Load the data:** Load the BHP data into a close and volume array:

   ```python
   c, v=numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6, 7), unpack=True)
   ```

 Compute the absolute value changes. Calculate the change of the close price with the `diff` function. The `diff` function computes the difference between two sequential array elements and returns an array containing these differences:

   ```python
   change = numpy.diff(c)
   print "Change", change
   ```

 The changes of the close price are shown as follows:

   ```python
   Change [ 1.92  -1.08  -1.26   0.63   -1.54  -0.28   0.25  -0.6   2.15
            0.69  -1.33   1.16
            1.59  -0.26  -1.29  -0.13  -2.12  -3.91   1.28  -0.57  -2.07  -2.07
            2.5  1.18
           -0.88   1.31   1.24  -0.59]
   ```
2. **Determine the signs**: The NumPy `sign` function returns the signs for each element in an array. -1 is returned for a negative number, 1 for a positive number, and 0, otherwise. Apply the `sign` function to the change array:

```python
signs = numpy.sign(change)
print "Signs", signs
```

The signs of the change array are as follows:

```
[ 1. -1. -1.  1. -1. -1.  1.  1. -1. -1. -1. -1. -1. -1.
 -1. -1. -1.  1.  1.  1. -1.  1.  1. -1.]
```

Alternatively, we can calculate the signs with the `piecewise` function. The `piecewise` function, as its name suggests, evaluates a function piece-by-piece. Call the function with the appropriate return values and conditions:

```python
pieces = numpy.piecewise(change, [change < 0, change > 0], [-1, 1])
print "Pieces", pieces
```

The signs are shown again, as follows:

```
[ 1. -1. -1.  1. -1. -1.  1.  1. -1. -1. -1. -1. -1. -1.
 -1. -1. -1.  1.  1.  1. -1.  1.  1. -1.]
```

Check that the outcome is the same:

```python
print "Arrays equal?", numpy.array_equal(signs, pieces)
```

And the outcome is as follows:

Arrays equal? True

3. **On-balance volume**: The on-balance volume depends on the change of the previous close, so we can not calculate it for the first day in our sample:

```python
print "On balance volume", v[1:] * signs
```

The on-balance volume is as follows:

```
 -7809799.  3947100.  3809700.  3098200. -3500200.  4285600.  3918800.
 -3632200.]
```
What just happened?

We computed the on-balance volume that depends on the change of the closing price. Using the NumPy `sign` and `piecewise` functions, we went over two different methods to determine the sign of the change.

The mode

In statistics, the mode summarizes a set of values, just like an average or median. The mode is the most frequent value or values. For instance, if we have the values 0, 1, 2, 2, 3, then the mode would be 2. The mode doesn't have to be a unique number. The mode could consist of multiple numbers as long as these numbers are the most frequent ones. For example, if we have the numbers 1, 1, 2, 2, 3, the mode would be 1 and 2.

Time for action – determining the mode of stock returns

When it comes to determining the mode of stock returns we can do two things—we can try to find the peak of the histogram of said returns, or we can turn the returns into integers and find the mode of those integers. If we don't do this, it is impossible to determine the mode; we would have to deal with a large number of unique numbers.

1. **Unique numbers**: The `unique` function returns the unique numbers of an array. Here is an example of how it works:

   ```python
   print "Unique", numpy.unique(numpy.array([2, 2]))
   ```

 As you would expect, one unique number is returned:

 Unique [2]

 Now, load the data and find out how many unique stock returns there are:

   ```python
   bhp = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,), unpack=True)
   bhp_returns = numpy.diff(bhp) / bhp[ : -1]
   print "BHP returns", bhp_returns
   print "Total number", len(bhp_returns), "Unique number",
   len(numpy.unique(bhp_returns))
   ```

 Just as suspected, there are a lot of unique stock returns; actually, all of them are unique.

   ```plaintext
   BHP returns  
   -0.02048656 -0.01129235 -0.01129235 -0.01332487 -0.01639519
   -0.01639519 -0.01129235 -0.01639519 -0.01129235 -0.01639519
   -0.01639519 -0.01129235
   ```
2. **Histogram**: NumPy has a `histogram` function that we will use. This method is sensitive to the number of bins. Set the number of bins to the square root of the number of array elements (this is a rule of thumb that works quite well):

```python
nbins = numpy.sqrt(len(bhp_returns))
```

Call the `histogram` function with the number of bins we calculated. It's shown as follows:

```python
N, bins = numpy.histogram(bhp_returns, bins=nbins)
print "Counts", N, "Bins", bins
```

The `histogram` function returns the number of occurrences within each bin and the bins themselves:

```
Counts [ 1  5 10  9  4] Bins [-0.04239861 -0.02802822 -0.01365783 0.00071256 0.01508295 0.02945335]
```

Determine the mode by finding the bin corresponding to the highest count in the histogram:

```python
index_max = N.argmax()
print "mode", bins[index_max]
```

The mode is as follows:

```
mode -0.0136578288488
```

3. **Converting to promilles**: It is a bit arbitrary whether we should convert the stock returns to promilles or percentages, as we have integer values. Convert the stock returns to promilles with the `astype` function:

```python
bhp_promilles = (bhp_returns * 1000).astype(int)
```

4. **Sort**: Sort the values by calling the `sort` function:

```python
sorted = numpy.sort(bhp_promilles)
print "Sorted", sorted
```

The sorted values should be as follows:

```
Sorted [-42 -23 -23 -22 -16 -14 -13 -13 -11 -9 -6 -6 -6 -3 -2 -1 2 6 7 11 12 13 13 14 14 16 20 23 29]
```
5. **Indices of changed values:** Now, we need to find the indices where values changed:

```python
diffed = numpy.diff(sorted)
# values changed
indices = numpy.where(diffed > 0)
print "Indices where values changed", indices
```

The indices are as follows:

```
Indices where values changed (array([ 0,  2,  3,  4,  5,  7,  8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27]),)
```

6. **Number of repeats:** Figure out the number of repeats:

```python
# number of repeats
repeats = numpy.diff(indices)
print "Repeats", repeats
```

The repeats that we get are:

```
Repeats [[2 1 1 1 2 1 1 3 1 1 1 1 1 1 1 2 2 1 1 1]]
```

7. **Index with the most repeats:** Find the index with the most repeats:

```python
most_repeats_index = numpy.argmax(repeats)
print "Most repeats index", most_repeats_index
```

The index with the most repeats is:

```
Most repeats index 7
```

8. **Index in the sorted array:** Locate the index in the original sorted array of the most frequent promille value:

```python
index = numpy.ravel(indices)[most_repeats_index + 1]
print "Index", index
```

The index with the most frequent promille value is:

```
Index 12
```

9. **The mode from the sorted array:** Get the mode. Look at the following code:

```python
print "Mode", sorted[index]
```

The mode of the array is:

```
Mode -6
```
What just happened?
We determined the mode of sample values with a histogram and by converting the values to integers. The most important thing is that we learned about the histogram function.

Simulation
Often, you would want to try something out. Play around, experiment, but preferably without blowing things up or getting dirty. NumPy is perfect for experimentation. We will use NumPy to simulate a trading day, without actually losing money. Many people like to buy on the dip or, in other words, wait for the price of stocks to drop before buying. A variant of that is to wait for the price to drop a small percentage say 0.1 percent below the opening price of the day.

Time for action – avoiding loops with vectorize
The vectorize function is a yet another trick to reduce the number of loops in your programs. We will let it calculate the profit of a single trading day:

1. Load data: First, load the data:
   ```python
   o, h, l, c = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(3, 4, 5, 6), unpack=True)
   ```
2. Call vectorize: The vectorize function is the NumPy equivalent of the Python map function. Call the vectorize function, giving it as an argument the calc_profit function that we still have to write:
   ```python
   func = numpy.vectorize(calc_profit)
   ```
3. Apply func: We can now apply func as if it is a function. Apply the func result that we got, to the price arrays:
   ```python
   profits = func(o, h, l, c)
   ```
4. Write the function: The calc_profit function is pretty simple. First, we try to buy slightly below the open price. If this is outside of the daily range, then, obviously, our attempt failed and no profit was made, or we incurred a loss, therefore we will return 0. Otherwise, we sell at the close price and the profit is just the difference between the buy price and the close price. Actually, it is more interesting to have a look at the relative profit:
   ```python
   def calc_profit((open, high, low, close):
       # buy just below the open
       buy = open * float(sys.argv[1])
       # daily range
   ```
Convenience Functions for Your Convenience

```python
if low < buy < high:
    return (close - buy)/buy
else:
    return 0
print "Profits", profits
```

5. **Summary of the trades**: There are two days with zero profits: there was either no net gain, or a loss. Select the days with trades and calculate averages:

```python
real_trades = profits[profits != 0]
print "Number of trades", len(real_trades), round(100.0 *
len(real_trades)/len(c), 2), "%"
print "Average profit/loss %", round(numpy.mean(real_trades) *
100, 2)
```

The trades summary are shown as follows:

```
Number of trades 28 93.33 %
Average profit/loss % 0.02
```

6. **Winning trades**: As optimists, we are interested in winning trades with a gain greater than zero. Select the days with winning trades and calculate averages:

```python
winning_trades = profits[profits > 0]
print "Number of winning trades", len(winning_trades), round(100.0 *
len(winning_trades)/len(c), 2), "%"
print "Average profit %", round(numpy.mean(winning_trades) * 100,
2)
```

The winning trades are:

```
Number of winning trades 16 53.33 %
Average profit % 0.72
```

7. **Losing trades**: As pessimists, we are interested in losing trades with profit less than zero. Select the days with losing trades and calculate averages:

```python
losing_trades = profits[profits < 0]
print "Number of losing trades", len(losing_trades), round(100.0 *
len(losing_trades)/len(c), 2), "%"
print "Average loss %", round(numpy.mean(losing_trades) * 100, 2)
```

The losing trades are:

```
Number of losing trades 12 40.0 %
Average loss % -0.92
```
What just happened?

We vectorized a function, which is just another way to avoid using loops. We simulated a trading day with a function, which returned the relative profit of each day’s trade. We printed a summary of the losing and winning trades.

Have a go hero – analyzing consecutive wins and losses

Although the average profit is positive, it is also important to know whether we had to endure a long streak of consecutive losses. If this is the case, we might be left with little or no capital, and then the average profit would not matter that much.

Find out if there was such a losing streak. If you want, you can also find out if there was a prolonged winning streak.

Smoothing

Noisy data is difficult to deal with, so we often need to do some smoothing. Besides calculating moving averages, we can use one of the NumPy functions to smooth data.

The hanning function is a windowing function formed by a weighted cosine. There are other window functions that will be covered in greater detail in later chapters.

Time for action – smoothing with the hanning function

We will use the hanning function to smooth arrays of stock returns, as shown in the following steps:

1. Computing the weights: Call the hanning function to compute weights, for a certain N length window (in this example, N is 8):

   ```python
   N = int(sys.argv[1])
   weights = numpy.hanning(N)
   print "Weights", weights
   ```

 The weights are as follows:

   ```plaintext
   Weights [ 0.        0.1882551  0.61126047  0.95048443
   0.95048443  0.61126047  0.1882551  0.        ]
   ```
2. **Smoothing the stock returns:** Calculate the stock returns for the BHP and VALE quotes using `convolve` with normalized weights:

```python
bhp = numpy.loadtxt('BHP.csv', delimiter=',', usecols=(6,), unpack=True)
bhp_returns = numpy.diff(bhp) / bhp[: -1]
smooth_bhp = numpy.convolve(weights/weights.sum(), bhp_returns)[N-1:-N+1]

vale = numpy.loadtxt('VALE.csv', delimiter=',', usecols=(6,), unpack=True)
vale_returns = numpy.diff(vale) / vale[: -1]
smooth_vale = numpy.convolve(weights/weights.sum(), vale_returns)[N-1:-N+1]
```

3. **Plotting:** Plotting with Matplotlib:

```python
t = numpy.arange(N - 1, len(bhp_returns))
plot(t, bhp_returns[N-1:], lw=1.0)
plot(t, smooth_bhp, lw=2.0)
plot(t, vale_returns[N-1:], lw=1.0)
plot(t, smooth_vale, lw=2.0)
show()
```

The chart would appear as follows:

![Chart](image)

The thin lines on the chart are the stock returns and the thick lines are the result of smoothing. As you can see, the lines cross a few times. These points might be important, because the trend might have changed there. Or, at least, the relation of BHP to VALE might have changed. These turning inflection points probably occur often, so we might want to project into the future.
4. **Fitting to polynomials**: Fit the result of the smoothing step to polynomials:

```python
K = int(sys.argv[1])
t = numpy.arange(N - 1, len(bhp_returns))
poly_bhp = numpy.polyfit(t, smooth_bhp, K)
poly_vale = numpy.polyfit(t, smooth_vale, K)
```

5. **Find the crossing points**: Now, we need to compute for a situation where the polynomials we found in the previous step are equal to each other. This boils down to subtracting the polynomials and finding the roots of the resulting polynomial. Subtract the polynomials using `polysub`:

```python
poly_sub = numpy.polysub(poly_bhp, poly_vale)
xpoints = numpy.roots(poly_sub)
print "Intersection points", xpoints
```

The points are shown as follows:

```
Intersection points [ 27.73321597+0.j  27.51284094+0.j
  24.32064343+0.j  18.86423973+0.j  12.43797190+1.73218179j
  12.43797190-1.73218179j  6.34613053+0.62519463j
  6.34613053-0.62519463j]
```

6. **Getting the real numbers**: The numbers we get are complex; that is not good for us, unless there is such a thing as imaginary time. Check which numbers are real with the `isreal` function:

```python
reals = numpy.isreal(xpoints)
print "Real number?", reals
```

The result is as follows:

```
Real number? [ True  True  True  True False False False False]
```

Some of the numbers are real, so select them with the `select` function. The `select` function forms an array by taking elements from a list of choices, based on a list of conditions:

```python
xpoints = numpy.select([reals], [xpoints])
xpoints = xpoints.real
print "Real intersection points", xpoints
```

The real intersection points are as follows:

```
Real intersection points [ 27.73321597  27.51284094  24.32064343
  18.86423973  0.         0.         0.         0.]
```
Convenience Functions for Your Convenience

7. Stripping zeroes: We managed to pick up some zeroes. The \texttt{trim_zeros} function strips the leading and trailing zeros from a one-dimensional array. Get rid of the zeroes with \texttt{trim_zeros}:

\begin{verbatim}
print "Sans 0s", numpy.trim_zeros(xpoints)
\end{verbatim}

The zeroes are gone, and the output is shown as follows:

\texttt{Sans 0s \[27.73321597 27.51284094 24.32064343 18.86423973 \]}

What just happened?

We applied the \texttt{hanning} function to smooth arrays containing stock returns. We subtracted two polynomials with the \texttt{polysub} function. We checked for real numbers with the \texttt{isreal} function and selected the real numbers with the \texttt{select} function. Finally, we stripped zeroes from an array with the \texttt{strip_zeros} function.

Have a go hero – smoothing variations

Experiment with the other smoothing functions—\texttt{hamming, blackman, bartlett, and kaiser}. They work more-or-less in the same way as \texttt{hanning}.

Summary

We calculated the correlation of the stock returns of two stocks with the \texttt{corrcoef} function. As a bonus, a demonstration of the \texttt{diagonal} and \texttt{trace} functions was given, which can give us the diagonal and trace of a matrix.

We fit data to a polynomial with the \texttt{polyfit} function. We learned about the \texttt{polyval} function that computes the values of a polynomial, the \texttt{roots} function that returns the roots of the polynomial, and the \texttt{polyder} function that gives back the derivative of a polynomial.

Hopefully, we increased our productivity so that we can continue in the next chapter with matrices and universal functions (ufuncs).
This chapter covers matrices and universal functions (ufuncs). Matrices are well known in mathematics and have their representation in NumPy as well. Universal functions work on arrays, element-by-element, or on scalars. ufuncs expect a set of scalars as input and produce a set of scalars as output. Universal functions can typically be mapped to mathematical counterparts, such as, add, subtract, divide, multiply, and so on. We will also be introduced to trigonometric, bitwise, and comparison universal functions.

In this chapter, we shall cover the following topics:

- Matrix creation
- Matrix operations
- Basic ufuncs
- Trigonometric functions
- Bitwise functions
- Comparison functions

Matrices

Matrices in NumPy are subclasses of ndarray. Matrices can be created using a special string format. They are, just like in mathematics, two-dimensional. Matrix multiplication is, as you would expect, different from the normal NumPy multiplication. The same is true for the power operator. We can create matrices with the mat, matrix, and bmat functions.
Time for action – creating matrices

Matrices can be created with the `mat` function. This function does not make a copy if the input is already a matrix or an ndarray. Calling this function is equivalent to calling `matrix(data, copy=False)`. We will also demonstrate transposing and inverting matrices.

1. Creating a matrix from a string: Rows are delimited by a semicolon, values by a space. Call the `mat` function with the following string to create a matrix:

   ```python
   A = numpy.mat('1 2 3; 4 5 6; 7 8 9')
   print "Creation from string", A
   ```

 The matrix output should be the following matrix:

   ```plaintext
   Creation from string [[1 2 3]
   [4 5 6]
   [7 8 9]]
   ```

2. Transposing matrices: Transpose the matrix with the `T` attribute, as follows:

   ```python
   print "transpose A", A.T
   ```

 The following is the transposed matrix:

   ```plaintext
   transpose A [[1 4 7]
   [2 5 8]
   [3 6 9]]
   ```

3. Inverting matrices: The matrix can be inverted with the `I` attribute, as follows:

   ```python
   print "Inverse A", A.I
   ```

 The inverse matrix is as follows (be warned that this is a $O(n^3)$ operation):

   ```plaintext
   Inverse A [[ -4.50359963e+15   9.00719925e+15  -4.50359963e+15]
   [  9.00719925e+15  -1.80143985e+16   9.00719925e+15]
   [ -4.50359963e+15   9.00719925e+15  -4.50359963e+15]]
   ```

4. Creating matrices from arrays: Instead of using a string to create a matrix, let’s do it with an array:

   ```python
   print "Creation from array", numpy.mat(numpy.arange(9).reshape(3, 3))
   ```

 The newly-created array is as follows:

   ```plaintext
   Creation from array [[0 1 2]
   [3 4 5]
   [6 7 8]]
   ```
What just happened?
We created matrices with the `mat` function. We transposed the matrices with the `T` attribute and inverted them with the `I` attribute.

Creating a matrix from other matrices
Sometimes we want to create a matrix from other smaller matrices. We can do this with the `bmat` function. The `b` here stands for block matrix.

Time for action – creating a matrix from other matrices
We will create a matrix from two smaller matrices, as follows:

1. Creating the smaller matrices: First create a 2-by-2 identity matrix:
   ```python
   A = numpy.eye(2)
   print "A", A
   
   The identity matrix looks like this:
   A [[ 1.  0.]
       [ 0.  1.]]
   
   Create another matrix like A and multiply by 2:
   B = 2 * A
   print "B", B
   
   The second matrix is as follows:
   B [[ 2.  0.]
       [ 0.  2.]]
   ```

2. Creating the compound matrix: Create the compound matrix from a string. The string uses the same format as the `mat` function; only, you can use matrices instead of numbers.
   ```python
   print "Compound matrix\n", numpy.bmat("A B; A B")
   
   The compound matrix is shown as follows:
   Compound matrix
   [[ 1.  0.  2.  0.]
    [ 0.  1.  0.  2.]
    [ 1.  0.  2.  0.]
    [ 0.  1.  0.  2.]]
What just happened?

We created a block matrix from two smaller matrices, with the `bmat` function. We gave the function a string containing the names of matrices instead of numbers.

Pop quiz – defining a matrix with a string

1. What is the row delimiter in a string accepted by the `mat` and `bmat` functions?
   
   a. Semicolon
   b. Colon
   c. Comma
   d. Space

Universal functions

Ufuncs expect a set of scalars as input and produce a set of scalars as output. Universal functions can typically be mapped to mathematical counterparts, such as, add, subtract, divide, multiply, and so on.

Time for action – creating universal function

We can create a universal function from a Python function with the NumPy `frompyfunc` function, as follows:

1. **Defining the Python function**: Define a Python function that answers the ultimate question to the universe, existence, and the rest (it’s from a book, if you don’t know which one, you can safely ignore this).

   ```python
 def ultimate_answer(a):
   ```

   So far, nothing special; we gave the function the name `ultimate_answer` and defined one parameter, `a`.

2. **Initializing the result**: Create a result consisting of all zeros, that has the same shape as `a`, with the `zeros_like` function:

   ```python
 result = numpy.zeros_like(a)
   ```

3. **Complete the function**: Now set the elements of the initialized array to the answer 42 and return the result. The complete function should appear as shown, in the following code snippet. The `flat` attribute gives us access to a flat iterator that allows us to set the value of the array:

   ```python
 result.flat[0] = 42
   ```
```python
def ultimate_answer(a):
 result = numpy.zeros_like(a)
 result.flat = 42
 return result
```

4. **Create the universal function**: Create a universal function with `frompyfunc`; specify 1 as input and 1 as output:

   ```python
 ufunc = numpy.frompyfunc(ultimate_answer, 1, 1)
 print "The answer", ufunc(numpy.arange(4))
   ```

   The result for a one-dimensional array is shown as follows:
   
   The answer [42 42 42 42]

   We can do the same for a two-dimensional array by using the following code:

   ```python
 print "The answer", ufunc(numpy.arange(4).reshape(2, 2))
   ```

   The output for a two-dimensional array is shown as follows

   The answer 
   
   [[42 42]
    [42 42]]

**What just happened?**

We defined a Python function. In this function, we initialized to zero the elements of an array, based on the shape of an input argument, with the `zeros_like` function. Then, with the `flat` attribute of `ndarray`, we set the array elements to the ultimate answer, 42.

**Universal function methods**

How can functions have methods? As we said earlier, universal functions are not functions but objects representing functions. Universal functions have four methods. They only make sense for functions such as `add`. That is, they have two input parameters and return one output parameter. If the signature of a ufunc does not match this condition, this will result in a `ValueError`, so call this method only for binary universal functions. The four methods are listed as follows:

1. reduce
2. accumulate
3. reduceat
4. outer
**Time for action – applying the ufunc methods on add**

Let's call the four methods on `add`.

1. **Calling the reduce method**: The input array is reduced by applying the universal function recursively along a specified axis on consecutive elements. For the `add` function, the result of reducing is similar to calculating the sum of an array. Call the `reduce` method:
   ```
a = numpy.arange(9)
p = numpy.add.reduce(a)

 print "Reduce", p

 The reduced array should be as follows:

 Reduce 36
   ```

2. **Calling the accumulate method**: The `accumulate` method also recursively goes through the input array. But, contrary to the `reduce` method, it stores the intermediate results in an array and returns that. The result, in the case of the `add` function, is equivalent to calling the `cumsum` function. Call the `accumulate` method on the `add` function:
   ```
p = numpy.add.accumulate(a)

 print "Accumulate", p

 The accumulated array:

 Accumulate [0 1 3 6 10 15 21 28 36]
   ```

3. **Calling the reduceat method**: The `reduceat` method is a bit complicated to explain, so let's call it and go through its algorithm, step-by-step. The `reduceat` method requires as arguments an input array and a list of indices:
   ```
p = numpy.add.reduceat(a, [0, 5, 2, 7])

 print "Reduceat", p

 The result is shown as follows:

 Reduceat [10 5 20 15]

 The first step concerns the indices 0 and 5. This step results in a reduce operation of the array elements between indices 0 and 5.
   ```

```python
p = numpy.add.reduce(a[0:5])
print "Reduce at step I", p
```

```
Reduce at step I 10
```

The output of step 1 is as follows:

```python
Reduceat step I 10
```

The second step concerns indices 5 and 2. Since 2 is less than 5, the array element at index 5 is returned:
```
p = numpy.add.reduce(a[5])
print "Reduce at step II", p
```

```
Reduce at step II a[5]
```
The second step results in the following output:

```
Reduce at step II 5
```

The third step concerns indices 2 and 7. This step results in a reduce operation of the array elements between indices 2 and 7:

```
print "Reduce at step III", numpy.add.reduce(a[2:7])
```

The result of the third step is shown as follows:

```
Reduce at step III 20
```

The fourth step concerns index 7. This step results in a reduce operation of the array elements from index 7 to the end of the array:

```
print "Reduce at step IV", numpy.add.reduce(a[7:])
```

The fourth step result is shown as follows:

```
Reduce at step IV 15
```

4. **Calling the outer method:** The `outer` method returns an array that has a rank which is the sum of the ranks of its two input arrays. The method is applied to all possible pairs of the input array elements. Call the `outer` method on the `add` function:

```
print "Outer", numpy.add.outer(numpy.arange(3), a)
```

The outer sum output result is as follows:

```
Outer
[[0 1 2 3 4 5 6 7 8]
 [1 2 3 4 5 6 7 8 9]
 [2 3 4 5 6 7 8 9 10]]
```

**What just happened?**

We applied the four methods, `reduce`, `accumulate`, `reduceat`, and `outer`, of universal functions to the `add` function. Since this is a binary function, no exception was thrown.

**Arithmetic functions**

The common arithmetic operators +, -, and * are implicitly linked to the `add`, `subtract`, and `multiply` universal functions. This means that when you use one of those operators on a NumPy array, the corresponding universal function will get called. Division involves a slightly more complex process. There are three universal functions that have to do with array division: `divide`, `true_divide`, and `floor_division`. Two operators correspond to division: `/` and `//`. 
Time for action – dividing arrays

Let’s see the array division in action:

1. **Calling divide**: The `divide` function does truncated integer division and normal floating-point division:
   ```python
a = numpy.array([2, 6, 5])
b = numpy.array([1, 2, 3])
print "Divide", numpy.divide(a, b), numpy.divide(b, a)
```
   The result of the `divide` function is shown as follows:
   Divide [2 3 1] [0 0 0]
   As you can see, big-time truncation takes place.

2. **Calling true_divide**: The `true_divide` function comes closer to the mathematical definition of division. Integer division returns a floating-point result and no truncation occurs:
   ```python
 print "True Divide", numpy.true_divide(a, b), numpy.true_divide(b, a)
   ```
   The result of the `true_divide` function is as follows:
   True Divide [ 2.          3.          1.66666667] [ 0.5
   0.33333333  0.6]

3. **Calling floor_divide**: The `floor_divide` function always returns an integer result. It is equivalent to calling the `floor` function after calling the `divide` function. The `floor` function discards the decimal part of a floating-point number and returns an integer:
   ```python
 c = 3.14 * b
 print "Floor Divide 2", numpy.floor_divide(c, b), numpy.floor_divide(b, c)
   ```
   The `floor_divide` function results in:
   Floor Divide 2 [ 3.  3.  3.] [ 0.  0.  0.]

4. **Using the / operator**: By default, the `/` operator is equivalent to calling the `divide` function:
   ```python
 from __future__ import division
   ```
   However, if this line is found at the beginning of a Python program, the `true_divide` function is called instead. So, this code would appear as follows:
   ```python
 print "/ operator", a/b, b/a
   ```
The result is shown as follows:

```
/ operator [2. 3. 1.66666667] [0.5 0.33333333 0.6]
```

5. **Using the // operator:** The // operator is equivalent to calling the `floor_divide` function. For example, look at the following code snippet:

```python
print "// operator", a//b, b//a
print "// operator 2", c//b, b//c
```

The // operator result is shown as follows:

```
// operator [2 3 1] [0 0 0]
// operator 2 [3. 3. 3.] [0. 0. 0.]
```

**What just happened?**

We found that there are three different NumPy division functions. The `divide` function truncates the integer division and normal floating-point division. The `true_divide` function always returns a floating-point result without any truncation. The `floor_divide` function always returns an integer result; the result is the same that you would get by calling the `divide` and `floor` functions consecutively.

**Have a go hero – experimenting with __future__.division**

Experiment to confirm the impact of importing `__future__.division`.

**Modulo operation**

The modulo or remainder can be calculated using the NumPy `mod`, `remainder`, and `fmod` functions. Also, one can use the `%` operator. The main difference among these functions is how they deal with negative numbers. The odd one out in this group is the `fmod` function.

**Time for action – computing the modulo**

Let’s call the aforementioned functions:

1. **Calling the remainder function:** The `remainder` function returns the remainder of the two arrays, element-wise. 0 is returned if the second number is 0:

```python
a = numpy.arange(-4, 4)
print "Remainder", numpy.remainder(a, 2)
```

The result of the `remainder` function is shown as follows:

```
Remainder [0 1 0 1 0 1 0 1]
```
2. **Calling the mod function**: The `mod` function does exactly the same as the `remainder` function:
   ```python
 print "Mod", numpy.mod(a, 2)
 ``
 The result of the `mod` function is shown as follows:
   ```
   Mod [0 1 0 1 0 1 0 1]
   ```

3. **Using the \% operator**: The \% operator is just shorthand for the `remainder` function:
   ```python
   print "\% operator", a \% 2
   ```
 The result of the \% operator is shown as follows:
   ```
   \% operator [0 1 0 1 0 1 0 1]
   ```

4. **Calling the fmod function**: The `fmod` function handles negative numbers differently than `mod`, `fmod`, and \% do. The sign of the remainder is the sign of the dividend, and the sign of the divisor has no influence on the results:
   ```python
   print "Fmod", numpy.fmod(a, 2)
   ```
 The `fmod` result is shown as follows:
   ```
   Fmod [ 0 -1  0 -1  0  1  0  1]
   ```

What just happened?

We demonstrated the NumPy `mod`, `remainder`, and `fmod` functions, which compute the modulo, or remainder.

Fibonacci numbers

The Fibonacci numbers are based on a recurrence relation. It is difficult to express this relation directly with NumPy code. However, we can express this relation in a matrix form or use the golden ratio formula. This will introduce the `matrix` and `rint` functions. The `matrix` function creates matrices and the `rint` function rounds numbers to the closest integer, but the result is not integer.

Time for action – computing Fibonacci numbers

The Fibonacci recurrence relation can be represented by a matrix. Calculation of Fibonacci numbers can be expressed as repeated matrix multiplication:

1. **Creating the Fibonacci matrix**: Create the Fibonacci matrix as follows:
   ```python
   F = numpy.matrix([[1, 1], [1, 0]])
   print "F", F
   ```
Chapter 5

The Fibonacci matrix appears as follows:

\[
F = \begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}
\]

2. **Computing a Fibonacci number with the matrix**: Calculate the 8th Fibonacci number (ignoring 0), by subtracting 1 from 8 and taking the power of the matrix. The Fibonacci number then appears on the diagonal:

```
print "8th Fibonacci", (F ** 7)[0, 0]
The Fibonacci number is:
8th Fibonacci 21
```

3. **Calculating with the golden ratio formula**: The golden ratio formula, better known as Binet’s formula, allows us to calculate Fibonacci numbers with a rounding step at the end. Calculate the first eight Fibonacci numbers:

```
n = numpy.arange(1, 9)
sqrt5 = numpy.sqrt(5)
phi = (1 + sqrt5)/2
fibonacci = numpy.rint((phi**n - (-1/phi)**n)/sqrt5)
print "Fibonacci", fibonacci
```

The Fibonacci numbers are:

```
Fibonacci [  1.   1.   2.   3.   5.   8.  13.  21.]
```

What just happened?

We computed Fibonacci numbers in two ways. In the process, we learned about the `matrix` function that creates matrices. We also learned about the `rint` function that rounds numbers to the closest integer but does not change the type to integer.

Have a go hero – timing the calculations

You are probably wondering which approach is faster, so go ahead time it. Create a universal Fibonacci function with `frompyfunc` and time it too.

Lissajous curves

All the standard trigonometric functions, such as, sin, cos, tan, and so on are represented by universal functions in NumPy. Lissajous curves are a fun way of using trigonometry. I remember producing Lissajous figures on an oscilloscope in the physics lab. Two parametric equations can describe the figures:

\[
x = A \sin(at + \pi/2) \\
y = B \sin(bt)
\]
Time for action – drawing Lissajous curves

The Lissajous figures are determined by four parameters A, B, a, and b. Let’s set A and B to 1 for simplicity:

1. **Initialize t:** Initialize t with the `linspace` function from $-\pi$ to π with 201 points:

   ```
   a = float(sys.argv[1])
   b = float(sys.argv[2])
   t = numpy.linspace(-numpy.pi, numpy.pi, 201)
   ```

2. **Calculate x:** Calculate x with the `sin` function and `numpy.pi`:

   ```
   x = numpy.sin(a * t + numpy.pi/2)
   ```

3. **Calculate y:** Calculate y with the `sin` function:

   ```
   y = numpy.sin(b * t)
   ```

4. **Plot with Matplotlib:** Matplotlib will be covered later in *Chapter 9, Plotting with Matplotlib*. Plot as shown here:

   ```
   plot(x, y)
   show()
   ```

 The result for $a = 9$ and $b = 8$:
What just happened?

We plotted the Lissajous curve with the aforementioned parametric equations where \(A=B=1, \ a=9 \) and, \(b=8 \). We used the \(\sin \) and \(\text{linspace} \) functions as well as the NumPy \(\pi \) constant.

Square waves

Square waves are also one of those neat things that you can view on an oscilloscope. They can be approximated pretty well with sine waves; after all, a square wave is a signal that can be represented by an infinite Fourier series. The formula of the series is as follows:

\[
\sum_{k=1}^{\infty} \frac{4\sin((2k-1)t)}{(2k-1)\pi}
\]

Time for action – drawing a square wave

We will initialize \(t \) just like in the previous tutorial. We need to sum a number of terms. The higher the number of terms, the more accurate the result; \(k = 99 \) should be sufficient. In order to draw a square wave, follow the ensuing steps:

1. Initialize \(t \) and \(k \): We will start by initializing \(t \) and \(k \). Set initial values for the function to 0:
 \[
t = \text{numpy.linspace}(-\text{numpy.pi}, \text{numpy.pi}, 201)
 \]
 \[
k = \text{numpy.arange}(1, \text{float(sys.argv[1])})
 \]
 \[
k = 2 * k - 1
 \]
 \[
f = \text{numpy.zeros_like}(t)
 \]

2. Compute the function values: This step should be a straightforward application of the \(\sin \) and \(\text{sum} \) functions:
 \[
 \text{for } i \text{ in range(len(t))}:
 \]
 \[
f[i] = \text{numpy.sum(numpy.sin(k * t[i])/k)}
 \]
 \[
f = (4 / \text{numpy.pi}) * f
 \]

3. Plotting with Matplotlib: The code to plot is almost identical to the one in the previous tutorial:
 \[
 \text{plot}(t, f)
 \]
 \[
 \text{show}()
 \]
The resulting square wave generated with $k = 99$ is as follows:

![Square Wave Graph]

What just happened?

We generated a square wave or, at least, a fair approximation of it, using the \sin function. The input values were assembled with `linspace` and the k values with the `arange` function.

Have a go hero – getting rid of the loop

You may have noticed that there is one loop in the code. Get rid of it with NumPy functions and make sure the performance is also improved.

Sawtooth and triangle waves

Sawtooth and triangle waves are also a phenomenon easily viewed on an oscilloscope. Just like with square waves, we can define an infinite Fourier series. The triangle waves can be found by taking the absolute value of a sawtooth wave. The formula for the representation of a series of sawtooth waves is:

$$\sum_{k=1}^{\infty} \frac{2 \sin(2\pi kt)}{k\pi}$$
Time for action – drawing sawtooth and triangle waves

We will initialize \(t \) just like in the previous tutorial. Again, \(k = 99 \) should be sufficient. In order to draw sawtooth and triangle waves, follow the ensuing steps:

1. **Initialize \(t \) and \(k \):** Set initial values for the function to zero:

 \[
 t = \text{numpy.linspace}(-\text{numpy.pi}, \text{numpy.pi}, 201)
 \]

 \[
 k = \text{numpy.arange}(1, \text{float(sys.argv[1])})
 \]

 \[
 f = \text{numpy.zeros_like(t)}
 \]

 Compute the function values: This should again be a straightforward application of the \(\sin \) and \(\text{sum} \) functions:

 \[
 \text{for } i \text{ in range(len(t))}:
 \]

 \[
 f[i] = \text{numpy.sum(numpy.sin(2 * numpy.pi * k * t[i])}/k
 \]

 \[
 f = (-2 / \text{numpy.pi}) * f
 \]

2. **Plotting with Matplotlib:** It’s easy to plot the sawtooth and triangle waves, since the value of the triangle wave should be equal to the absolute value of the sawtooth wave. Plot the waves as shown next:

 \[
 \text{plot(t, f, lw=1.0)}
 \]

 \[
 \text{plot(t, numpy.abs(f), lw=2.0)}
 \]

 \[
 \text{show()}
 \]

 In the following figure, the triangle wave is the one with the thicker line:
What just happened?

We drew a sawtooth wave using the `sin` function. The input values were assembled with `linspace` and the k values with the `arange` function. A triangle wave was derived from the sawtooth wave by taking the absolute value.

Have a go hero – getting rid of the loop

Your challenge, should you choose to accept it, is to get rid of the loop in the program. It should be doable with NumPy functions and the performance should double.

Bitwise and comparison functions

Bitwise functions operate on the bits of integers or integer arrays, since they are universal functions. The operators `^`, `&`, `|`, `<`, `>`, and so on, have their NumPy counterparts The same goes for comparison operators, such as, `<`, `>`, `==`, and so on. These operators allow you some clever tricks, which should be good for performance; however, they could make your code quite unreadable, so use them with care.

Time for action – twiddling bits

We will go over three tricks—checking whether the signs of integers are different, checking whether a number is a power of 2, and calculating the modulus of a number that is a power of 2. We will show an operators only notation and one using the corresponding NumPy functions:

1. Checking signs: The first trick depends on the `XOR` or `^` operator. The `XOR` operator is also called the inequality operator; so, if the sign bit of the two operands is different, the `XOR` operation will lead to a negative number. `^` corresponds to the `bitwise_xor` function. `<` corresponds to the `less` function.

```python
x = numpy.arange(-9, 9)
y = -x
print "Sign different?", (x ^ y) < 0
print "Sign different?", numpy.less(numpy.bitwise_xor(x, y), 0)
```

The result is shown as follows:

```
Sign different? [ True  True  True  True  True  True  True  True  True False  True  True  True  True  True  True]
Sign different? [ True  True  True  True  True  True  True  True  True False  True  True  True  True  True  True]
```

As expected, all the signs differ, except for zero.
2. 'Power of 2' check: A power of 2 is represented by a 1, followed by a series of trailing zeroes in binary notation. For instance, 10, 100, or 1000. A number one less than a power of 2 would be represented by a row of ones in binary. For instance, 11, 111, or 1111 (or 3, 7, and 15, in the decimal system). Now, if we bitwise AND a power of 2 and the integer that is one less than that, then we should get 0. The NumPy counterpart of & is bitwise_and; the counterpart of == is the equal universal function.

```python
print "Power of 2?\n", x, "\n", (x & (x - 1)) == 0
print "Power of 2?\n", x, "\n", numpy.equal(numpy.bitwise_and(x, (x - 1)), 0)
```

The result is shown as follows:

```
Power of 2?
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8]
[False False False False False False False False False  True  True
 True False  True False False False  True]
Power of 2?
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8]
[False False False False False False False False False  True  True
 True False  True False False False  True]
```

3. Computing the modulus of 4: This trick actually works when taking the modulus of integers that are a power of 2, such as, 4, 8, 16, and so on. A bitwise left shift leads to doubling of values. We saw in the previous step that subtracting one from a power of 2 leads to a number in binary notation that has a row of ones, such as, 11, 111, or 1111. This basically gives us a mask. Bitwise-ANDing with such a number gives you the remainder with a power of 2. The NumPy equivalent of << is the left_shift universal function.

```python
print "Modulus 4\n", x, "\n", x & ((1 << 2) - 1)
print "Modulus 4\n", x, "\n", numpy.bitwise_and(x, numpy.left_shift(1, 2) - 1)
```

The result is shown as follows:

```
Modulus 4
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8]
[3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0]
Modulus 4
[-9 -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8]
[3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0]
```
What just happened?

We covered three bit-twiddling hacks—checking whether the signs of integers are different, checking whether a number is a power of 2, and calculating the modulus of a number that is a power of 2. We saw the NumPy counterparts of the operators ^, &, <<, and <.

Summary

We learned, in this chapter, about matrices and universal functions. We covered how to create matrices and how universal functions work. We had a brief introduction to arithmetic, trigonometric, bitwise, and comparison universal functions.

In the next chapter, we shall cover NumPy modules.
Move Further with NumPy Modules

NumPy has a number of modules that have been inherited from its predecessor, Numeric. Some of these packages have a SciPy counterpart, which may have fuller functionality. This will be discussed in a later chapter. The numpy.dual package contains functions that are defined both in NumPy and SciPy. The packages discussed in this chapter are also part of the numpy.dual package.

In this chapter, we shall cover the following topics:

- The linalg package
- The fft package
- Random numbers
- Continuous and discrete distributions

Linear algebra

The numpy.linalg package contains linear algebra functions. With this module, you can invert matrices, calculate eigenvalues, solve linear equations, and determine determinants among other things.

Time for action – inverting matrices

The inverse of a matrix A in linear algebra is the matrix A^{-1}, which, when multiplied with the original matrix, is equal to the identity matrix I. This can be written as follows:

$$A \cdot A^{-1} = I$$
The inv function in the numpy.linalg package can do this for us. Let’s invert an example matrix. To invert matrices, follow the ensuing steps:

1. **Create the example matrix:** We will create the example matrix with the mat function that we used in previous chapters.

   ```python
   A = numpy.mat("0 1 2;1 0 3;4 -3 8")
   print "A\n", A
   
   The A matrix is shown as follows:
   
   A
   
   [[  0  1  2]
   [  1  0  3]
   [  4 -3  8]]
   ```

2. **Invert the matrix:** Now, we can see the inv function in action.

   ```python
   inverse = numpy.linalg.inv(A)
   print "inverse of A\n", inverse
   
   The inverse matrix is shown as follows:
   
   inverse of A
   
   [[-4.5  7.  -1.5]
   [-2.  4.  -1. ]
   [ 1.5 -2.  0.5]]
   ```

 If the matrix is singular, or not square, a LinAlgError is raised. If you want, you can check the result manually. This is left as an exercise for the reader.

3. **Check by multiplication:** Let’s check what we get when we multiply the original matrix with the result of the inv function:

   ```python
   print "Check\n", A * inverse
   
   The result is the identity matrix, as expected.
   
   Check
   
   [[ 1.  0.  0.]
   [ 0.  1.  0.]
   [ 0.  0.  1.]]
   ```

What just happened?

We calculated the inverse of a matrix with the inv function of the numpy.linalg package. We checked, with matrix multiplication, whether this is indeed the inverse matrix.
Pop quiz – creating a matrix

1. Which function can create matrices?
 a. array
 b. create_matrix
 c. mat
 d. vector

Have a go hero – inverting your own matrix

Create your own matrix and invert it. The inverse is only defined for square matrices. The matrix must be square and invertible; otherwise, a LinAlgError exception is raised.

Solving linear systems

The numpy.linalg function solve solves systems of linear equations of the form $Ax = b$; here A is a matrix, b can be 1D or 2D array, and x is an unknown variable. We will see the dot function in action. This function returns the dot product of two floating-point arrays.

Time for action – solving a linear system

Let’s solve an example of linear system. To solve a linear system, follow the ensuing steps:

1. **Create the matrices A and b:** Let’s create A and b:

   ```python
   A = numpy.mat("1 -2 1; 0 2 -8; -4 5 9")
   print "A\n", A
   b = numpy.array([0, 8, -9])
   print "b\n", b
   ``

   The matrices $A$ and $b$ are shown as follows:

   $A$
   $[\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ -4 & 5 & 9 \end{bmatrix}]$

   $b$ $[\begin{bmatrix} 0 & 8 & -9 \end{bmatrix}]$

2. **Call the solve function:** Solve this linear system with the solve function:

   ```python
 x = numpy.linalg.solve(A, b)
 print "Solution", x
 ``

 The solution of the linear system is as follows:

 Solution $[\begin{bmatrix} 29 & 16 & 3 \end{bmatrix}]$
3. **Check with the dot function**: Check whether the solution is correct with the dot function:

```python
print "Check\n", numpy.dot(A , x)
```

The result is as expected:

```
Check
[[ 0.  8. -9.]]
```

What just happened?

We solved a linear system using the `solve` function from the NumPy `linalg` module and checked the solution with the `dot` function.

Finding eigenvalues and eigenvectors

Eigenvalues are scalar solutions to the equation $Ax = ax$, where A is a two-dimensional matrix and x is a one-dimensional vector. *Eigenvectors* are vectors corresponding to eigenvalues. The `eigvals` function in the `numpy.linalg` package calculates eigenvalues. The `eig` function returns a tuple containing eigenvalues and eigenvectors.

Time for action – determining eigenvalues and eigenvectors

Let's calculate the eigenvalues of a matrix:

1. **Create the matrix**: Create a matrix as shown.

   ```python
   A = numpy.mat("3 -2;1 0")
   print "A\n", A
   ```

 The matrix we created looks like this:

   ```
   A
   [[ 3 -2]
    [ 1  0]]
   ```

2. **Calculate eigenvalues with the eig function**: Call the `eig` function.

   ```python
   print "Eigenvalues", numpy.linalg.eigvals(A)
   ```

 The eigenvalues of the matrix are as follows:

   ```
   Eigenvalues [ 2.  1.]
   ```

3. **Getting eigenvalues and eigenvectors with eig**: Determine eigenvalues and eigenvectors with the `eig` function. This function returns a tuple, where the first element contains eigenvalues and the second element contains corresponding eigenvectors, arranged column-wise.
eigenvalues, eigenvectors = numpy.linalg.eig(A)
print "First tuple of eig", eigenvalues
print "Second tuple of eig"
print eigenvectors

The eigenvalues and eigenvectors will be:
First tuple of eig [2. 1.]
Second tuple of eig
[[0.89442719 0.70710678]
 [0.4472136 0.70710678]]

4. Check the result: Check the result with the dot function by calculating the right and left side of the eigenvalues equation $Ax = ax$.

for i in range(len(eigenvalues)):
 print "Left", numpy.dot(A, eigenvectors[:,i])
 print "Right", eigenvalues[i] * eigenvectors[:,i]

The output is as follows:
Left [[1.78885438]
 [0.89442719]]
Right [[1.78885438]
 [0.89442719]]
Left [[0.70710678]
 [0.70710678]]
Right [[0.70710678]
 [0.70710678]]

What just happened?
We found the eigenvalues and eigenvectors of a matrix with the eigvals and eig functions of the numpy.linalg module. We checked the result using the dot function.

Singular value decomposition

Singular value decomposition is a type of factorization that decomposes a matrix into a product of three matrices. The svd function in the numpy.linalg package can perform this decomposition. This function returns two orthogonal matrices and the singular values of the middle matrix:

\[
M = USV^*\]
Time for action – decomposing a matrix

It’s time to decompose a matrix with the singular value decomposition. In order to decompose a matrix, follow the ensuing steps:

1. **Create a matrix**: First, create a matrix as shown.
   ```python
   A = numpy.mat("4 11 14;8 7 -2")
   print "A\n", A
   
   The matrix we created looks like this:
   
   A
   [[ 4  11  14]
   [ 8   7 -2]]
   
2. **Decompose the matrix**: Decompose the matrix with the `svd` function.
   ```python
 U, Sigma, V = numpy.linalg.svd(A, full_matrices=False)
 print "U"
 print U
 print "Sigma"
 print Sigma
 print "V"
 print V

 The result is a tuple containing the two orthogonal matrices U and V on the left and right and the singular values of the middle matrix.

 U

 U
 [[-0.9486833 -0.31622777]
 [-0.31622777 0.9486833]]

 Sigma

 Sigma
 [18.97366596 9.48683298]

 V

 V
 [[-0.33333333 -0.66666667 -0.66666667]
 [0.66666667 0.33333333 -0.66666667]]

3. **Check the decomposition by matrix multiplication**: We do not actually have the middle matrix—we only have the diagonal values. The other values are all 0. We can form the middle matrix with the `diag` function. Multiply the three matrices. This is shown as follows:
   ```python
   print "Product\n", U * numpy.diag(Sigma) * V
   
   The product of the three matrices looks like this:
   
   Product
   
   Product
   [[  4.  11.  14.]
   [  8.   7. -2.]]
**What just happened?**

We decomposed a matrix and checked the result by matrix multiplication. We used the `svd` function from the NumPy `linalg` module.

**Pseudo inverse**

The Moore-Penrose pseudo inverse of a matrix can be computed with the `pinv` function of the `numpy.linalg` module (see [http://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_pseudoinverse](http://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_pseudoinverse)). The pseudo inverse is calculated using its singular value decomposition. The `inv` function only accepts square matrices; the `pinv` function does not have this restriction.

**Time for action – computing the pseudo inverse of a matrix**

Let's compute the pseudo inverse of a matrix:

1. **Create a matrix:** First, create a matrix as shown.
   
   ```python
 A = numpy.mat("4 11 14; 8 7 -2")
 print "A\n", A
 ``

 The matrix we created looks like this:

   ```text
   A
   [[ 4 11 14]
   [ 8  7 -2]]
   ```

2. **Compute the pseudo inverse:** Calculate the pseudo inverse matrix with the `pinv` function as shown.

   ```python
   pseudoinv = numpy.linalg.pinv(A)
   print "Pseudo inverse\n", pseudoinv
   ``

   The pseudo inverse is as follows:
   
   ```text
 Pseudo inverse
 [[-0.00555556 0.07222222]
 [0.02222222 0.04444444]
 [0.05555556 -0.05555556]]
   ```

3. **Multiply the matrices:** Multiply the original and pseudo inverse matrices.
   
   ```python
 print "Check", A * pseudoinv
 ``

 What we get is not an identity matrix, but it comes close to it:

   ```text
   Check [[ 1.00000000e+00  0.00000000e+00]
   [ 8.32667268e-17  1.00000000e+00]]
   ```
Move Further with NumPy Modules

What just happened?
We computed the pseudo inverse of a matrix with the \texttt{pinv} function of the \texttt{numpy.linalg} module. The check by matrix multiplication resulted in a matrix that is approximately an identity matrix.

Determinants

The \textbf{determinant} is a value associated with a matrix. It is used throughout mathematics. The \texttt{numpy.linalg} module has a \texttt{det} function that returns the determinant of a matrix.

Time for action – calculating the determinant of a matrix

To calculate the determinant of a matrix, follow the ensuing steps:

1. Create a matrix: Create the matrix as shown:
 \begin{verbatim}
 A = numpy.mat("3 4;5 6")
 print "A\n", A
 \end{verbatim}
 The matrix we created is shown as follows:
 \begin{verbatim}
 A
 [[3. 4.]
 [5. 6.]]
 \end{verbatim}

2. Determine the determinant: Compute the determinant with the \texttt{det} function:
 \begin{verbatim}
 print "Determinant", numpy.linalg.det(A)
 \end{verbatim}
 The determinant is shown as follows:
 \begin{verbatim}
 Determinant -2.0
 \end{verbatim}

What just happened?
We calculated the determinant of a matrix with the \texttt{det} function from the \texttt{numpy.linalg} module.

Fast Fourier transform

NumPy has a module called \texttt{fft} that offers fast Fourier transform functionality. A lot of the functions in this module are paired; this means that, for many functions, there is a function that does the inverse operation. For instance, the \texttt{fft} and \texttt{ifft} function.
Time for action – calculating the Fourier transform

First, we will create a signal to transform. In order to calculate the Fourier transform, follow the ensuing steps:

1. **Create the input signal**: Create a cosine wave with 30 points, as follows.
   ```python
   x = numpy.linspace(0, 2 * numpy.pi, 30)
   wave = numpy.cos(x)
   ```

2. **Transform the signal**: Transform the cosine wave with the `fft` function.
   ```python
   transformed = numpy.fft.fft(wave)
   ```

3. **Apply the inverse transform**: Apply the inverse transform with the `ifft` function. It should approximately return the original signal.
   ```python
   print numpy.all(numpy.abs(numpy.fft.ifft(transformed) - wave) < 10 ** -9)
   ```
 The result is shown as follows:
   ```
   True
   ```

4. **Plot the transform**: Plot the transformed signal with Matplotlib:
   ```python
   plot(transformed)
   show()
   ```
 The resulting diagram shows the fast Fourier Transform:

![Fast Fourier Transform Diagram](image-url)
What just happened?

We applied the `fft` function to a cosine wave. After applying the `ifft` function, we got our signal back.

Shifting

The `fftshift` function of the `numpy.linalg` module shifts zero-frequency components to the center of a spectrum. The `ifftshift` function reverses this operation.

Time for action – shifting frequencies

We will create a signal, transform it, and then shift the signal. In order to shift the frequencies, follow the ensuing steps:

1. **Create the input signal**: Create a cosine wave with 30 points.
   ```python
   x = numpy.linspace(0, 2 * numpy.pi, 30)
   wave = numpy.cos(x)
   ```

2. **Transform the signal**: Transform the cosine wave with the `fft` function.
   ```python
   transformed = numpy.fft.fft(wave)
   ```

3. **Shift the signal**: Shift the signal with the `fftshift` function.
   ```python
   shifted = numpy.fft.fftshift(transformed)
   ```

4. **Reverse the shift**: Reverse the shift with the `ifftshift` function. This should undo the shift.
   ```python
   print numpy.all((numpy.fft.ifftshift(shifted) - transformed) < 10 ** -9)
   ```
 The result is shown as follows:
   ```
   True
   ```

5. **Plot**: Plot the signal and transform it with Matplotlib.
   ```python
   plot(transformed, lw=2)
   plot(shifted, lw=3)
   show()
   ```
The following diagram shows the shift in the fast Fourier transform:

![Diagram](image)

What just happened?

We applied the `fftshift` function to a cosine wave. After applying the `ifftshift` function, we got our signal back.

Random numbers

The random numbers related functions can be found in the NumPy `random` module. The core random number generator is based on the Mersenne Twister algorithm. Random numbers can be generated from discrete or continuous distributions. The distribution functions have an optional `size` parameter, which tells NumPy how many numbers to generate. You can specify either an integer or a tuple as size. This will result in an array filled with random numbers of appropriate shape. Discrete distributions include the geometric, hypergeometric, and binomial distributions.

Time for action – gambling with the binomial

The binomial distribution models the number of successes in an integer number of independent trials of an experiment, where the probability of success in each experiment is a fixed number. Imagine a 17th-century gambling house where you can bet on flipping of pieces of eight. Nine coins are flipped. If less than five are heads, then you lose one piece of eight, otherwise you win one. Let's simulate this, starting with 1000 coins in our possession. We will use the `binomial` function from the `random` module for that purpose.
In order to understand the binomial function, look at the following section:

1. **Calling the binomial function**: Initialize an array, which represents the cash balance, to zeros. Call the binomial function with a size of 10000. This represents 10000 coin flips in our casino.

   ```python
   cash = numpy.zeros(10000)
cash[0] = 1000
outcome = numpy.random.binomial(9, 0.5, size=len(cash))
   ``

2. **Updating the cash balance**: Go through the outcomes of the coin flips and update the cash array. Print the minimum and maximum of the outcome, just to make sure we don't have any strange outliers.

   ```python
 for i in range(1, len(cash)):
 if outcome[i] < 5:
 cash[i] = cash[i - 1] - 1
 elif outcome[i] < 10:
 cash[i] = cash[i - 1] + 1
 else:
 raise AssertionError("Unexpected outcome " + outcome)
 print outcome.min(), outcome.max()

 As expected, the values are between 0 and 9:
 0 9

3. **Plot**: Plot the cash array with Matplotlib:

   ```python
   plot(numpy.arange(len(cash)), cash)
   show()
   
   As you can see in the following diagram, our cash balance performs a random walk:
What just happened?
We did a random walk experiment using the binomial function from the NumPy random module.

Hypergeometric distribution
The hypergeometric distribution models a jar with two types of objects in it. The model tells us how many objects of one type we can get if we take a specified number of items out of the jar without replacing them. The NumPy random module has a hypergeometric function that simulates this situation.

Time for action – simulating a game show
Imagine a game show where every time the contestants answer a question correctly, they get to pull three balls from a jar and then put them back. Now there is a catch, there is one ball in there that is bad. Every time it is pulled out the contestants lose six points. If however, they manage to get out three of the twenty-five normal balls, they get one point. So, what is going to happen if we have a 100 questions in total? In order to get a solution for this, look at the following section:

1. Initialize the outcomes of the game: Initialize the outcome of the game with the hypergeometric function.
   ```python
 points = numpy.zeros(100)
 outcomes = numpy.random.hypergeometric(25, 1, 3, size=len(points))
   ```

2. Simulate the game: Set the scores based on the outcomes from the previous step.
   ```python
 for i in range(len(points)):
 if outcomes[i] == 3:
 points[i] = points[i - 1] + 1
 elif outcomes[i] == 2:
 points[i] = points[i - 1] - 6
 else:
 print outcomes[i]
   ```

3. Plot the points: Plot the points array with Matplotlib.
   ```python
 plot(numpy.arange(len(points)), points)
 show()
   ```
The following diagram shows how the scoring evolved:

![Diagram showing scoring evolution]

**What just happened?**

We simulated a game show using the `hypergeometric` function from the NumPy `random` module. The game scoring depends on how many good and how many bad balls are pulled out of a jar in each session.

**Continuous distributions**

Continuous distributions are modeled by the probability density functions (pdf). The probability for a certain interval is determined by integration of the probability density function. The NumPy `random` module has a number of functions that represent continuous distributions—beta, chisquare, exponential, f, gamma, gumbel, laplace, lognormal, logistic, multivariate_normal, noncentral_chisquare, noncentral_f, normal, and others.

**Time for action – drawing a normal distribution**

Random numbers can be generated from a normal distribution and their distribution may be visualized with a histogram. To draw a normal distribution, follow the ensuing steps:

1. **Generate values**: Generate random numbers using the `normal` function from the `random` NumPy module.

   ```python
 N=10000
 normal_values = numpy.random.normal(size=N)
   ```
2. **Draw the histogram and theoretical pdf:** Draw the histogram and theoretical pdf with a center value of 0 and standard deviation of 1. We will use Matplotlib for this purpose.

```python
dummy, bins, dummy = matplotlib.pyplot.hist(normal_values, numpy.sqrt(N), normed=True, lw=1)
sigma = 1
mu = 0
matplotlib.pyplot.plot(bins, 1/(sigma * numpy.sqrt(2 * numpy.pi)) * numpy.exp(- (bins - mu)**2 / (2 * sigma**2)),lw=2)
matplotlib.pyplot.show()
```

In the following diagram, we see the familiar bell curve:

![Bell Curve Diagram](image)

**What just happened?**

We visualized the normal distribution using the `normal` function from the `random` NumPy module. We did this by drawing the bell curve and a histogram of randomly-generated values.

**Lognormal distribution**

A **lognormal distribution** is a distribution of a variable whose natural logarithm is normally distributed. The `lognormal` function of the `random` NumPy module models this distribution.
Time for action – drawing the lognormal distribution

Let's visualize the lognormal distribution and its probability density function with a histogram:

1. **Generate**: Generate random numbers using the `normal` function from the `random` NumPy module.

   ```python
 N=10000
 lognormal_values = numpy.random.lognormal(size=N)
   ```

2. **Draw the histogram and theoretical pdf**: Draw the histogram and theoretical pdf with a center value of 0 and standard deviation of 1. We will use Matplotlib for this purpose:

   ```python
 dummy, bins, dummy = matplotlib.pyplot.hist(lognormal_values, numpy.sqrt(N), normed=True, lw=1)
 sigma = 1
 mu = 0
 x = numpy.linspace(min(bins), max(bins), len(bins))
 pdf = numpy.exp(-(numpy.log(x) - mu)**2 / (2 * sigma**2))/ (x * sigma * numpy.sqrt(2 * numpy.pi))
 matplotlib.pyplot.plot(x, pdf,lw=3)
 matplotlib.pyplot.show()
   ```

The fit of the histogram and theoretical pdf is excellent, as you can see in the following diagram:
What just happened?

We visualized the lognormal distribution using the lognormal function from the random NumPy module. We did this by drawing the curve of the theoretical probability density function and a histogram of randomly-generated values.

Summary

We learned a lot in this chapter about NumPy modules. We covered linear algebra, the Fast Fourier transform, continuous and discrete distributions, and random numbers.

In the next chapter, we shall cover specialized routines. These are functions that you probably would not use often, but are very useful when you do need them.
Peeking Into Special Routines

As NumPy users, we sometimes find ourselves having special needs. Fortunately, NumPy provides for most of our needs. This chapter describes some of the more specialized NumPy functions.

In this chapter we will cover the following topics:

- Sorting and searching
- Special functions
- Financial utilities
- Window functions

Sorting

NumPy has several sorting routines:

- The `sort` function returns a sorted array
- The `lexsort` function performs sorting with a list of keys
- The `argsort` function returns the indices that would sort an array
- The `ndarray` class has a `sort` method that performs in place sorting
- The `msort` function sorts an array along the first axis
- The `sort_complex` function sorts complex numbers by their real part and then their imaginary part
Peeking Into Special Routines

### Time for action – sorting lexically

The NumPy `lexsort` function returns an array of indices corresponding to lexically sorting an array. We need to give the function an array or tuple of sort keys:

1. **Loading the data:** Now for something completely different. Let’s go back to *Chapter 3, Get into Terms with Commonly Used Functions*. In that chapter we used stock price data of AAPL. This is by now pretty old data. We will load the close prices and the always complex dates. In fact, we will need a converter function just for the dates:

   ```python
def datestr2num(s):
 return datetime.datetime.strptime(s, "%d-%m-%Y").toordinal()
def loadtxt(*, delimeter=',', usecols=(1, 6), converters={1:datestr2num}, unpack=True)
```

2. **Sorting lexically:** Sort the names lexicographically with the `lexsort` function. The data is already sorted by date, but we will now sort it by close as well:

   ```python
 indices = numpy.lexsort((dates, closes))
 print "Indices", indices
 print ["%s %s" % (datetime.date.fromordinal(dates[i]), closes[i]) for i in indices]
 ``

 The code prints:

   ```
    '2011-02-23 342.62', '2011-02-24 342.88', '2011-02-03 343.44',
    '2011-02-02 344.32', '2011-02-01 345.03', '2011-02-04 346.5',
    '2011-03-10 346.67', '2011-02-25 348.16', '2011-03-01 349.31',
    '2011-03-02 352.12', '2011-03-09 352.47', '2011-02-28 353.21',
    '2011-02-10 354.54', '2011-02-08 355.2', '2011-03-07 355.36',
    '2011-03-08 355.76', '2011-02-11 356.85', '2011-02-09 358.16',
    '2011-02-17 358.3', '2011-02-14 359.18', '2011-03-03 359.56',
    '2011-02-15 359.9', '2011-03-04 360.0', '2011-02-16 363.13']
   ```

What just happened?

We sorted the close prices of AAPL lexically using the NumPy `lexsort` function. The function returned the indices corresponding with sorting the array.

Have a go hero – trying a different sort order

We sorted using the dates, close price sort order. Try a different order. Generate random numbers using the `random` module we learned about in the previous chapter and sort those using `lexsort`.

[136]
Complex numbers

Complex numbers are numbers that have a real and imaginary part. As you remember from previous chapters, NumPy has special complex datatypes that represent complex numbers by two floating point numbers. These numbers can be sorted using the NumPy `sort_complex` function. This function sorts the real part first and then the imaginary part.

Time for action – sorting complex numbers

We will create an array of complex numbers and sort it:

1. **Generating random complex numbers**: Generate five random numbers for the real part of the complex numbers and five numbers for the imaginary part. Seed the random generator to 42:
   ```python
numpy.random.seed(42)
complex_numbers = numpy.random.random(5) + 1j * numpy.random.random(5)
print "Complex numbers\n", complex_numbers
```

2. **Calling sort_complex on the random numbers**: Call the `sort_complex` function to sort the complex numbers we generated in the previous step:
   ```python
print "Sorted\n", numpy.sort_complex(complex_numbers)
```

The sorted numbers would be:

```
Sorted
[ 0.39342751+0.34955771j  0.40597665+0.77477433j
  0.41516850+0.26221878j  0.86631422+0.74612422j  0.92293095+0.81335691j]
```

What just happened?

We generated random complex numbers and sorted them using the `sort_complex` function.

Pop quiz – generating random numbers

Which NumPy module deals with random numbers?

- Randnum
- random
- randomutil
- rand
Peeking Into Special Routines

Searching

NumPy has several functions that can search through arrays:

- The `argmax` function gives the indices of the maximum values of an array.
- The `nanargmax` function does the same but ignores NaN values.
- The `argmin` and `nanargmin` functions provide similar functionality but pertaining to minimum values.
- The `argwhere` function searches for non-zero values and returns the corresponding indices grouped by element.
- The `searchsorted` function tells you the index in an array where a specified value could be inserted to maintain the sort order. It uses binary search, which is a O(log n) algorithm.
- The `extract` function retrieves values from an array based on a condition.

Time for action – using `searchsorted`

The `searchsorted` function allows us to get the index of a value in a sorted array, where it could be inserted so that the array remains sorted. An example should make this clear:

1. Creating a sorted array: To demonstrate we will need an array that is sorted. Create an array with `arange`, which of course is sorted.

   ```python
   a = numpy.arange(5)
   ```

2. Calling `searchsorted`: Time to call the `searchsorted` function.

   ```python
   indices = numpy.searchsorted(a, [-2, 7])
   print "Indices", indices
   ```

 The indices that should maintain the sort order.

   ```
   Indices [0 5]
   ```

3. Constructing the full array: Let's construct the full array with the `insert` function.

   ```python
   print "The full array", numpy.insert(a, indices, [-2, 7])
   ```

 This gives us the full array:

   ```
   The full array [-2  0  1  2  3  4  7]
   ```

What just happened?

The `searchsorted` function gave us indices 5 and 0 for 7 and -2. With these indices, we would make the array `[-2, 0, 1, 2, 3, 4, 7]` — so the array remains sorted.
Array elements extraction

The NumPy `extract` function allows us to extract items from an array based on a condition.

Time for action – extracting elements from an array

Let's extract the even elements from an array:

1. Create the array with the `arange` function:

   ```python
   a = numpy.arange(7)
   ```

2. Create the condition that selects the even elements:

   ```python
   condition = (a % 2) == 0
   ```

3. Extract the even elements based on our condition with the `extract` function:

   ```python
   print "Even numbers", numpy.extract(condition, a)
   ```

 Giving us the even numbers as required:

   ```plaintext
   Even numbers [0 2 4 6]
   ```

What just happened?

We extracted the even elements from an array based on a Boolean condition with the NumPy `extract` function.

Financial functions

NumPy has a number of financial utilities functions:

- The `fv` function calculates the so called future value
- The `pv` function computes the present value
- The `npv` function returns the net present value
- The `pmt` function computes the payment against loan principal plus interest
- The `irr` function calculates the internal rate of return
- The `mirr` function calculates the modified internal rate of return
- The `nper` function returns the number of periodic payments
- The `rate` function calculates the rate of interest
Time for action – determining future value

The future value depends on four parameters—the interest rate, the number of periods, a periodic payment, and the present value. In this tutorial, let’s take an interest rate of 3 percent, quarterly payment of 10 for 5 years and present value of 1000:

1. Calculating the future value: Call the \(f_v \) function with the appropriate values:

 \[
 \text{print "Future value", numpy.fv(0.03/4, 5 * 4, -10, -1000)}
 \]

 The future value is:

 Future value 1376.09633204

What just happened?

We calculated the future value using the NumPy \(f_v \) function starting with a present value of 1000, interest rate of 3 percent and quarterly payments of 10 for 5 years.

Present value

The NumPy \(p_v \) function can calculate the present value. This function mirrors the \(f_v \) function and requires the interest rate, number of periods, and the periodic payment as well, but here we start with the future value.

Time for action – getting the present value

Let’s reverse—compute the present value with numbers from the previous tutorial:

1. Calculating the present value: Plug in the figures from the previous Time for action tutorial.

 \[
 \text{print "Present value", numpy.pv(0.03/4, 5 * 4, -10, 1376.09633204)}
 \]

 This gives us 1000 as expected apart from a tiny numerical error. Actually it is not an error but a representation issue. We are dealing here with outgoing cash flow, that is the reason for the negative value:

 Present value -999.999999999

What just happened?

We did the reverse computation of the previous Time for action tutorial to get the present value from the future value. This was done with the NumPy \(p_v \) function.
Net present value

The NumPy `npv` function returns the net present value of cash flows. The function requires two arguments, the rate and an array representing the cash flows.

Time for action – calculating the net present value

We will calculate the net present value for a random generated cash flow series:

1. Generate the random cash flow series: Generate five random values for the cash flow series. Insert -100 as start value.
   ```python
   cashflows = numpy.random.randint(100, size=5)
   cashflows = numpy.insert(cashflows, 0, -100)
   print "Cashflows", cashflows
   ``
   The cash flows would be:
   ```
 Cashflows [-100 38 48 90 17 36]
   ```

2. Calculating net present value: Call the `npv` function to calculate the net present value from the cash flow series we generated in the previous step. Use a rate of 3 percent.
   ```python
 print "Net present value", numpy.npv(0.03, cashflows)
 ``
 The net present value:
   ```
   Net present value 107.435682443
   ```

What just happened?

We computed the net present value from a random generated cash flow series with the NumPy `npv` function.

Internal rate of return

The NumPy `irr` function returns the internal rate of return for a given cash flow series.
Peeking Into Special Routines

Time for action – determining the internal rate of return

Let's reuse the cash flow series from the previous *Time for action* tutorial:

1. **Calling the irr function**: Call the `irr` function with the cash flow series from the previous *Time for action* tutorial:
   ```python
   print "Internal rate of return", numpy.irr([-100, 38, 48, 90, 17, 36])
   ``
   The internal rate of return:
   ```
 Internal rate of return 0.373420226888
   ```

**What just happened?**

We calculated the internal rate of return from the cash flow series of the previous *Time for action* tutorial. The value was given by the NumPy `irr` function.

**Periodic payments**

The NumPy `pmt` function allows you to compute periodic payments for a loan based on an interest rate and the number of periodic payments.

**Time for action – calculating the periodic payments**

Suppose you have a loan of 1 million with interest rate of 10 percent. You have 30 years to pay the loan back. How much do you have to pay each month? Let's find out:

1. Call the `pmt` function with the values mentioned above:
   ```python
 print "Payment", numpy.pmt(0.01/12, 12 * 30, 10000000)
 ``
 The monthly payment would be:
   ```
   Payment -32163.9520447
   ```

What just happened?

We calculated the monthly payment for a loan of 1 million at an annual rate of 10 percent. Given that we have 30 years to repay the loan, the `pmt` function tells us that we need to pay 32163.9520447 per month.
Number of payments

The NumPy \texttt{nper} function tells us how many periodic payments are necessary to pay off a loan. The required parameters are the interest rate of the loan, the fixed amount periodic payment, and the present value.

Time for action – determining the number of periodic payments

Consider a loan of 9000 at a rate of 10 percent with fixed monthly payments of 100:

1. **Getting the number of payments**: Find out how many payments are required with the NumPy \texttt{nper} function:

   ```python
   print "Number of payments", numpy.nper(0.10/12, -100, 9000)
   
   The number of payments would be:
   
   Number of payments 167.047511801
   ```

What just happened?

We determined the number of payments needed to pay off a loan of 9000 with an interest rate of 10 percent and monthly payments of 100. The number of payments returned was 167.

Interest rate

The NumPy \texttt{rate} function calculates the interest rate given the number of periodic payments, the payment amount or amounts, the present value, and future value.

Time for action – figuring out the rate

Let’s take the values from the previous *Time for action* tutorial and reverse compute the interest rate from the other parameters:

1. **Determining the rate**: Fill in the numbers from the previous *Time for action* tutorial:

   ```python
   print "Interest rate", 12 * numpy.rate(167, -100, 9000, 0)
   
   The interest rate is approximately 10 percent as expected:
   
   Interest rate 0.0999756420664
   ```
Peeking Into Special Routines

What just happened?
We used the NumPy rate function and the values from the previous Time for action tutorial to compute the interest rate of the loan. Ignoring the rounding errors, we got the initial 10 percent we started with.

Window functions
Window functions are mathematical functions commonly used in signal processing. These functions are defined to be 0 outside a specified domain. NumPy has a number of window functions: bartlett, blackman, hamming, hanning, and kaiser. An example of the hanning function can be found in Chapter 4, Convenience Functions for Your Convenience.

Time for action – plotting the Bartlett window
The Bartlett window is a triangular smoothing window:

1. Calculating the Bartlett window: Call the NumPy bartlett function:
   ```python
   window = numpy.bartlett(42)
   ```

2. Plotting the Bartlett window: Plotting is easy with Matplotlib:
   ```python
   plot(window)
   show()
   ```

Here is the Bartlett window, which is triangular, as expected:
What just happened?
We plotted the Bartlett window with the NumPy `bartlett` function.

Blackman window
The Blackman window is formed by summing the first three terms of cosines:

\[w(n) = 0.42 - 0.5\cos(2\pi n/M) + 0.08\cos(4\pi n/M) \]

The NumPy `blackman` function returns the Blackman window. The only parameter is the number of points in the output window. If this number is 0 or less than 0, an empty array is returned.

Time for action – smoothing stock prices with the Blackman window
Let’s smooth the close prices from the small AAPL stock prices datafile:

1. **Smoothing with the Blackman window**: Load the data into a NumPy array. Call the NumPy `blackman` function to form a window and then use this window to smooth the price signal:
   ```python
closes = numpy.loadtxt('AAPL.csv', delimiter=',', usecols=(6,), converters={1:datestr2num}, unpack=True)
N = int(sys.argv[1])
window = numpy.blackman(N)
smoothed = numpy.convolve(window/window.sum(), closes, mode='same')
```

2. **Plotting the Blackman window**: Plot the smoothed prices with Matplotlib. We will omit in this example the first five data points and the last five data points. The reason for this is that there is a strong boundary effect:
   ```python
   plot(smoothed[N:-N], lw=2, label="smoothed")
   plot(closes[N:-N], label="closes")
   legend(loc='best')
   show()
   ```
The closing prices of AAPL smoothed with the Blackman window should appear as follows:

![Graph](image)

What just happened?

We plotted the closing price of AAPL from our sample data file that was smoothed using the Blackman window with the NumPy `blackman` function.

Hamming window

The Hamming window is formed by a weighted cosine. The formula is as follows:

\[
 w(n) = 0.54 + 0.46 \cos \left(\frac{2\pi n}{M-1} \right) \quad 0 \leq n \leq M-1
\]

The NumPy `hamming` function returns the Hamming window. The only parameter is the number of points in the output window. If this number is 0 or less than 0, an empty array is returned.
Time for action – plotting the Hamming window

Let’s plot the Hamming window:

1. **Calculating the Hamming window**: Call the NumPy `hamming` function.

   ```python
   window = numpy.hamming(42)
   ```

2. **Plotting the Hamming window**: Plot the window with Matplotlib.

   ```python
   plot(window)
   show()
   ```

The Hamming window plot is as follows:

![Hamming Window Plot](image)

What just happened?

We plotted the Hamming window with the NumPy `hamming` function
Kaiser window

The Kaiser window is formed by the Bessel function. The formula is as follows:

\[w(n) = I_0 \left(\beta \sqrt{1 - \frac{4n^2}{(M-1)^2}} \right) / I_0(\beta) \]

Here \(I_0 \) is the zero order Bessel function. The NumPy \texttt{kaiser} function returns the Kaiser window. The first parameter is the number of points in the output window. If this number is 0 or less than 0, an empty array is returned. The second parameter is the beta.

Time for action – plotting the Kaiser window

Let’s plot the Kaiser window:

1. **Calculating the Kaiser window**: Call the NumPy \texttt{kaiser} function.
   ```python
   window = numpy.kaiser(42, 14)
   ```

2. **Plotting the Kaiser window**: Plot the window with Matplotlib.
   ```python
   plot(window)
   show()
   ```

The Kaiser window would appear as follows:
What just happened?

We plotted the Hamming window with the NumPy kaiser function.

Special mathematical functions

We will end this chapter with some special mathematical functions. First, the modified Bessel function of the first kind 0th order is represented in NumPy by \(\text{i0} \). Second, the sinc function is represented in NumPy by a function with the same name.

Time for action – plotting the modified Bessel function

Let's see what the modified Bessel function of the first kind 0th order looks like:

1. **Calculate the x values**: Compute evenly spaced values with the NumPy linspace function.

   ```python
   x = numpy.linspace(0, 4, 100)
   ```

2. **Calculate the function values**: Call the NumPy i0 function.

   ```python
   vals = numpy.i0(x)
   ```

3. **Plot the function**: Plot the modified Bessel function with Matplotlib:

   ```python
   plot(x, vals)
   show()
   ```

The modified Bessel function would have the following output:
Peeking Into Special Routines

What just happened?

We plotted the modified Bessel function of the first kind 0th order with the NumPy `i0` function.

Sinc

The sinc function is widely used in mathematics and signal processing. NumPy has a function with the same name.

Time for action - plotting the sinc function

We will plot the sinc function:

1. **Compute the x values**: Compute evenly spaced values with the NumPy `linspace` function.

   ```python
   x = numpy.linspace(0, 4, 100)
   ```

2. **Compute the function values**: Call the NumPy `sinc` function.

   ```python
   vals = numpy.sinc(x)
   ```

3. **Plot the function**: Plot the sinc function with Matplotlib.

   ```python
   plot(x, vals)
   show()
   ```

The sinc function would have the following output:
What just happened?

We plotted the well known sinc function with the NumPy sinc function.

Summary

This was a special chapter covering some of the more special NumPy topics. We covered sorting and searching, special functions, financial utilities, and window functions.

The next chapter will be about the very important subject of testing.
Some programmers test only in production. If you are not one of them you’re probably familiar with the concept of unit testing. Unit tests are automated tests written by a programmer to test his or her code. These tests could, for example, test a function or part of a function in isolation. Only a small unit of code is tested by each test. The benefits are increased confidence in the quality of the code, reproducible tests, and as a side effect, more clear code.

Python has good support for unit testing. Additionally, NumPy adds the numpy.testing package to that for NumPy code unit testing.

This chapter’s topics include:

- Unit testing
- Asserts
- Floating point precision

Assert functions

The NumPy testing package has a number of utility functions that test whether a precondition is true or not:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>assert_almost_equal</td>
<td>Raises an exception if two numbers are not equal up to a specified precision</td>
</tr>
<tr>
<td>assert_approx_equal</td>
<td>Raises an exception if two numbers are not equal up to a certain significance</td>
</tr>
</tbody>
</table>
Assure Quality with Testing

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>assert_array_almost_equal</td>
<td>Raises an exception if two arrays are not equal up to a specified precision</td>
</tr>
<tr>
<td>assert_array_equal</td>
<td>Raises an exception if two arrays are not equal</td>
</tr>
<tr>
<td>assert_array_less</td>
<td>Raises an exception if two arrays do not have the same shape and the elements of the first array are strictly less than the elements of the second array</td>
</tr>
<tr>
<td>assert_equal</td>
<td>Raises an exception if two objects are not equal</td>
</tr>
<tr>
<td>assert_raises</td>
<td>Fails if a specified exception is not raised by a callable invoked with defined arguments</td>
</tr>
<tr>
<td>assert_warns</td>
<td>Fails if a specified warning is not thrown</td>
</tr>
<tr>
<td>assert_string_equal</td>
<td>Asserts that two strings are equal</td>
</tr>
</tbody>
</table>

Time for action – asserting almost equal

Imagine that you have two numbers that are almost equal. Let’s use the `assert_array_almost_equal` function to check whether they are equal:

1. Call the function with low precision (up to 7 decimal places):
   ```
   print "Decimal 6", numpy.testing.assert_almost_equal(0.123456789, 0.123456780, decimal=7)
   ```
 Note that no exception is raised, as you can see in the following result:
   ```
   Decimal 6 None
   ```

2. Call the function with high precision (up to 8 decimal places):
   ```
   print "Decimal 7", numpy.testing.assert_almost_equal(0.123456789, 0.123456780, decimal=8)
   ```
 The result is:
   ```
   Decimal 7
   Traceback (most recent call last):
   ...
   raise AssertionError(msg)
   AssertionError:
   Arrays are not almost equal
   ACTUAL: 0.123456789
   DESIRED: 0.12345678
   ```
What just happened?

We used the `assert_almost_equal` function from the NumPy testing package to check whether 0.123456789 and 0.123456780 are equal for different decimal precision.

Pop quiz – specifying decimal precision

1. Which parameter of the `assert_almost_equal` function specifies the decimal precision?
 - a. decimal
 - b. precision
 - c. tolerance
 - d. significant

Approximately equal arrays

The `assert_approx_equal` function raises an exception if two numbers are not equal up to a certain number of significant digits. The function result is an exception that is triggered by the condition:

\[
\text{abs(actual - expected)} >= 10^{-(\text{significant} - 1)}
\]

Time for action – asserting approximately equal

Let’s take the numbers from the previous Time for action tutorial and let the `assert_approx_equal` function work on them:

1. Call the function with low significance:
   ```python
   print "Significance 8", numpy.testing.assert_approx_equal(0.123456789, 0.123456780, significant=8)
   
   The result is:
   
   Significance 8 None
   ```

2. Call the function with high significance:
   ```python
   print "Significance 9", 
   numpy.testing.assert_approx_equal(0.123456789, 0.123456780, significant=9)
   ```
An exception is thrown:

```
Significance 9
Traceback (most recent call last):
...
    raise AssertionError(msg)
AssertionError:
Items are not equal to 9 significant digits:
  ACTUAL: 0.123456789
  DESIRED: 0.12345678
```

What just happened?

We used the `assert_approx_equal` function from the NumPy testing package to check whether 0.123456789 and 0.123456780 are equal for different decimal precision.

Almost equal arrays

The `assert_array_almost_equal` function raises an exception if two arrays are not equal up to a specified precision. The function checks whether the two arrays have the same shape. Then, the values of the arrays are compared element-by-element with:

```
|expected - actual| < 0.5 \times 10^{-\text{decimal}}
```

Time for action – asserting arrays almost equal

Let's form arrays with the values from the previous *Time for action* tutorial by adding a 0 to each array:

1. **Calling the function with lower precision:**

   ```
   print "Decimal 8", numpy.testing.assert_array_almost_equal([0,
   0.123456789], [0, 0.123456780], decimal=8)
   The result is:
   Decimal 8 None
   ```

2. **Calling the function with higher precision:**

   ```
   print "Decimal 9", numpy.testing.assert_array_almost_equal([0,
   0.123456789], [0, 0.123456780], decimal=9)
   An exception is thrown:
   Decimal 9
   Traceback (most recent call last):
   ...
assert_array_compare
    raise AssertionError(msg)
AssertionError:
Arrays are not almost equal

(mismatch 50.0%)
x: array([ 0.        ,  0.12345679])
y: array([ 0.        ,  0.12345678])

What just happened?
We compared two arrays with the NumPy array_almost_equal function.

Have a go hero – comparing array with different shapes
Use the NumPy array_almost_equal function to compare two arrays with different shapes.

Equal arrays
The assert_array_equal function raises an exception if two arrays are not equal. The shape of the arrays must have to be equal and the elements of each array must be equal. NaNs are allowed in the arrays. Alternatively, arrays can be compared with the array_allclose function. This function has the parameters atol (absolute tolerance) and rtol (relative tolerance). For two arrays a and b, these parameters satisfy the equation:

\[ |a - b| \leq (atol + rtol * |b|) \]

Time for action – comparing arrays
Let’s compare two arrays with the functions we just mentioned. We will reuse the arrays from the previous Time for action tutorial and add a NaN to them:

1. Call the array_allclose function:

    print "Pass", numpy.testing.assert_allclose([0, 0.123456789, numpy.nan], [0, 0.123456780, numpy.nan], rtol=1e-7, atol=0)

    The result is:
    Pass None
2. Call the `array_equal` function:

```python
print "Fail", numpy.testing.assert_array_equal([0, 0.123456789, numpy.nan], [0, 0.123456780, numpy.nan])
```

An exception is thrown:

```
Fail
Traceback (most recent call last):
...
assert_array_compare
 raise AssertionError(msg)
AssertionError:
Arrays are not equal

(mismatch 50.0%)
x: array([0. , 0.12345679, nan])
y: array([0. , 0.12345678, nan])
```

**What just happened?**

We compared two arrays with the `array_allclose` function and the `array_equal` function.

### Ordering arrays

The `assert_array_less` function raises an exception if two arrays do not have the same shape and the elements of the first array are strictly less than the elements of the second array.

**Time for action – checking the array order**

Let’s check whether one array is strictly greater than another array:

1. Call the `assert_array_less` function with two strictly ordered arrays

```python
print "Pass", numpy.testing.assert_array_less([0, 0.123456789, numpy.nan], [1, 0.23456780, numpy.nan])
```

The result:

```
Pass None
```

2. Failing test: Call the `assert_array_less` function:

```python
print "Fail", numpy.testing.assert_array_less([0, 0.123456789, numpy.nan], [0, 0.123456780, numpy.nan])
```
An exception is thrown:

Fail
Traceback (most recent call last):
...
    raise AssertionError(msg)
AssertionError:
Arrays are not less-ordered

(mismatch 100.0%)
x: array([ 0., 0.12345679, nan])
y: array([ 0., 0.12345678, nan])

What just happened?
We checked the ordering of two arrays with the assert_array_less function.

Objects comparison

The assert_equal function raises an exception if two objects are not equal. The objects do not have to be NumPy arrays, they can also be lists, tuples, or dictionaries.

Time for action – comparing objects

Suppose you need to compare two tuples. We can use the assert_equal function to do that:

1. Call the assert_equal function:

   print "Equal?", numpy.testing.assert_equal((1, 2), (1, 3))

   An exception is thrown:

   Equal?
   Traceback (most recent call last):
   ...
       raise AssertionError(msg)
   AssertionError:
   Items are not equal:
   item=1

   ACTUAL: 2
   DESIRED: 3
**What just happened?**

We compared two tuples with the `assert_equal` function—an exception was raised because the tuples were not equal to each other.

**String comparison**

The `assert_string_equal` function asserts that two strings are equal. If the test fails an exception is thrown and the difference between the strings is shown. The case of the string characters matters.

**Time for action – comparing strings**

Let's compare strings. Both strings are the word "NumPy":

1. Call the `assert_string_equal` function to compare a string with itself. This test, of course, should pass:
   ```
 print "Pass", numpy.testing.assert_string_equal("NumPy", "NumPy")
   ```
   The test passes:
   ```
 Pass None
   ```

2. Call the `assert_string_equal` function to compare a string with another string with the same letters but different casing. This test should throw an exception:
   ```
 print "Fail", numpy.testing.assert_string_equal("NumPy", "Numpy")
   ```
   An exception is thrown:
   ```
 Fail
 Traceback (most recent call last):
 ...
 raise AssertionError(msg)
 AssertionError: Differences in strings:
 - NumPy? ^
 + Numpy? ^
   ```

**What just happened?**

We compared two strings with the `assert_string_equal` function. The test threw an exception when the casing did not match.
Floating point comparisons

The assert_array_almost_equal_nulp and assert_array_max_ulp NumPy functions provide consistent floating point comparisons. ULP stands for Unit of Least Precision of floating point numbers. According to the IEEE 754 specification, a half ULP precision is required for elementary arithmetic operations.

Machine epsilon is the largest relative rounding error in floating point arithmetic. Machine epsilon is equal to ULP relative to 1. The NumPy finfo function allows us to determine the machine epsilon.

**Time for action – comparing with assert_array_almost_equal_nulp**

Let’s see the assert_array_almost_equal_nulp function in action:

1. Determine the machine epsilon with the finfo function:
   ```python
eps = numpy.finfo(float).eps
print "EPS", eps
```
   The epsilon would be:
   ```
 EPS 2.22044604925e-16
   ```

2. Compare two almost equal floats: Compare 1.0 with 1 + epsilon using the assert_almost_equal_nulp function. Do the same for 1 + 2 * epsilon:
   ```python
 print "1",
 numpy.testing.assert_array_almost_equal_nulp(1.0, 1.0 + eps)
 print "2",
 numpy.testing.assert_array_almost_equal_nulp(1.0, 1.0 + 2 * eps)
   ```
   The result:
   ```
 1 None
 2
 Traceback (most recent call last):
 ...
 assert_array_almost_equal_nulp
 raise AssertionError(msg)
 AssertionError: X and Y are not equal to 1 ULP (max is 2)
   ```
Assure Quality with Testing

What just happened?
We determined the machine epsilon with the `finfo` function. We then compared 1.0 with 1 + epsilon with the `assert_almost_equal_nulp` function. This test passed, however adding a little bit more resulted in an exception.

Comparison of floats with more ULPs
The `assert_array_max_ulp` function allows you to specify an upper bound for the number ULPs you would allow. The `maxulp` parameter accepts an integer value for the limit. The value of this parameter is 1 by default.

Time for action – comparing using maxulp of 2
Let’s do the same comparisons as in the previous Time for action tutorial, but specify a `maxulp` of 2 when necessary:

1. Determine the machine epsilon with the `finfo` function:
   ```python
eps = numpy.finfo(float).eps
print "EPS", eps
```
   The epsilon would be:
   ```
 EPS 2.22044604925e-16
   ```

2. Do the comparisons as done in the previous Time for action tutorial, but use the `assert_array_max_ulp` function with the appropriate `maxulp` value:
   ```python
 print "1", numpy.testing.assert_array_max_ulp(1.0, 1.0 + eps)
 print "2", numpy.testing.assert_array_max_ulp(1.0, 1 + 2 * eps, maxulp=2)
   ```
   The output:
   ```
 1 1.0
 2 2.0
   ```

What just happened?
We compared the same values as the previous Time for action tutorial, but specified a `maxulp` of 2 in the second comparison. Using the `assert_array_max_ulp` function with the appropriate `maxulp` value, these tests passed with a return value of the number of ULPs.
Summary

We learned about testing and NumPy testing utilities in this chapter. We covered unit testing, assert functions and floating point precision.

The topic of the next chapter is Matplotlib—the Python scientific visualization and graphing library.
Matplotlib is a very useful python plotting library. It integrates nicely with NumPy but is a separate open source project. You can find a gallery of beautiful examples at http://matplotlib.sourceforge.net/gallery.html.

Matplotlib also has utility functions to download and manipulate data from Yahoo Finance. We will see several examples of stock charts.

This chapter features extended coverage of:

- Simple plots
- Subplots
- Histograms
- Plot Customization
- Logplots

**Simple plots**

The matplotlib.pyplot package contains functionality for simple plots. It is important to remember that each subsequent function call changes the state of the current plot. Eventually we will want to either save the plot in a file or display it with the show function.
Time for action – plotting a polynomial function

To illustrate how plotting works, let’s display some polynomial graphs. We will use the NumPy polynomial function `poly1d` to create a polynomial.

1. **Create the polynomial**: Take the standard input values as polynomial coefficients. Use the NumPy `poly1d` function to create a polynomial.
   ```python
 func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))
   ```

2. **Create the x values**: Create the x values with the NumPy `linspace` function. Use the range -10 to 10 and create 30 even spaced values.
   ```python
 x = numpy.linspace(-10, 10, 30)
   ```

3. **Calculate the polynomial values**: Calculate the polynomial values using the polynomial that we created in the first step.
   ```python
 y = func(x)
   ```

4. **Call the plot function**: Call the `plot` function, this does not immediately display the graph.
   ```python
 pyplot.plot(x, y)
   ```

5. **Add a label to the x axis**: Add a label to the x axis with `xlabel` function.
   ```python
 pyplot.xlabel('x')
   ```

6. **Add a label to the y axis**: Add a label to the y axis with `ylabel` function.
   ```python
 pyplot.ylabel('y(x)')
   ```

7. **Display the plot on the screen**: Call the `show` function to display the graph.
   ```python
 pyplot.show()
   ```

Here is a plot with polynomial coefficients 1, 2, 3, and 4:
What just happened?

We displayed a graph of a polynomial on our screen. We added labels to the x and y axis.

Pop quiz – doing the thing

1. What does the plot function do?
   a. It displays two-dimensional plots on screen
   b. It saves an image of a two-dimensional plot in a file
   c. It does both a and b...
   d. It does neither a, b, or c

Plot format string

The plot function accepts an unlimited number of arguments. In the previous section we gave it two arrays as arguments. We could also specify the line color and style with an optional format string. By default it is a solid blue line denoted as b-, but you can specify a different color and style such as red dashes.

Time for action – plotting a polynomial and its derivative

Let’s plot a polynomial and its first order derivative using the derive function with m as 1. We already did the first part in the previous Time for action tutorial. We want to have two different line styles to be able to discern what is what.

1. Differentiate: Create and differentiate the polynomial.
   ```python
 func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))
 func1 = func.deriv(m=1)
 x = numpy.linspace(-10, 10, 30)
 y = func(x)
 y1 = func1(x)
   ```

2. Plot the polynomial and its derivative: Plot the polynomial and its derivative in two different styles: red circles and green dashes. You cannot see the colors in a print copy of this book so you will have to try it out for yourself.
   ```python
 pyplot.plot(x, y, 'ro', x, y1, 'g--')
 pyplot.xlabel('x')
 pyplot.ylabel('y')
 pyplot.show()
   ```
The graph again with polynomial coefficients 1, 2, 3, and 4:

What just happened?
We plotted a polynomial and its derivative using two different line styles and one call of the plot function.

Subplots
At a certain point you will have too many lines in one plot. Still you would like to have everything grouped together. We can achieve this with the subplot function.

Time for action – plotting a polynomial and its derivatives
Let’s plot a polynomial and its first and second derivative. We will make three subplots for the sake of clarity:

1. Create the polynomial and its derivatives: Create a polynomial and its derivatives using the following code.
   ```python
 func = numpy.poly1d(numpy.array(sys.argv[1:]).astype(float))
 x = numpy.linspace(-10, 10, 30)
 y = func(x)
 func1 = func.deriv(m=1)
   ```
2. **Create the first subplot:** Create the first subplot of the polynomial with the `subplot` function. The first parameter of this function is the number of rows, the second parameter is the number of columns, and the third parameter is an index number starting with 1. Alternatively, you can combine the three parameters into a single number such as 311. The subplots will be organized in 3 rows and 1 column. Give the subplot the title "Polynomial". Make a solid red line.

```python
pyplot.subplot(311)
pplot.plot(x, y, 'r-')
pplot.title("Polynomial")
```

3. **Create the second subplot:** Create the third subplot of the first derivative with the `subplot` function. Give the subplot the title "First Derivative". Use a line of blue triangles.

```python
pyplot.subplot(312)
pplot.plot(x, y1, 'b^')
pplot.title("First Derivative")
```

4. **Create the third subplot:** Create the second subplot of the second derivative with the `subplot` function. Give the subplot the title "Second Derivative". Use a line of green circles.

```python
pyplot.subplot(313)
pplot.plot(x, y2, 'go')
pplot.title("Second Derivative")
pplot.xlabel('x')
pplot.ylabel('y')
pplot.show()
```
The three subplots with polynomial coefficients 1, 2, 3, and 4:

![Polynomial plots](image)

**What just happened?**

We plotted a polynomial and its first and second derivative using three different line styles and three subplots in 3 rows and 1 column.

**Finance**

Matplotlib can help us monitor our stock investments. The `matplotlib.finance` package has utilities with which we can download stock quotes from Yahoo Finance ([http://finance.yahoo.com/](http://finance.yahoo.com/)). The data can then be plotted as candlesticks.
Time for action – plotting a year’s worth of stock quotes

We can plot a year’s worth of stock quotes data with the `matplotlib.finance` package. This will require a connection to Yahoo Finance, which will be the data source.

1. **Determine start date**: Determine the start date by subtracting 1 year from today.
   ```python
today = date.today()
start = (today.year - 1, today.month, today.day)
```

2. **Create locators**: We need to create so-called locators. These objects from the `matplotlib.dates` package are needed to locate months and days on the x-axis.
   ```python
 alldays = DayLocator()
 months = MonthLocator()
   ```

3. **Create a formatter**: Create a date formatter to format the dates on the x-axis. This formatter will create a string containing the short name of a month and the year.
   ```python
 month_formatter = DateFormatter("%b %Y")
   ```

4. **Download the quotes**: Download the stock quote data from Yahoo finance with the code below:
   ```python
 quotes = quotes_historical_yahoo(sys.argv[1], start, today)
   ```

5. **Create a figure**: Create a Matplotlib figure object—this is a top level container for plot components.
   ```python
 fig = pyplot.figure()
   ```

6. **Add a subplot**: Add a subplot to the figure.
   ```python
 ax = fig.add_subplot(111)
   ```

7. **Set the major locator**: Set the major locator on the x axis to the months locator. This locator is responsible for the big ticks on the x-axis.
   ```python
 ax.xaxis.set_major_locator(months)
   ```

8. **Set the minor locator**: Set the minor locator on the x axis to the days locator. This locator is responsible for the small ticks on the x-axis.
   ```python
 ax.xaxis.set_minor_locator(alldays)
   ```

9. **Set the major formatter**: Set the major formatter on the x axis to the months formatter. This formatter is responsible for the labels of the big ticks on the x axis.
   ```python
 ax.xaxis.set_major_formatter(month_formatter)
   ```
10. **Create the candlesticks**: A function in the `matplotlib.finance` package allows us to display candlesticks. Create the candlesticks using the quotes data. It is possible to specify the width of the candlesticks. For now use the default value.

```python
candlestick(ax, quotes)
```

11. **Format the x axis labels as dates**: Format the labels on the x-axis as dates. This should rotate the labels on the x axis, so that they fit better.

```python
fig.autofmt_xdate()
pyplot.show()
```

The candlestick chart for DISH (Dish Network Corp.) would appear as follows:

![Candlestick Chart](image)

**What just happened?**

We downloaded a year’s worth of data from Yahoo Finance. We charted this data using candlesticks.

**Histograms**

Histograms visualize the distribution of numerical data. Matplotlib has the handy `hist` function that graphs histograms. The `hist` function has two arguments—the array containing the data and the number of bars.
Time for action – charting stock price distributions

Let’s chart the stock price distribution of quotes from Yahoo Finance.

1. **Download the data:** Download the data going back 1 year.
   
   ```python
 today = date.today()
 start = (today.year - 1, today.month, today.day)
 quotes = quotes_historical_yahoo(sys.argv[1], start, today)
   ```

2. **Extract the close price:** The quotes data in the previous step is stored in a Python list. Convert this to a NumPy array and extract the close prices.
   
   ```python
 quotes = numpy.array(quotes)
 close = quotes.T[4]
   ```

3. **Draw the histogram:** Draw the histogram with a reasonable number of bars.
   
   ```python
 pyplot.hist(close, numpy.sqrt(len(close)))
 pyplot.show()
   ```

The histogram for DISH would appear as follows:

![Histogram](image)

**What just happened?**

We charted the stock price distribution of DISH as histogram.
Have a go hero – drawing a bell curve

Overlay a bell curve using the average price and standard deviation. This is, of course, only an exercise.

Logarithmic plots

Logarithmic plots are useful when the data has a wide range of values. Matplotlib has the functions `semilogx` (logarithmic x axis), `semilogy` (logarithmic y axis), and `loglog` (x and y axis logarithmic).

Time for action – plotting stock volume

Stock volume varies a lot, so let’s plot it on a logarithmic scale. First we need to download historical data from Yahoo Finance, extract the dates and volume, create locators and a date formatter, create the figure, and add it a subplot. We already went through these steps in the previous Time for action tutorial, so we will skip them here.

1. **Logarithmic plot**: Plot the volume using a logarithmic scale.

   ```python
 pyplot.semilogy(dates, volume)
   ```

   Now set the locators and format the x-axis as dates. Instructions for these steps can be found in the previous Time for action tutorial as well. The stock volume using a logarithmic scale for DISH would appear as follows:
**What just happened?**

We plotted stock volume using a logarithmic scale.

**Scatter plots**

A scatter plot displays values for two numerical variables in the same data set. The Matplotlib `scatter` function creates a scatter plot. Optionally: we can specify color and size of the data points in the plot as well as alpha transparency.

**Time for action – plotting price and volume returns with scatter plot**

We can easily make a scatter plot of the stock price and volume returns. Again let’s download the necessary data from Yahoo Finance.

1. **Extract the close price and volume**: The quotes data in the previous step is stored in a Python list. Convert this to a NumPy array and extract the close and volume values.
   
   ```python
dates = quotes.T[4]
volume = quotes.T[5]
```

2. **Calculate the returns**: Calculate the close price and volume returns.
   
   ```python
 ret = numpy.diff(close)/close[:-1]
 volchange = numpy.diff(volume)/volume[:-1]
   ```

3. **Create a figure**: Create a Matplotlib figure object.
   
   ```python
 fig = pyplot.figure()
   ```

4. **Add a subplot**: Add a subplot to the figure.
   
   ```python
 ax = fig.add_subplot(111)
   ```

5. **Create the scatter plot**: Create the scatter plot with the color of the data points linked to the close return, and the size linked to the volume change.
   
   ```python
 ax.scatter(ret, volchange, c=ret * 100,
 s=volchange * 100, alpha=0.5)
   ```

6. **Title and grid**: Set the title of the plot and put a grid on it.
   
   ```python
 ax.set_title('Close and volume returns')
 ax.grid(True)
 pyplot.show()
   ```

```python

```
The scatter plot for DISH will appear as follows:

![Scatter Plot](image)

**What just happened?**

We made a scatter plot of the close price and volume returns for DISH.

**Fill between**

The `fill_between` function fills a region of a plot with a specified color. We can also choose an alpha channel value. The function also has a `where` parameter so that we can shade a region based on a condition.

**Time for action – shading plot regions based on a condition**

Imagine that you want to shade the region of a stock chart, where the closing price is below average with different color than when it is above the mean. The `fill_between` function is the best choice for the job. We will again omit the steps of downloading historical data going back 1 year, extracting dates and close prices, creating locators and date formatter.

1. **Create a figure**: Create a Matplotlib figure object.
   ```python
 fig = pyplot.figure()
   ```
2. **Add a subplot**: Add a subplot to the figure.
   
   ```python
 ax = fig.add_subplot(111)
   ```

3. **Plot the closing price**: Plot the closing price.
   
   ```python
 ax.plot(dates, close)
   ```

4. **Call fill_between**: Shade the regions of the plot below the closing price using different colors depending whether the values are below or above the average price.
   
   ```python
 pyplot.fill_between(dates, close.min(), close,
 where=close>close.mean(), facecolor="green", alpha=0.4)
 pyplot.fill_between(dates, close.min(), close,
 where=close<close.mean(), facecolor="red", alpha=0.4)
   ```

Now we can finish the plot by setting locators and formatting the x-axis values as dates. The stock price using conditional shading for DISH:

![Stock Price Plot](image)

**What just happened?**

We shaded the region of a stock chart, where the closing price is below average with different color than when it is above the mean.
Legend and annotations

Legends and annotations are essential for good plots. We can create transparent legends with the `legend` function and let Matplotlib figure out where to place them. Also with the `annotate` function we can put annotations very accurately on a plot. There are a large number of annotation and arrow styles.

Time for action – using legend and annotations

In Chapter 3, *Get Into Terms with Commonly Used Functions* we learned how to calculate the exponential moving average of stock prices. We will plot the close price of a stock and three of its exponential moving averages. To clarify the plot, we will add a legend. Also, we will indicate crossovers of two of the averages with annotations. Some steps are again omitted to avoid repetition.

1. **Calculate and plot the exponential moving averages:** Go back to Chapter 3, *Get into Terms with Commonly Used Functions* if needed and review the exponential moving average algorithm. Calculate and plot the exponential moving averages of 9, 12 and 15 periods.

   ```python
 emas = []
 for i in range(9, 18, 3):
 weights = numpy.exp(numpy.linspace(-1., 0., i))
 weights /= weights.sum()

 ema = numpy.convolve(weights, close)[i-1:-i+1]
 idx = (i - 6)/3
 ax.plot(dates[i-1:], ema, lw=idx, label="EMA(%s)" % (i))

 data = numpy.column_stack((dates[i-1:], ema))
 emas.append(numpy.rec.fromrecords(
 data, names=["dates", "ema"]))

 Notice that the plot function call needs a label for the legend. We stored the moving averages in record arrays for the next step.

2. **Find the crossover points:** Let's find the crossover points of the first two moving averages.

   ```python
   first = emas[0]["ema"].flatten()
   second = emas[1]["ema"].flatten()
   bools = numpy.abs(first[-len(second):] - second)/second < 0.0001
   xpoints = numpy.compress(bools, emas[1])
   ```
3. **Annotate the crossover points**: Now that we have the crossover points annotate them with arrows. Make sure that the annotation text is slightly away from the crossover points.

```python
for xpoint in xpoints:
    ax.annotate('x', xy=xpoint, textcoords='offset points',
                xytext=(-50, 30),
                arrowprops=dict(arrowstyle="->"))
```

4. **Add a legend**: Add a legend and let Matplotlib decide where to put it.

```python
leg = ax.legend(loc='best', fancybox=True)
```

5. **Make the legend transparent**: Make the legend transparent by setting the alpha channel value.

```python
leg.get_frame().set_alpha(0.5)
```

The stock price and moving averages with legend and annotations would appear as follows:

![Stock Price and Moving Averages](image)

What just happened?

We plotted the close price of a stock and three of its exponential moving averages. We added a legend to the plot. We annotated the crossover points of the first two averages with annotations.
Summary

This chapter was about Matplotlib—a Python plotting library. We covered simple plots, histograms, plot customization, subplots and logplots. We also saw a few examples of displaying stock charts.

The next chapter is about SciPy—a scientific Python framework that is built on top of NumPy.
10
When NumPy is Not Enough: SciPy and Beyond

SciPy is built on top of NumPy. It adds functionality such as numerical integration, optimization, statistics, and special functions.

In this chapter we will cover the following topics:

- File I/O
- Statistics
- Signal processing
- Optimization
- Interpolation
- Image processing

Matlab and Octave

Matlab and its open source alternative Octave are popular mathematical programs. The scipy.io package has functions that let you load Matlab or Octave code in Python programs and vice versa. The loadmat function loads a .mat file. The savemat function saves a dictionary of names and arrays into a .mat file.
When NumPy is Not Enough: SciPy and Beyond

Time for action – saving and loading a .mat file

If we start with NumPy code and decide to use the said code within a Matlab or Octave environment, the easiest thing to do is create a .mat file. We then can load the file within Matlab or Octave. Let’s go through the necessary steps.

1. **Call savemat:** Create a NumPy array and call `savemat` to create a .mat file. This function has two parameters: a file name, and a dictionary containing variable names and values.

   ```python
   a = numpy.arange(7)
   scipy.io.savemat("a.mat", {"array": a})
   ```

2. **Load the .mat file:** Within a Matlab or Octave environment, load the .mat file and check the stored array.

   ```octave
   octave-3.4.0:7> load a.mat
   octave-3.4.0:8> a
   ```

   ```octave
   octave-3.4.0:8> array
   array =
   0
   1
   2
   3
   4
   5
   6
   ```

What just happened?

We created a .mat file from NumPy code and loaded it within Octave. We checked the NumPy array that was created.

Pop quiz – loading .mat files

1. Which function loads .mat files?
 a. `Loadmatlab`
 b. `loadmat`
 c. `loadct`
 d. `frommat`
Statistics

The SciPy statistics module is called `scipy.stats`. There is one class that implements continuous distributions and one class that implements discrete distributions. Also in this module, functions can be found that can perform a great number of statistical tests.

Time for action – analyzing random values

We will generate random values that mimic a normal distribution and analyze the generated data with statistical functions from the `scipy.stats` package.

1. **Generate random values**: Generate random values from a normal distribution using the `scipy.stats` package.
   ```
generated = scipy.stats.norm.rvs(size=900)
```

2. **Fit the values**: Fit the generated values to a normal distribution. This basically gives us the mean and standard deviation of the data set.
   ```
   print "Mean", "Std", scipy.stats.norm.fit(generated)
   The mean and standard deviation would be:
   Mean Std (0.0071293257063200707, 0.95537708218972528)
   ```

3. **Skewness test**: Perform a skewness test. This test returns two values. The second value is the p value—the probability that the skewness of the data set corresponds to a normal distribution. P values range from 0 to 1.
   ```
   print "Skewtest", "pvalue", scipy.stats.skewtest(generated)
   The result of the skewness test would be:
   Skewtest pvalue (-0.62120640688766893, 0.5344638245033837)
   So there is a 53 percent chance that we are dealing with a normal distribution.
   ```

4. **Kurtosis test**: Perform a kurtosis test. This test is setup similarly to the skewness test, but of course, applies to kurtosis.
   ```
   print "Kurtosistest", "pvalue", scipy.stats.kurtosistest(generated)
   The result of the kurtosis test would be:
   Kurtosistest pvalue (1.3065381019536981, 0.19136963054975586)
When NumPy is Not Enough: SciPy and Beyond

5. **Normality test**: Perform a normality test. This test also returns two values, of which the second is a p value.
   
   ```python
 print "Normaltest", "pvalue", scipy.stats.normaltest(generated)
 ``

 The result of the normality test would be:

 Normaltest pvalue (2.09293921181506, 0.35117535059841687)

6. **Score at percentile**: We can find the value at a certain percentile easily with SciPy.

   ```python
   print "95 percentile",
   scipy.stats.scoreatpercentile(generated, 95)
   ``

   The value at the 95th percentile would be:
   
   95 percentile 1.54048860252

7. **Percentile of score**: Do the opposite of the previous step to find the percentile at 1.
   
   ```python
 print "Percentile at 1",
 scipy.stats.percentileofscore(generated, 1)
 ``

 The percentile at 1 would be:

 Percentile at 1 85.5555555556

8. **Plot with Matplotlib**: Plot the generated values in a histogram with Matplotlib. More information about Matplotlib can be found in the previous chapter.

   ```python
   matplotlib.pyplot.hist(generated)
   matplotlib.pyplot.show()
   ``

   The histogram of the generated random values is as follows:
What just happened?
We created a data set from a normal distribution and analyzed it with the `scipy.stats` module.

Have a go hero – improving the data generation
Judging from the histogram in the previous Time for action tutorial, there is still room for improvement when it comes to generating the data. Try using NumPy or different parameters of the `scipy.stats.norm.rvs` function.

Samples comparison and SciKits
Often we will have two data samples, maybe from different experiments, that are somehow related. Statistical tests exist that can compare the samples. Some of these have been implemented in the `scipy.stats` module.

Another statistical test that I like is the Jarque Bera normality test from `scikits.statsmodels.stattools`. SciKits are small experimental Python software toolkits. They are not part of SciPy.

Time for action – comparing stock log returns
We will download the stock quotes for the last year of two trackers using Matplotlib. As mentioned in the previous chapter we can retrieve quotes from Yahoo Finance. We will compare the log returns of the close price of DIA and SPY. Also we will perform the Jarque Bera test on the difference of the log returns.

1. Download quotes: Write a function that can return the close price for a specified stock.
   ```python
def get_close(symbol):
 today = date.today()
 start = (today.year - 1, today.month, today.day)
 quotes = quotes_historical_yahoo(symbol, start, today)
 quotes = numpy.array(quotes)
 return quotes.T[4]
```

2. Calculate log returns: Calculate the log returns for DIA and SPY. The log returns are calculated by taking the natural logarithm of the close price and then taking the difference of consecutive values.
   ```python
spy = numpy.diff(numpy.log(get_close("SPY")))
dia = numpy.diff(numpy.log(get_close("DIA")))
```
3. **Compare means**: The means comparison test checks whether two different samples could have the same mean value. Two values are returned, of which the second is the p value from 0 to 1.

   ```python
cprint "Means comparison", scipy.stats.ttest_ind(spy, dia)
```

The result of the means comparison test would be:

```
Means comparison (-0.017995865641886155, 0.98564930169871368)
```

So there is about a 98 percent chance that the two samples have the same mean log return.

4. **Kolmogorov Smirnov test**: The Kolmogorov Smirnov two samples test tells us how likely it is that two samples are drawn from the same distribution.

   ```python
 print "Kolmogorov smirnov test", scipy.stats.ks_2samp(spy, dia)
   ```

Again two values are returned of which the second value is the p value.

```
Kolmogorov smirnov test (0.063492063492063516, 0.67615647616238039)
```

5. **Jarque Bera test**: Unleash the Jarque Bera normality test on the difference of the log returns.

   ```python
 print "Jarque Bera test",
 scikits.statsmodels.stattools.jarque_bera(spy – dia)[1]
   ```

The p value of the Jarque Bera normality test would be:

```
Jarque Bera test 0.596125711042
```

6. **Plot histograms with Matplotlib**: Plot the histograms of the log returns and the difference thereof with Matplotlib.

   ```python
 matplotlib.pyplot.hist(spy, histtype="step", lw=1, label="SPY")
 matplotlib.pyplot.hist(dia, histtype="step", lw=2, label="DIA")
 matplotlib.pyplot.hist(spy - dia, histtype="step", lw=3, label="Delta")
 matplotlib.pyplot.legend()
 matplotlib.pyplot.show()
   ```
The histograms of the log returns and difference is as follows:

![Histograms of log returns and difference]

**What just happened?**

We compared samples of log returns for DIA and SPY. Also we performed the Jarque Bera test on the difference of the log returns.

**Signal processing**

The `scipy.signal` module contains filter functions and B-spline interpolation algorithms. A SciPy signal is defined as an array of numbers. An example of a filter is the `detrend` function. This function takes a signal and does a linear fit on it. This trend is then subtracted from the original input data.

**Time for action – detecting a trend in QQQ**

Often we are more interested in the trend of a data sample than in detrending it. Still we can get the trend back easily after detrending. Let’s do that for 1 year of price data for QQQ:

1. **Download quotes**: Write code that gets the close price and corresponding dates for QQQ.

   ```python
 today = date.today()
 start = (today.year - 1, today.month, today.day)
 quotes = quotes_historical_yahoo("QQQ", start, today)
   ```
When NumPy is Not Enough: SciPy and Beyond

```python
quotes = numpy.array(quotes)
dates = quotes.T[0]
qqq = quotes.T[4]

2. Detrend the signal: Detrend the signal.
y = scipy.signal.detrend(qqq)

3. Create locators: Create month and day locators for the dates.
alldays = DayLocator()
months = MonthLocator()

4. Date formatter: Create a date formatter that creates a string of month name and year.
month_formatter = DateFormatter("%b %Y")

5. Figure and subplot: Create a figure and subplot.
fig = matplotlib.pyplot.figure()
ax = fig.add_subplot(111)

6. Data and underlying trend: Plot the data and underlying trend by subtracting the detrended signal.
 matplotlib.pyplot.plot(dates, qqq, 'o', dates, qqq - y, '-')

7. Locators and formatter: Set the locators and formatter.
 ax.xaxis.set_minor_locator(alldays)
 ax.xaxis.set_major_locator(months)
 ax.xaxis.set_major_formatter(month_formatter)

8. X axis labels: Format the x axis labels as dates.
 fig.autofmt_xdate()
 matplotlib.pyplot.show()
```
The following figure shows the QQQ prices with a trend line:

![QQQ prices with trend line](image)

**What just happened?**

We plotted the closing price for QQQ with a trend line.

**Fourier analysis**

Signals in the real world often have a periodic nature. A commonly used tool to deal with these signals is the Fourier transform. Functions for Fourier transforms can be found in the `scipy.fftpack` module. Included in the package are fast Fourier transforms, differential and pseudo-differential operators, as well as several helper functions. Matlab users will be pleased to know that a number of functions in the `scipy.fftpack` module have the same name as their Matlab counterparts and similar function as their Matlab equivalents.

**Time for action – filtering a detrended signal**

We learned in the previous *Time for action* tutorial how to detrend a signal. This detrended signal could have a cyclical component. Let's try to visualize this. Some of the steps are a repetition of steps in the previous *Time for action* tutorial, such as downloading the data and setting up Matplotlib objects. These steps are omitted here.

1. **Frequency spectrum**: Apply Fourier transforms, giving us the frequency spectrum.
   
   ```python
 amps = numpy.abs(scipy.fftpack.fftshift(scipy.fftpack.rfft(y)))
   ```
2. **Noise filter**: Filter out the noise. Let's say if the magnitude of a frequency component is below 10 percent of the strongest component, throw it out:

```python
amps[amps < 0.1 * amps.max()] = 0
```

3. **Inverse transform**: Transform the filtered signal back to the original domain and plot it together with the detrended signal.

```python
matplotlib.pyplot.plot(dates, y, 'o', label="detrended")
matplotlib.pyplot.plot(dates, -scipy.fftpack.irfft(scipy.fftpack.ifftshift(amps)), label="filtered")
```

4. **X axis labels**: Format the x axis labels as dates and add a legend:

```python
fig.autofmt_xdate()
matplotlib.pyplot.legend()
```

5. **Second subplot**: Add a second subplot and plot the frequency spectrum after filtering.

```python
ax2 = fig.add_subplot(212)
N = len(qqq)
matplotlib.pyplot.plot(numpy.linspace(-N/2, N/2, N), amps, label="transformed")
```

6. **Legend**: Display the legend and plot.

```python
matplotlib.pyplot.legend()
matplotlib.pyplot.show()
```

The following plots are of the signal and frequency spectrum:
What just happened?

We detrended a signal and applied a simple filter on it using the `scipy.fftpack` module.

Optimization

Several optimization algorithms are provided by the `scipy.optimize` module. One of the algorithms is a least squares fitting function `leastsq`. When calling this function, we are required to provide a residuals function. This function is used to minimize the sum of the squares of the residuals. Also, it is necessary to give the algorithm a starting point. This should be a best guess—as close as possible to the real solution. Otherwise execution will stop after about 800 iterations.

Time for action – fitting to a sine

In the previous Time for action tutorial we created a simple filter for detrended data. Now let’s use a more restrictive filter that will leave us only with the main frequency component. We will fit a sinusoidal pattern to it and plot our results. This model has four parameters—amplitude, frequency, phase, and vertical offset.

1. **Download quotes:** Write code that gets the close price and corresponding dates for QQQ.
   ```python
today = date.today()
start = (today.year - 1, today.month, today.day)
quotes = quotes_historical_yahoo("QQQ", start, today)
quotes = numpy.array(quotes)
dates = quotes.T[0]
qqq = quotes.T[4]
```

2. **Detrended signal:** Detrend the signal.
   ```python
 y = scipy.signal.detrend(qqq)
   ```

3. **Locators:** Create month and day locators for the dates.
   ```python
 alldays = DayLocator()
 months = MonthLocator()
   ```

4. **Date formatter:** Create a date formatter that creates a string of month name and year.
   ```python
 month_formatter = DateFormatter("%b %Y")
   ```
5. **Figure and subplot**: Create a figure and subplot.

```python
fig = matplotlib.pyplot.figure()
ax = fig.add_subplot(211)
```

6. **Locators and formatter**: Set the locators and formatter.

```python
ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(month_formatter)
```

7. **Frequency spectrum**: Apply Fourier transforms giving us the frequency spectrum.

```python
amps = numpy.abs(scipy.fftpack.fftshiftn(scipy.fftpack.rfft(y)))
```

8. **Main component**: Retrieve the main component of the frequency spectrum.

```python
amps[amps < amps.max()] = 0
```

9. **Residual functions**: Define a residuals function based on a sine wave model.

```python
def residuals(p, y, x):
 A, k, theta, b = p
 err = y - A * numpy.sin(2 * numpy.pi * k * x + theta) + b
 return err
```

10. **Inverse transform**: Transform the filtered signal back to the original domain.

```python
filtered = -scipy.fftpack.irfft(scipy.fftpack.ifftshift(amps))
```

11. **Initial guess**: Guess the values of the parameters we are trying to estimate.

```python
N = len(qqq)
f = numpy.linspace(-N/2, N/2, N)
p0 = [filtered.max(), f[amps.argmax()] / (2*N), 0, 0]
print "P0", p0
The initial values would be:
P0 [2.6679532410065212, 0.00099598469163686377, 0, 0]
```

12. **Least squares fit**: Call the `leastsq` function.

```python
plsq = scipy.optimize.leastsq(residuals, p0, args=(filtered, dates))
p = plsq[0]
print "P", p
The final parameter values are:
P [2.67678014e+00 2.73033206e-03 -8.00007036e+03 -5.01260321e-03]
```
13. **First subplot**: Finish the first subplot with detrended data, filtered data, and fit of the filtered data. Use a date format for the horizontal axis and add a legend.

   ```python
 matplotlib.pyplot.plot(dates, y, 'o', label="detrended")
 matplotlib.pyplot.plot(dates, filtered, label="filtered")
 matplotlib.pyplot.plot(dates, p[0] * numpy.sin(2 * numpy.pi * dates * p[1] + p[2]) + p[3], '^', label="fit")
 fig.autofmt_xdate()
 matplotlib.pyplot.legend()
   ```

14. **Second subplot**: Add a second subplot with a legend of the main component of the frequency spectrum.

   ```python
 ax2 = fig.add_subplot(212)
 matplotlib.pyplot.plot(f, amps, label="transformed")
 matplotlib.pyplot.legend()
 matplotlib.pyplot.show()
   ```

The following are the resulting charts:

---

**What just happened?**

We detrended 1 year of price data for QQQ. This signal was then filtered until only the main component of the frequency spectrum was left over. We fitted a sine to the filtered signal using the `scipy.optimize` module.
Numerical integration

SciPy has a numerical integration package `scipy.integrate`, that has no equivalent in NumPy. The `quad` function can integrate a one variable function between two points. These points can be at infinity.

**Time for action – calculating the Gaussian integral**

The Gaussian integral is related to the error function, but has no finite limits. It evaluates to the square root of pi. Let’s calculate the integral with the `quad` function.

1. **Quad function**: Calculate the Gaussian integral with the `quad` function.
   
   ```python
 print "Gaussian integral", numpy.sqrt(numpy.pi),
 scipy.integrate.quad(lambda x: numpy.exp(-x**2),
 -numpy.inf, numpy.inf)
   ```

   The return value is the outcome and its error would be:

   Gaussian integral 1.77245385091 (1.7724538509055159, 1.4202636780944923e-08)

**What just happened?**

We calculated the Gaussian integral with the `quad` function.

Interpolation

The `scipy.interpolate` function interpolates a function based on experimental data. The `interp1d` class can create a linear or cubic interpolation function. By default a linear interpolation function is constructed, but if the `kind` parameter is set, a cubic interpolation function is created instead. The `interp2d` class works the same way, but in 2D.

**Time for action – interpolating in one dimension**

We will create data points using a `sinc` function and add some random noise to it. After that, we will do a linear and cubic interpolation, and plot the results.

1. **Data points**: Create the data points and add noise to it.
   
   ```python
 x = numpy.linspace(-18, 18, 36)
 noise = 0.1 * numpy.random.random(len(x))
 signal = numpy.sinc(x) + noise
   ```
2. **Linear interpolation**: Create a linear interpolation function and apply it to an input array with five times as many data points.

```python
interpreted = scipy.interpolate.interp1d(x, signal)
x2 = numpy.linspace(-18, 18, 180)
y = interpreted(x2)
```

3. **Cubic interpolation**: Do the same as in the previous step, but with cubic interpolation.

```python
cubic = scipy.interpolate.interp1d(x, signal, kind="cubic")
y2 = cubic(x2)
```

4. **Plot**: Plot the results with Matplotlib.

```python
matplotlib.pyplot.plot(x, signal, 'o', label="data")
matplotlib.pyplot.plot(x2, y, '-', label="linear")
matplotlib.pyplot.plot(x2, y2, '-', lw=2, label="cubic")
matplotlib.pyplot.legend()
matplotlib.pyplot.show()
```

The following diagram is a plot of the data, linear, and cubic interpolation:

![Diagram](image)

**What just happened?**

We created a data set from the sinc function and added noise to it. We then did linear and cubic interpolation using the `interp1d` class of the `scipy.interpolate` module.
Image processing

With SciPy, we can do image processing using the `scipy.ndimage` package. The module contains various image filters and utilities.

**Time for action – manipulating Lena**

In the `scipy.misc` module, there is a utility which loads the image of "Lena". We will apply some filters on this image and rotate it.

1. **Lena**: Load the "Lena" image and display it in a subplot.
   ```python
 image = scipy.misc.lena().astype(numpy.float32)
 matplotlib.pyplot.subplot(221)
 matplotlib.pyplot.title("Original Image")
 img = matplotlib.pyplot.imshow(image)

 Note that we are dealing with a float32 array.
   ```

2. **Median filter**: Apply a median filter to the image and display it in a second subplot.
   ```python
 filtered = scipy.ndimage.median_filter(image, size=(42,42))
 matplotlib.pyplot.subplot(222)
 matplotlib.pyplot.title("Median Filter")
 matplotlib.pyplot.imshow(filtered)
   ```

3. **Rotation**: Rotate the image and display it in the third subplot.
   ```python
 rotated = scipy.ndimage.rotate(image, 90)
 matplotlib.pyplot.subplot(223)
 matplotlib.pyplot.title("Rotated")
 matplotlib.pyplot.imshow(rotated)
   ```

4. **Prewitt filter**: Apply a Prewitt filter to the image and display it in the fourth subplot.
   ```python
 filtered = scipy.ndimage.prewitt(image)
 matplotlib.pyplot.subplot(224)
 matplotlib.pyplot.title("Prewitt Filter")
 matplotlib.pyplot.imshow(filtered)
   ```

   ```python
 matplotlib.pyplot.show()
   ```
The following are the resulting images:

**What just happened?**
We manipulated the image of "Lena" in several ways using the `scipy.ndimage` module.

**Summary**
In this chapter we only scratched the surface of what is possible with SciPy and SciKits. Still, we learned a bit about file I/O, statistics, signal processing, optimization, interpolation, and image processing.
Pop Quiz Answers

Chapter 1, NumPy Quick Start

| What does `arrange(5)` do? | It creates a NumPy array with values 0 to 4.  
The created NumPy array has values 0, 1, 2, 3, 4. |

Chapter 2, Beginning with NumPy Fundamentals

| How is the shape of an `ndarray` stored? | It is stored in a tuple. |

Chapter 3, Get into Terms with Commonly Used Functions

| Which function returns the weighted average of an array? | `average` |

Chapter 4, Convenience Functions for Your Convenience

| Which function returns the covariance of two arrays? | `cov` |
Chapter 5, Working with Matrices and ufuncs

What is the row delimiter in a string accepted by the mat and bmat functions?  
Semicolon

Chapter 6, Move Further with NumPy Modules

Which function can create matrices?  
mat

Chapter 7, Peeking into Special Routines

Which NumPy module deals with random numbers?  
random

Chapter 8, Assured Quality with Testing

Which parameter of the assert_almost_equal function specifies the decimal precision?  
decimal

Chapter 9, Plotting with Matplotlib

What does the plot function do?  
It does neither a, b, or c.

Chapter 10, When NumPy is not enough SciPy and Beyond

Which function loads .mat files?  
loadmat
Symbols

2-by-2 identity matrix
creating 101

2-by-2 matrix
about 50
creating 28

3-by-3 matrix
creating 28

%hist command 23

.mat file, Matlab
loading 182
saving 182

/ operator 106, 107
// operator 107

% operator 107, 108

#scipy 24

arange function 17, 23, 26, 27, 34, 52, 87, 114, 139
Arch Linux 13
argmax function 61, 86, 138
argmin function 61, 86, 138
argsort function 135
argwhere function 138
arithmetic functions

about 105
divide 106
floor_divide 106
/ operator 106
// operator 107
true_divide 106
array_allclose function 157, 158
array_almost_equal function 157
array attributes, NumPy

about 43
flat 45
imag 45
itemsize 44
.j 45
 nbytes 44
ndim 43
real 45
size 44
T 44
array_equal function 158
array function 27, 28
array objects 26
arrays
almost equal arrays, asserting 156, 157
approximately equal arrays, asserting 155, 156
clipping 78, 79
comparing 157, 158
compressing 78, 79
converting, to list 46, 47
creating 34
dividing 106, 107
elements, extracting from 139
equal arrays, asserting 157, 158
matrices, creating from 100
ordering 158, 159
reshaping 34
splitting 41
array shapes
manipulating 36, 37
assert_almost_equal function 153-155
assert_approx_equal function 153-156
assert_array_almost_equal function 154-156
assert_array_almost_equal_nulp function
about 161
floating point, comparing 161, 162
assert_array_equal function 154, 157
assert_array_less function 154, 158, 159
assert_array_max_ulp function 161, 162
assert_equal function 154, 159, 160
assert functions
assert_almost_equal 153
assert_approx_equal 153
assert_array_almost_equal 154
assert_array_less 154
assert_equal 154
assert_raises 154
assert_string_equal 154
assert_warns 154
assert_raises function 154
assert_string_equal function 154, 160
assert_warns function 154
astype function 46, 91
atol parameter 157
ATR
about 65
calculating 65, 66
average function 52

B
bartlett function 144, 145
bartlett window
calculating 144
plotting 144, 145
BHP 82
Binets formula. See golden ratio formula
binomial
gambling with 127, 129
binomial function 128, 129
bitwise functions 114, 115
bitwise_xor function 114
blackman function 145, 146
Blackman window
about 145
plotting 145
stock prices, smoothing with 145, 146
bmat function 99-102
Bollinger bands
about 70
enveloping with 71, 72
bool type 29

C
calc_profit function 93
character code 30, 31, 64
clip method 78
column_stack function 40
column stacking 40
comma separated values files. See CSV files
comparison functions 114, 115
complex64 type 29
complex128 type 29
complex numbers
about 45, 137
array, creating 137
sorting 137
complex type 29
compound matrix
creating 101
compress function 79
concatenate function 38, 39
continuous distributions 130
converter function 59
convolve function 67-69
corrcoef function 83, 85
correlated pairs
trading 82
correlation
  about 82
  computing, for stock returns 82-85
correlation coefficient 83
covariance 82
cov function 82
CSV files
  about 50
  data, loading from 51
cumprod function 79

data
  about 49
  fitting, to polynomial 85-87
  loading, from CSV files 51
  summarizing 61-64
data type 26
data type objects 30
dates
  about 58
  dealing with 58-61
datestr2num function 59
datetime object 59
Debian
  about 13
  NumPy, installing on 13
  Python, installing on 10
depth stacking 39
depth-wise splitting 42
determinant
  about 124
  calculating, of matrix 124
det function 124
detrend function 187
diag function 122
diagonal function 82, 85
diff function 57, 58, 88
DISH
  histogram 173
distribution (distro) 13
divide function 106
DMG file 14
dot function 74, 119, 120
dsplit function 41, 42
dstack function 39
dtype class
  about 32
  attributes 32
dtype constructors 31, 32

E
eigenvalues
  about 120
  calculating 120, 121
eigenvectors
  about 120
  calculating 120, 121
eig function 120
elements
  extracting, from array 139
  selecting, of array 28
ellipsis
  used, for slicing 35
equal universal function 115
error function 194
exp function 69
exponential moving average
  about 68
  calculating 69, 70
  switching to 72
extract function 138, 139
extremums 86
eye function 50

F
factorial
  about 79
  calculating 79
Fast Fourier transform
  about 124
  calculating 125, 126
features, IPython 20
Fedora 13
fft function 125, 126
fftshift function 126
Fibonacci matrix
  creating 108
Fibonacci numbers
  about 108
  computing 108, 109
  computing, with matrix 109
File IO
about 49
files, reading 50
files, writing 50
files
about 50
reading 50
writing 50
fill_between function
about 176
condition-based plot region, shading 176, 177
financial functions, NumPy
fv 139
irr 139
mirr 139
nper 139
npv 139
pmt 139
pv 139
rate 139
finfo function 161, 162
Fink
about 16
NumPy, installing on Mac OS X with 16
flat attribute 45
defining 102
flatten function 37
float16 type 29
float32 type 29
float64 type 29
floating point
comparing 161, 162
float type 29
floor_divide function 106
fmod function 107, 108
Fourier analysis
about 189
detrended signal, filtering 189, 191
frequencies
shifting 126, 127
frompyfunc function 102
future value
determining 140
fv function 139, 140
G
game show
simulating 129, 130
GCC 16
Gentoo
about 13
NumPy, installing on 13
git 16
golden ratio formula
about 109
calculating 109
GUI installer
downloading 14
NumPy, installing on Mac OS X with 14-16
H
hamming function 146, 147
Hamming window
about 146
calculating 147
plotting 147
hanning function 95, 98
arrays of stock returns, smoothing with 95-98
highest value
calculating 53
histogram function 91, 93
histograms
bell curve, drawing 174
DISH 173
stock price distributions, charting 173
historical volatility 58
horizontal splitting 41
horizontal stacking 38
hsplit function 41
hstack function 40
hypergeometric distribution 129
hypergeometric function 129, 130
identity matrix
creating 50
IEEE 754 specification 161
ifft function 126
iftshift function 126
imag attribute 45
image processing
  about 196
  Lena, manipulating 196, 197
insert function 138
installing, NumPy
  on Debian 13
  on Gentoo 13
  on Linux 13, 14
  on Mac OS X 14-16
  on Mandriva 13
  on Red Hat 13
  on Ubuntu 13
  on Windows 11, 12
installing, Python
  on Debian 10
  on Mac OS X 10
  on Ubuntu 10
  on Windows 10
int8 type 29
int16 type 29
int32 type 29
int64 type 29
interest rate
  figuring out 143, 144
internal rate of return
  determining 142
interp1d class 194, 195
interp2d class 194
interpolation
  about 194
  in one dimension 194, 195
Inti type 29
inv function 118
IPython
  about 20-23
  advantages 25
  features 20
iir function 139-142
isreal function 97, 98
itemsize attribute 44

K
Kolmogorov Smirnov test 186

L
LAPACK 10
leastsq function 192
left_shift universal function 115
legend function 178
legends
  about 178, 179
  adding 179
  crossover points, annotating 179
  crossover points, finding 178
  making, transparent 179
len function 76
less function 114
lexsort function 135, 136
LinAlgError exception 119
linalg package 72
linear algebra 117
linear model
  price, predicting with 73, 74
linear system
  solving 119, 120
linespace function 69, 114
linspace function 110, 112
Linux
  NumPy, installing on 13, 14
Linux distributions
  about 13
  Arch Linux 13
  Debian 13
  Fedora 13
  Gentoo 13
  OpenSUSE 13
  Slackware 13
Lissajous curves
  about 109
  drawing 110, 111
loadmat function 181
loadtxt function 50, 51, 59
logarithmic plots
  about 174
  stock volume, plotting 174, 175
logarithmic returns. See log returns
log function 57, 58
loglog function 174
lognormal distribution
    about 131
    drawing 132, 133
lognormal function 131
log returns 56, 57
loops
    avoiding, with vectorize function 93-95
lowest value
    calculating 53
lstsq function 74

M
machine epsilon 161
Mac OS X
    NumPy, installing on 14-16
    Python, installing on 10
MacPorts
    NumPy, installing on Mac OS X with 16
Mandriva
    NumPy, installing on 13
map function 93
Maple 20
mat function 99-101, 118
Mathematica 20
Matlab 20
    about 181
    .mat file, loading 182
    .mat file, saving 182
Matplotlib
    annotations 178
    fill_between function 176
    legend 178, 179
    legends 178, 179
    logarithmic plots 174
    scatter plots 175
matrices
    about 99
    creating 100, 101
    increasing, from arrays 100
    inverting 100, 117, 118
    matrix, creating from 101, 102
    transposing 100
matrix
    creating, from other matrices 101, 102
    creating, from string 100
decomposing 122, 123
    Fibonacci number, computing with 109
matrix function 99, 108
    matrix multiplication 99
    max function 53, 54, 63, 65
    maximum function 65
    maxulp parameter 162
    mean function 52, 56, 58
    median function 55
    Mersenne Twister algorithm 127
metadata 26
    min function 53, 54, 63
    mirr function 139
    mode
        determining, for stock returns 90-93
    mod function 107, 108
    modulo
        computing 107, 108
    modulo operations
        fmod operation 108
        mod function 108
        % operator 108
        remainder function 107
    modulus
        computing 115
monthly volatility 58
Moore-Penrose pseudo inverse 123
msort function 55, 135
multidimensional arrays
    creating 27
    indexing 34, 36
    slicing 34, 36

N
nanargmax function 138
nanargmin function 138
nbytes attribute 44
ndarray 26, 99
    ndarray class 135
    ndarray methods 78
ndim attribute 43
net present value
    calculating 141
normal distribution
    drawing 130, 131
normal function 130
nper function 139, 143
npv function 139, 141
number
  almost equal number, asserting 154, 155
number of periodic payments
determining 143
numerical integration
  about 194
  Gaussian integral, calculating 194
numerical types, NumPy
  about 28
  bool 29
  complex 29
  complex64 29
  complex128 29
  float 29
  float16 29
  float32 29
  float64 29
  int8 29
  int16 29
  int32 29
  int64 29
  inti 29
  uint8 29
  uint16 29
  uint32 29
  uint64 29
NumPy
  about 9, 117
  almost equal arrays, asserting 156, 157
  almost equal number, asserting 154, 155
  approximately equal arrays, asserting 155, 156
  array object 26
  arrays 16
  arrays, clipping 78, 79
  arrays, comparing 157, 158
  arrays, compressing 78, 79
  arrays, converting to list 46, 47
  arrays, dividing 106, 107
  array shapes, manipulating 36, 37
  arrays of stock returns, smoothing with hanning function 95-98
  arrays, ordering 158, 159
  arrays, splitting 41
  arrays, stacking 38
assert functions 133, 154
ATR, calculating 65, 66
bartlett window, plotting 144, 145
binomial numbers 127, 129
bits, twiddling 114, 115
bitwise functions 114, 115
character codes 30, 31
comparison functions 114, 115
correlations, computing for stock returns 82-85
data, fitting to polynomials 85-87
data, loading from CSV files 51
data, summarizing 61-64
data type objects 30
dealing, with dates 58-61
determinant, calculating of matrix 124
dtype constructors 31, 32
eigenvalues, calculating 120, 121
eigenvectors, calculating 120, 121
element, extracting from array 139
equal arrays, asserting 157, 158
exponential moving average, calculating 69, 70
factorial, calculating 79
Fast Fourier transform, calculating 125, 126
features 11
Fibonacci numbers, computing 108, 109
File IO 49
floating point, comparing 161, 162
floats, comparing with ULPs 162
frequencies, shifting 126, 127
future value, determining 140
game show, simulating 129, 130
Hamming window, plotting 147
highest value, calculating 53
installing, on Debian 13
installing, on Gentoo 13
installing, on Linux 13, 14
installing, on Mandriva 13
installing, on Red Hat 13
installing, on Ubuntu 13
installing, on Windows 11, 12
installing, with Fink 16
installing, with MacPorts 16
interest rate, figuring out 143, 144
internal rate of return, calculating 142
linear systems, solving 119, 120
Lissajous curves, drawing 110, 111
lognormal distribution, drawing 132, 133
loops, avoiding with vectorize function 93-95
lowest value, calculating 53
matrices, creating 100, 101
matrices, inverting 117, 118
matrix, creating from other matrices 101, 102
matrix, decomposing 122, 123
mode, determining for stock returns 90-93
modulo, computing 107, 108
multidimensional array, creating 27
multidimensional arrays, indexing 34, 36
multidimensional arrays, slicing 34, 36
net present value, calculating 141
normal distribution, drawing 130, 131
number of periodic payments, determining 143
numerical types 28, 29
objects, comparing 159, 160
on-balance volume, computing 88-90
one-dimensional array, indexing 33
one-dimensional array, slicing 33
online resources 23, 24
packages 13
periodic payments, calculating 142
present value, retrieving 140
price, predicting with linear model 73, 74
pseudo inverse, computing of matrix 123, 124
record data type, creating 33
sawtooth, drawing 113, 114
SciPy 181
searchsorted function, using 138
simple moving average, computing 67, 68
simple statistics, performing 54-56
sorting, lexically 136
sorting routines 135
source code, retrieving for 16
square wave, drawing 111, 112
stock prices, smoothing with Blackman window 145, 146
stock returns, analyzing 57, 58
strings, comparing 160
trend lines, drawing 75, 77
triangle waves, drawing 113, 114
ufuncs methods, applying on add function 104, 105
ufuncs, creating 102, 103
URL, for documentation 24
vectors, adding with 17, 18
VWAP, calculating 52
NumPy array
about 16, 26
attributes 43
converting, to list 46, 47
creating 34
elements, selecting 28
example 26
reshaping 34
splitting 41
stacking 38
numpy.dual package 117
NumPy functions 49
Bollinger bands, calculating 71, 72
NumPy installer
downloading 11
NumPy, installing
on Debian 13
on Gentoo 13
on Linux 13, 14
on Mac OS X 14-16
on Mandriva 13
on Red Hat 13
on Ubuntu 13
on Windows 11, 12
numpy.linalg function 119
numpy.linalg package 117, 118
numpysum function 17, 19
numpy.testing package 153
O
objects
comparing 159, 160
on-balance volume
about 88
computing 88-90
one-dimensional array
indexing 33
slicing 33
ones function 67, 68
OpenSUASE 13
optimization
about 191
sine, fitting to 191-193
outer method 105
packages, NumPy
  dev-python/numpy 13
  numpy 13
  python-numpy 13
  python-numpy, python-numpy-devel 13
periodic payments
  calculating 142
piecewise function 88, 89
pinv function 123
plot function 178
pmt function 139, 142
polyder function 86, 87
polyfit function 85, 87
polynomials
  about 85
  data, fitting to 85-87
polysub function 98
polyval function 86, 87
positive returns
  selecting 57
present value
  retrieving 140
print function 25
probability density function 130, 132
prod function 79
pseudo inverse
  computing, of matrix 123, 124
ptp function 54
pv function 139, 140
Pylab switch 20
Python
  about 9, 153
  installing, on Debian 10
  installing, on different operating systems 10
  installing, on Mac OS X 10
  installing, on Ubuntu 10
  installing, on Windows 10
  vectors, adding with 17
Python 2.4.x 10
Python function
  defining 102
Python, installing
  on Debian 10
  on different operating systems 10
  on Mac OS X 10
  on Ubuntu 10
  on Windows 10
pythonsum function 17
quad function 194
quit() method 20
QQQ
  trend, detecting in 187, 188
random complex numbers
  generating 137
random numbers 127
rate function 139, 143, 144
ravel function 36, 62, 76
real attribute 45
record data type
  about 32
  creating 33
Red Hat
  NumPy, installing on 13
reduceat method 104, 105
reduce method 104
remainder function 107
reshape function 34-37
resize method 37
rint function 108
roots function 86, 87
row_stack function 41
row stacking 40
rtol parameter 157
sample comparison
  stock log returns, comparing 185-187
savemat function 181
savetxt function 50, 63
sawtooth
  about 112
  drawing 113, 114
scatter plot
  about 175
  close price, extracting 175
  creating 175
figure, creating 175
grid, creating 175
price return, plotting 175, 176
subplot, adding 175
title, creating 175
volume, extracting 175
volume return, plotting 175, 176

SciKits 185
scikit-learn models.stattools 185

SciPy
about 9, 117, 181
image processing 196
online resources 23, 24
scipy.stats 183
scipy.fft 189
SciPy forum
URL 24

scipy.interpolate function 194
scipy.interpolate module 195
scipy.io 181
scipy.ndimage module 197
scipy.optimize module 193
scipy.signal module 187
scipy.stats
about 183
data generation, improving 185
random values, analyzing 183-185

scipy.stats.norm.rvs function 185

search function, NumPy
argmax 138
argmin 138
argwhere 138
extract 138
nanargmax 138
searchsorted 138

searchsorted function
about 138
using 138

select function 97, 98

semilogx function 174
semilogy function 174
signal processing
about 187
trend detecting, in QQQ 187, 189

sign function 88, 89

simple moving average
about 66

computing 67, 68
simple returns 57
simple statistics
performing 54-56
simulation 93
sinc function 195
sin function 110-114
singular value decomposition 121
size attribute 44
Slackware 13
slices
selecting 34
smaller matrices
creating 101
smoothing 95
solve function 119, 120
sort_complex function 135, 137
sorted array
creating 138
sort function 91, 135
sorting routines, NumPy
argsort 135
lexsort 135
msort 135
sort 135
sort_complex 135

sort method 135
split function 41, 42, 62
splitting 41
splitting, types
depth 42
horizontal 41
vertical 42

sqrt function 58

square wave
about 111
drawing 111, 112

stacking 38
stacking, types
column 40
depth 39
horizontal 38
row 40
vertical 39

stack overflow software development forum
URL 24
statistics
  about 54
  performing 54-56

std function 57, 58

stock log returns, comparing
  histograms plotting, Matplotlib used 186
  Jarque Bera test 186
  Kolmogorov Smirnov test 186
  log returns, calculating 185
  quotes, downloading 185

stock prices
  smoothing, with Blackman window 145, 146

stock returns
  about 56
  analyzing 57, 58
  correlation, computing for 82-85
  mode, determining for 90-93
  smoothing 96

str attribute 32

strings
  comparing 160
  matrix, creating from 100

strip_zeros function 98

sum function 113

summarize function 63, 64

svd function 122

trend lines
  about 74
  drawing 75, 77

triangle waves
  about 112
  drawing 113, 114

trim_zeros function 98

true_divide function 106

TWAP
  computing 52

U

Ubuntu
  NumPy, installing on 13
  Python, installing on 10

ufunc methods
  applying, on add function 104, 105

ufuncs
  about 99, 102
  creating 102, 103
  methods 103

ufuncs, methods
  about 103
  accumulate 103, 104
  outer 103, 105
  reduce 103, 104
  reduceat 103-105

uint8 type 29

uint16 type 29

uint32 type 29

uint64 type 29

ULP
  about 161
  floats, comparing with 162

ultimate_answer function 102

unique function 90

Unit of Least Precision. See ULP

unit testing 153

unit tests 153

universal functions. See ufuncs

unpack parameter 51

usecols argument 51, 53
V

VALE 82
value range 53
vectorize function
   about 93
   loops, avoiding with 93-95
vectors
   about 26
   adding, NumPy used 17, 18
   adding, Python used 17
vertical splitting 42
vertical stacking 39
Volume weighted average price. See VWAP
vsplit function 41, 42
vstack function 39
VWAP
   about 51
   calculating 52

W

weekday method 59
weekly summary 61

weights parameter 52
where function 57, 60, 75
where parameter 176
Window functions
   about 144
   barlett 144
   blackman 144, 145
   hamming 144, 146
   hanning 144
   kaiser 144
Windows
   NumPy, installing on 11, 12
   Python, installing on 10
Windows Python installer
   URL 10

Z

zeros_like function 102, 103
Thank you for buying
NumPy 1.5 Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL Management" in April 2004 and subsequently continued to specialize in publishing highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and customizing today's systems, applications, and frameworks. Our solution based books give you the knowledge and power to customize the software and technologies you're using to get the job done. Packt books are more specific and less general than the IT books you have seen in the past. Our unique business model allows us to bring you more focused information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-edge books for communities of developers, administrators, and newbies alike. For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to continue its focus on specialization. This book is part of the Packt Open Source brand, home to books published on software built around Open Source licences, and offering information to anybody from advanced developers to budding web designers. The Open Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it first before writing a formal book proposal, contact us; one of our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience, our experienced editors can help you develop a writing career, or simply get some additional reward for your expertise.
Sage Beginner’s Guide

Unlock the full potential of Sage for simplifying and automating mathematical computing

1. The best way to learn Sage which is a open source alternative to Magma, Maple, Mathematica, and Matlab
2. Learn to use symbolic and numerical computation to simplify your work and produce publication-quality graphics
3. Numerically solve systems of equations, find roots, and analyze data from experiments or simulations

Python Testing Cookbook

Over 70 simple but incredibly effective recipes for taking control of automated testing using powerful Python testing tools

1. Learn to write tests at every level using a variety of Python testing tools
2. The first book to include detailed screenshots and recipes for using Jenkins continuous integration server (formerly known as Hudson)
3. Explore innovative ways to introduce automated testing to legacy systems
4. Written by Greg L. Turnquist – senior software engineer and author of Spring Python 1.1

Please check www.PacktPub.com for information on our titles
Ng\textit{inx 1 Web Server Implementation Cookbook}

Over 100 recipes to master using the \textit{Nginx} HTTP server and reverse proxy

1. Quick recipes and practical techniques to help you maximize your experience with \textit{Nginx}
2. Interesting recipes that will help you optimize your web stack and get more out of your existing setup
3. Secure your website and prevent your setup from being compromised using SSL and rate-limiting techniques
4. Get more out of \textit{Nginx} by using it as an important part of your web application using third-party modules

---

Python \textit{Geospatial Development}

Build a complete and sophisticated mapping application from scratch using Python tools for GIS development

1. Build applications for GIS development using Python
2. Analyze and visualize Geo-Spatial data
3. Comprehensive coverage of key GIS concepts
4. Recommended best practices for storing spatial data in a database
5. Draw maps, place data points onto a map, and interact with maps

Please check \url{www.PacktPub.com} for information on our titles