To my wife and best friend,
Alice Kathleen Eiland Crilly

To my parents,
Lois Brown Crilly and Ira Benjamin Crilly

To my grandmother,
Harriet Wilson Crilly
Contents

The numbers in parentheses after section titles identify previous sections that contain the minimum prerequisite material.

Chapter 1
Introduction 1
1.1 Elements and Limitations of Communication Systems 2
 - Information, Messages, and Signals 2
 - Elements of a Communication System 3
 - Fundamental Limitations 5
1.2 Modulation and Coding 6
 - Modulation Methods 6
 - Modulation Benefits and Applications 8
 - Coding Methods and Benefits 11
1.3 Electromagnetic Wave Propagation Over Wireless Channels 12
 - RF Wave Deflection 14
 - Skywave Propagation 14
1.4 Emerging Developments 17
1.5 Societal Impact and Historical Perspective 20
 - Historical Perspective 21
1.6 Prospectus 24

Chapter 2
Signals and Spectra 27
2.1 Line Spectra and Fourier Series 29
 - Phasors and Line Spectra 29
 - Periodic Signals and Average Power 33
 - Fourier Series 35
 - Convergence Conditions and Gibbs Phenomenon 39
 - Parseval's Power Theorem 42
2.2 Fourier Transforms and Continuous Spectra (2.1) 43
 - Fourier Transforms 43
 - Symmetric and Causal Signals 47
 - Rayleigh's Energy Theorem 50
 - Duality Theorem 52
 - Transform Calculations 54
2.3 Time and Frequency Relations (2.2) 54
 - Superposition 55
 - Time Delay and Scale Change 55
 - Frequency Translation and Modulation 58
 - Differentiation and Integration 60
2.4 Convolution (2.3) 62
 - Convolution Integral 63
 - Convolution Theorems 65
2.5 Impulses and Transforms in the Limit (2.4) 68
 - Properties of the Unit Impulse 68
 - Impulses in Frequency 71
 - Step and Signum Functions 74
 - Impulses in Time 76
2.6 Discrete Time Signals and the Discrete Fourier Transform 80
 - Convolution Using the DFT (2.4) 83

Chapter 3
Signal Transmission and Filtering 91
3.1 Response of LTI Systems (2.4) 92
 - Impulse Response and the Superposition Integral 93
 - Transfer Functions and Frequency Response 96
 - Block-Diagram Analysis 102
3.2 Signal Distortion in Transmission (3.1) 105
 - Distortionless Transmission 105
 - Linear Distortion 107
 - Equalization 110
 - Nonlinear Distortion and Companding 113
3.3 Transmission Loss and Decibels (3.2) 116
 - Power Gain 116
 - Transmission Loss and Repeaters 118
 - Fiber Optics 119
 - Radio Transmission 122
3.4 Filters and Filtering (3.3) 126
 - Ideal Filters 126
 - Bandlimiting and Timelimiting 128
 - Real Filters 129
 - Pulse Response and Risetime 134
3.5 Quadrature Filters and Hilbert Transforms (3.4) 138
Contents

Chapter 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Correlation and Spectral Density</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Correlation of Power Signals</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Correlation of Energy Signals</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>Spectral Density Functions</td>
<td>147</td>
</tr>
</tbody>
</table>

Chapter 4

Linear CW Modulation | 161

- 4.1 Bandpass Signals and Systems | 162
- Analog Message Conventions | 162
- Bandpass Signals | 164
- Bandpass Transmission | 168
- Bandwidth | 172
- 4.2 Double-Sideband Amplitude Modulation | 173
- AM Signals and Spectra | 173
- DSB Signals and Spectra | 176
- Tone Modulation and Phasor Analysis | 178
- 4.3 Modulators and Transmitters | 179
- Product Modulators | 180
- Square-Law and Balanced Modulators | 180
- Switching Modulators | 184
- 4.4 Suppressed-Sideband Amplitude Modulation | 185
- SSB Signals and Spectra | 185
- SSB Generation | 188
- VSB Signals and Spectra | 191
- 4.5 Frequency Conversion and Demodulation | 193
- Frequency Conversion | 194
- Synchronous Detection | 195
- Envelope Detection | 198

Chapter 5

Angle CW Modulation | 207

- 5.1 Phase and Frequency Modulation | 208
- PM and FM Signals | 208
- Narrowband PM and FM | 212
- Tone Modulation | 213
- Multitone and Periodic Modulation | 220
- 5.2 Transmission Bandwidth and Distortion | 223
- Transmission Bandwidth Estimates | 223
- Linear Distortion | 226
- Nonlinear Distortion and Limiters | 229
- 5.3 Generation and Detection of FM and PM | 232
- Direct FM and VCOs | 233
- Phase Modulators and Indirect FM | 234
- Triangular-Wave FM | 237
- Frequency Detection | 239
- 5.4 Interference | 243
- Interfering Sinusoids | 243
- Deemphasis and Preemphasis Filtering | 245
- FM Capture Effect | 247

Chapter 6

Sampling and Pulse Modulation | 257

- 6.1 Sampling Theory and Practice | 258
- Chopper Sampling | 258
- Ideal Sampling and Reconstruction | 263
- Practical Sampling and Aliasing | 266
- 6.2 Pulse-Amplitude Modulation | 272
- Flat-Top Sampling and PAM | 272
- 6.3 Pulse-Time Modulation | 275
- Pulse-Duration and Pulse-Position Modulation | 275

Chapter 7

Analog Communication Systems | 287

- 7.1 Receivers for CW Modulation | 288
- Superheterodyne Receivers | 288
- Direct Conversion Receivers | 292
- Special-Purpose Receivers | 293
- Receiver Specifications | 294
- Scanning Spectrum Analyzers | 295
- 7.2 Multiplexing Systems | 297
- Frequency-Division Multiplexing | 297
- Quadrature-Carrier Multiplexing | 302
- Time-Division Multiplexing | 303
- Crosstalk and Guard Times | 307
- Comparison of TDM and FDM | 309
- 7.3 Phase-Locked Loops | 311
- PLL Operation and Lock-In | 311
- Synchronous Detection and Frequency Synthesizers | 314
- Linearized PLL Models and FM Detection | 317
- 7.4 Television Systems | 319
- Video Signals, Resolution, and Bandwidth | 319
- Monochrome Transmitters and Receivers | 324
- Color Television | 327
- HDTV | 332
Chapter 8
Probability and Random Variables 345
8.1 Probability and Sample Space 346
 Probabilities and Events 346
 Sample Space and Probability Theory 347
 Conditional Probability and Statistical Independence 351
8.2 Random Variables and Probability Functions (8.1) 354
 Discrete Random Variables and CDFs 355
 Continuous Random Variables and PDFs 358
 Transformations of Random Variables 361
 Joint and Conditional PDFs 363
8.3 Statistical Averages (2.3, 8.2) 365
 Means, Moments, and Expectation 365
 Standard Deviation and Chebyshev’s Inequality 366
 Multivariate Expectations 368
 Characteristic Functions 370
8.4 Probability Models (8.3) 371
 Binomial Distribution 371
 Poisson Distribution 373
 Gaussian PDF 374
 Rayleigh PDF 376
 Bivariate Gaussian Distribution 378
 Central Limit Theorem 379

Chapter 9
Random Signals and Noise 391
9.1 Random Processes (3.6, 8.4) 392
 Ensemble Averages and Correlation Functions 393
 Ergodic and Stationary Processes 397
 Gaussian Processes 402
9.2 Random Signals (9.1) 403
 Power Spectrum 403
 Superposition and Modulation 408
 Filtered Random Signals 409
9.3 Noise (9.2) 412
 Thermal Noise and Available Power 413
 White Noise and Filtered Noise 416
 Noise Equivalent Bandwidth 419
 System Measurements Using White Noise 421
9.4 Baseband Signal Transmission With Noise (9.3) 422
 Additive Noise and Signal-to-Noise Ratios 422
 Analog Signal Transmission 424

Chapter 10
Noise in Analog Modulation Systems 439
10.1 Bandpass Noise (4.4, 9.2) 440
 System Models 441
 Quadrature Components 443
 Envelope and Phase 445
 Correlation Functions 446
10.2 Linear CW Modulation With Noise (10.2) 448
 Synchronous Detection 449
 Envelope Detection and Threshold Effect 451
10.3 Angle CW Modulation With Noise (5.3, 10.2) 454
 Postdetection Noise 454
 Destination S/N 458
 FM Threshold Effect 460
 Threshold Extension by FM Feedback Detection 463
10.4 Comparison of CW Modulation Systems (9.4, 10.3) 464
10.5 Phase-Locked Loop Noise Performance (7.3, 10.1) 467
10.6 Analog Pulse Modulation With Noise (6.3, 9.5) 468
 Signal-to-Noise Ratios 468
 False-Pulse Threshold Effect 471

Chapter 11
Baseband Digital Transmission 479
11.1 Digital Signals and Systems (9.1) 481
 Digital PAM Signals 481
 Transmission Limitations 484
 Power Spectra of Digital PAM 487
 Spectral Shaping by Precoding 490
11.2 Noise and Errors (9.4, 11.1) 491
 Binary Error Probabilities 492
 Regenerative Repeaters 496
 Matched Filtering 498
 Correlation Detector 501
 M-ary Error Probabilities 502
11.3 Bandlimited Digital PAM Systems (11.2) 506
 Nyquist Pulse Shaping 506
 Optimum Terminal Filters 509
 Equalization 513
 Correlative Coding 517

11.4 Synchronization Techniques (11.2) 523
 Bit Synchronization 524
 Scramblers and PN Sequence Generators 526
 Frame Synchronization 531

Chapter 12
Digitization Techniques for Analog Messages and Computer Networks 543

12.1 Pulse-Code Modulation (6.2, 11.1) 544
 PCM Generation and Reconstruction 545
 Quantization Noise 548
 Nonuniform Quantizing and Companding 550

12.2 PCM With Noise (11.2, 12.1) 554
 Decoding Noise 555
 Error Threshold 557
 PCM Versus Analog Modulation 557

12.3 Delta Modulation and Predictive Coding (12.2) 559
 Delta Modulation 560
 Delta-Sigma Modulation 565
 Adaptive Delta Modulation 566
 Differential PCM 567
 LPC Speech Synthesis 569

12.4 Digital Audio Recording (12.3) 571
 CD Recording 571
 CD Playback 574

12.5 Digital M Multiplexing (12.1, 9.2) 575
 Multiplexers and Hierarchies 575
 Digital Subscriber Lines 579
 Synchronous Optical Network 580
 Data Multiplexers 582

Chapter 13
Channel Coding 591

13.1 Error Detection and Correction (11.2) 592
 Repetition and Parity-Check Codes 592
 Interleaving 595
 Code Vectors and Hamming Distance 595
 Forward Error-Correction (FEC) Systems 597
 ARQ Systems 600

Chapter 14
Bandpass Digital Transmission 647

14.1 Digital CW Modulation (4.5, 5.1, 11.1) 648
 Spectral Analysis of Bandpass Digital Signals 649
 Amplitude Modulation Methods 650
 Phase Modulation Methods 653
 Frequency Modulation Methods 655
 Minimum-Shift Keying (MSK) and Gaussian-Filtered MSK 658

14.2 Coherent Binary Systems (11.2, 14.1) 663
 Optimum Binary Detection 663
 Coherent OOK, BPSK, and FSK 668
 Timing and Synchronization 670
 Interference 671

14.3 Noncoherent Binary Systems (14.2) 673
 Envelope of a Sinusoid Plus Bandpass Noise 673
 Noncoherent OOK 674
 Noncoherent FSK 677
 Differentially Coherent PSK 679

14.4 Quadrature-Carrier and M-ary Systems (14.2) 682
 Quadrature-Carrier Systems 682
 M-ary PSK Systems 685
 M-ary QAM Systems 689
 M-ary FSK Systems 690
 Comparison of Digital Modulation Systems 692

14.5 Orthogonal Frequency Division Multiplexing (OFDM) (14.4, 7.2, 2.6) 696
 Generating OFDM Using the Inverse Discrete Fourier Transform 697
 Channel Response and Cyclic Extensions 700
14.6 Trellis-Coded Modulation (13.3, 14.4) 703
 TCM Basics 704
 Hard Versus Soft Decisions 712
 Modems 712

Chapter 15

Spread-Spectrum Systems 721

15.1 Direct-Sequence Spread-Spectrum (14.2) 723
 DSSS Signals 723
 DSSS Performance in Presence of Interference 726
 Multiple Access 728
 Multipath and the Rake Receiver 729

15.2 Frequency-Hopping Spread-Spectrum (15.1) 733
 FHSS Signals 733
 FHSS Performance in the Presence of Interference 735
 Other SS Systems 737

15.3 Coding (15.1, 11.4) 738

15.4 Synchronization (7.3) 743
 Acquisition 743
 Tracking 745

15.5 Wireless Systems (15.2, 3.3, 14.5) 746
 Telephone Systems 746
 Wireless Networks 751

15.6 Ultra-Wideband Systems (6.3, 15.1) 754
 UWB Signals 754
 Coding Techniques 756
 Transmit-Reference System 758
 Multiple Access 759
 Comparison With Direct-Sequence Spread-Spectrum 760

Chapter 16

Information and Detection Theory 767

16.1 Information Measure and Source Encoding (12.1) 769
 Information Measure 769
 Entropy and Information Rate 771
 Coding for a Discrete Memoryless Channel 774
 Predictive Coding for Sources With Memory 778

16.2 Information Transmission on Discrete Channels (16.1) 782
 Mutual Information 782
 Discrete Channel Capacity 786
 Coding for the Binary Symmetric Channel 788

16.3 Continuous Channels and System Comparisons (16.2) 791
 Continuous Information 791
 Continuous Channel Capacity 794
 Ideal Communication Systems 796
 System Comparisons 799

16.4 Signal Space 803
 Signals as Vectors 803
 The Gram-Schmidt Procedure 806

16.5 Optimum Digital Detection (16.3, 16.4) 808
 Optimum Detection and MAP Receivers 809
 Error Probabilities 815
 Signal Selection and Orthogonal Signaling 818

Appendix: Circuit and System Noise (9.4) 827
 Circuit and Device Noise 828
 Amplifier Noise 835
 System Noise Calculations 840
 Cable Repeater Systems 844

Tables 847
 T.1 Fourier Transforms 847
 T.2 Fourier Series 849
 T.3 Mathematical Relations 851
 T.4 The Sinc Function 854
 T.5 Probability Functions 855
 T.6 Gaussian Probabilities 857
 T.7 Glossary of Notation 859

Solutions to Exercises 861
Answers to Selected Problems 904
Index 911
Preface

This text, like its previous four editions, is an introduction to communication systems written at a level appropriate for advanced undergraduates and first-year graduate students in electrical or computer engineering.

An initial study of signal transmission and the inherent limitations of physical systems establishes unifying concepts of communication. Attention is then given to analog communication systems, random signals and noise, digital systems, and information theory.

Mathematical techniques and models necessarily play an important role throughout the book, but always in the engineering context as means to an end. Numerous applications have been incorporated for their practical significance and as illustrations of concepts and design strategies. Some hardware considerations are also included to justify various communication methods, to stimulate interest, and to bring out connections with other branches of the field.

PREREQUISITE BACKGROUND

The assumed background is equivalent to the first two or three years of an electrical or computer engineering curriculum. Essential prerequisites are differential equations, steady-state and transient circuit analysis, and a first course in electronics. Students should also have some familiarity with operational amplifiers, digital logic, and matrix notation. Helpful but not required are prior exposure to linear systems analysis, Fourier transforms, and probability theory.

CONTENTS AND ORGANIZATION

New features of this fifth edition include (a) the addition of MATLAB® examples, exercises and problems that are available on the book’s website, www.mhhe.com/carlsoncrilly; (b) new end-of-chapter conceptual questions to reinforce the theory, provide practical application to what has been covered, and add to the students’ problem-solving skills; (c) expanded coverage of wireless communications and an introduction to radio wave propagation that enables the reader to better appreciate the challenges of wireless systems; (d) expanded coverage of digital modulation systems such as the addition of orthogonal frequency division modulation and ultra wideband systems; (e) expanded coverage of spread spectrum; (f) a discussion of wireless networks; and (g) an easy-to-reference list of abbreviations and mathematical symbols.

Following an updated introductory chapter, this text has two chapters dealing with basic tools. These tools are then applied in the next four chapters to analog communication systems, including sampling and pulse modulation. Probability, random signals, and noise are introduced in the following three chapters and applied to analog systems. An appendix separately covers circuit and system noise. The remaining

MATLAB® is a registered trademark of MathWorks Inc.
six chapters are devoted to digital communication and information theory, which require some knowledge of random signals and include coded pulse modulation.

All sixteen chapters can be presented in a yearlong undergraduate course with minimum prerequisites. Or a one-term undergraduate course on analog communication might consist of material in the first seven chapters. If linear systems and probability theory are covered in prerequisite courses, then most of the last eight chapters can be included in a one-term senior/graduate course devoted primarily to digital communication.

The modular chapter structure allows considerable latitude for other formats. As a guide to topic selection, the table of contents indicates the minimum prerequisites for each chapter section.

INSTRUCTIONAL AIDS

Each chapter after the first one includes a list of instructional objectives to guide student study. Subsequent chapters also contain several examples and exercises. The exercises are designed to help students master their grasp of new material presented in the text, and exercise solutions are given at the back. The examples have been chosen to illuminate concepts and techniques that students often find troublesome.

Problems at the ends of chapters are numbered by text section. They range from basic manipulations and computations to more advanced analysis and design tasks. A manual of problem solutions is available to instructors from the publisher.

Several typographical devices have been incorporated to serve as aids for students. Specifically,

- Technical terms are printed in boldface type when they first appear.
- Important concepts and theorems that do not involve equations are printed inside boxes.
- Asterisks (*) after problem numbers indicate that answers are provided at the back of the book.
- The symbol ‡ identifies the more challenging problems.

Tables at the back of the book include transform pairs, mathematical relations, and probability functions for convenient reference.

Communication system engineers use many abbreviations, so in addition to the index, there is a section that lists common abbreviations. Also included is a list of the more commonly used mathematical symbols.

Online Resources

The website that accompanies this text can be found at www.mhhe.com/carlsoncrilly and features new MATLAB problems as well as material on computer networks (TCP/IP) and data encryption. The website also includes an annotated bibliography in the form of a supplementary reading list and the list of references. The complete
solutions manual, PowerPoint lecture notes, and image library are available online for instructors. Contact your sales representative for additional information on the website.

Electronic Textbook Options
This text is offered through CourseSmart for both instructors and students. CourseSmart is an online resource where students can purchase the complete text online at almost half the cost of a traditional text. Purchasing the eTextbook allows students to take advantage of CourseSmart's web tools for learning, which include full text search, notes and highlighting, and email tools for sharing notes between classmates. To learn more about CourseSmart options, contact your sales representative or visit www.CourseSmart.com.

ACKNOWLEDGMENTS
I am indebted to the many people who contributed to previous editions. I want to thank Professors Marshall Pace, Seddick Djouadi, and Aly Fathy for their feedback and the use of their libraries; the University of Tennessee Electrical Engineering and Computer Science Department for support; Ms. Judy Evans, Ms. Dana Bryson, Messrs. Robert Armistead, Jerry Davis, Matthew Smith, and Tobias Mueller for their assistance in manuscript preparation.

Thanks, too, for the wonderful feedback from our reviewers: Ali Abdi, New Jersey Institute of Technology; Venkatachalam Anantharam, University of California–Berkeley; Nagwa Bekir, California State University–Northridge; Deva K. Borah, New Mexico State University; Sohail Dianat, Rochester Institute of Technology; David C. Farden, North Dakota State University; Raghvendra Gejji, Western Michigan University; Christoforos Hadjicostis, University of Illinois; Dr. James Kang, California State Polytechnic University–Pomona; K.R. Rao, University of Texas at Arlington; Jitendra K. Tugnait, Auburn University.

Thanks go to my friends Ms. Anissa Davis, Mrs. Alice LaFoy and Drs. Stephen Derby, Samir ElGhazaly, Walter Green, Melissa Meyer, and John Sahr for their encouragement; to my brother Peter Crilly for his encouragement; and to my children Margaret, Meredith, Benjamin, and Nathan Crilly for their support and sense of humor. Special thanks go to Dr. Stephen Smith of Oak Ridge National Laboratory for the many hours he spent reviewing the manuscript. I also want to thank Dr. Lonnie Ludeman, who as a role model demonstrated to me what a professor should be. Finally, I am indebted to the late A. Bruce Carlson, who created within me the desire and enthusiasm to continue my education and pursue graduate study in communication systems.

Paul B. Crilly
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1× EV-DO</td>
<td>evolution data optimized one time</td>
</tr>
<tr>
<td>1G, 2G, 3G</td>
<td>first-, second- and third-generation wireless phones</td>
</tr>
<tr>
<td>3GPP</td>
<td>third-generation partnership project</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>ACK</td>
<td>positive acknowledgment</td>
</tr>
<tr>
<td>ADC</td>
<td>analog-to-digital converter</td>
</tr>
<tr>
<td>ADSL</td>
<td>asynchronous DSL</td>
</tr>
<tr>
<td>AFC</td>
<td>automatic frequency control</td>
</tr>
<tr>
<td>AGC</td>
<td>automatic gain control</td>
</tr>
<tr>
<td>AM</td>
<td>amplitude modulation</td>
</tr>
<tr>
<td>AMI</td>
<td>alternate mark inversion</td>
</tr>
<tr>
<td>AMPS</td>
<td>Advanced Mobile Phone Service</td>
</tr>
<tr>
<td>APK</td>
<td>amplitude-phase shift keying</td>
</tr>
<tr>
<td>ARQ</td>
<td>automatic repeat request</td>
</tr>
<tr>
<td>ASK</td>
<td>amplitude-shift keying</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>AVC</td>
<td>automatic volume control</td>
</tr>
<tr>
<td>AWGN</td>
<td>additive white gaussian noise</td>
</tr>
<tr>
<td>BER</td>
<td>bit error rate or bit error probability</td>
</tr>
<tr>
<td>BJT</td>
<td>bipolar junction transistor</td>
</tr>
<tr>
<td>BPF</td>
<td>bandpass filter</td>
</tr>
<tr>
<td>BPSK</td>
<td>binary PSK</td>
</tr>
<tr>
<td>BSC</td>
<td>binary symmetric channel</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled devices</td>
</tr>
<tr>
<td>CCIR</td>
<td>International Radio Consultative Committee</td>
</tr>
<tr>
<td>CCIT</td>
<td>International Telegraph and Telephone Consultative Committee of the Internations Union</td>
</tr>
<tr>
<td>CD</td>
<td>compact disc</td>
</tr>
<tr>
<td>CDF</td>
<td>cumulative distribution function</td>
</tr>
<tr>
<td>CDMA</td>
<td>code-division multiple access</td>
</tr>
<tr>
<td>CIRC</td>
<td>cross-interleave Reed-Solomon error control code</td>
</tr>
<tr>
<td>CNR</td>
<td>carrier-to-noise ratio</td>
</tr>
<tr>
<td>CPFSK</td>
<td>continuous-phase FSK</td>
</tr>
<tr>
<td>CFS</td>
<td>chips</td>
</tr>
<tr>
<td>CRC</td>
<td>cyclic redundancy code or cyclic redundancy check</td>
</tr>
<tr>
<td>CSMA</td>
<td>carrier sense multiple access</td>
</tr>
<tr>
<td>CVSDM</td>
<td>continuously variable slope delta modulation</td>
</tr>
<tr>
<td>CW</td>
<td>continuous-wave</td>
</tr>
<tr>
<td>DAC</td>
<td>digital-to-analog converter</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>dBm</td>
<td>decibel milliwatts</td>
</tr>
<tr>
<td>dBW</td>
<td>decibel watts</td>
</tr>
<tr>
<td>DC</td>
<td>direct current, or direct conversion (receiver)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>DCT</td>
<td>discrete cosine transform</td>
</tr>
<tr>
<td>DDS</td>
<td>direct digital synthesis</td>
</tr>
<tr>
<td>DFT</td>
<td>discrete Fourier transform</td>
</tr>
<tr>
<td>DLL</td>
<td>delay-locked loop</td>
</tr>
<tr>
<td>DM</td>
<td>delta modulation</td>
</tr>
<tr>
<td>DPCM</td>
<td>differential pulse-code modulation</td>
</tr>
<tr>
<td>DPSK</td>
<td>differentially coherent PSK</td>
</tr>
<tr>
<td>DSB or DSB-SC</td>
<td>double-sideband-suppressed carrier modulation</td>
</tr>
<tr>
<td>DSL</td>
<td>digital subscriber line</td>
</tr>
<tr>
<td>DSM</td>
<td>delta-sigma modulator</td>
</tr>
<tr>
<td>DSP</td>
<td>digital signal processing or digital signal processor</td>
</tr>
<tr>
<td>DSSS or DSS</td>
<td>direct-sequence spread-spectrum</td>
</tr>
<tr>
<td>DTV</td>
<td>digital TV</td>
</tr>
<tr>
<td>EIRP</td>
<td>effective isotropic radiated power</td>
</tr>
<tr>
<td>EV-DV</td>
<td>evolution, data, and voice</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission (USA)</td>
</tr>
<tr>
<td>FDD</td>
<td>frequency-division duplex</td>
</tr>
<tr>
<td>FDM</td>
<td>frequency-division multiplexing</td>
</tr>
<tr>
<td>FDMA</td>
<td>frequency-division multiple access</td>
</tr>
<tr>
<td>FDX</td>
<td>full duplex</td>
</tr>
<tr>
<td>FEC</td>
<td>forward error correction</td>
</tr>
<tr>
<td>FET</td>
<td>field effect transistor</td>
</tr>
<tr>
<td>FFT</td>
<td>fast Fourier transform</td>
</tr>
<tr>
<td>FHSS</td>
<td>frequency-hopping spread-spectrum</td>
</tr>
<tr>
<td>FM</td>
<td>frequency modulation</td>
</tr>
<tr>
<td>FOH</td>
<td>first order hold</td>
</tr>
<tr>
<td>FSK</td>
<td>frequency-shift keying</td>
</tr>
<tr>
<td>GMSK</td>
<td>gaussian filtered MSK</td>
</tr>
<tr>
<td>GPRS</td>
<td>general packet radio system</td>
</tr>
<tr>
<td>GPS</td>
<td>global positioning system</td>
</tr>
<tr>
<td>GSM</td>
<td>Group Special Mobile, or Global System for Mobile Communications</td>
</tr>
<tr>
<td>HDSL</td>
<td>high bit rate DSL</td>
</tr>
<tr>
<td>HDX</td>
<td>half duplex</td>
</tr>
<tr>
<td>HDTV</td>
<td>high definition television</td>
</tr>
<tr>
<td>HPF</td>
<td>highpass filter</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>IDFT</td>
<td>inverse discrete Fourier transform</td>
</tr>
<tr>
<td>IFFT</td>
<td>inverse fast Fourier transform</td>
</tr>
<tr>
<td>IF</td>
<td>intermediate frequency</td>
</tr>
<tr>
<td>IMT–2000</td>
<td>international mobile telecommunications–2000</td>
</tr>
<tr>
<td>IP</td>
<td>internet protocol</td>
</tr>
<tr>
<td>IS-95</td>
<td>Interim Standard 95</td>
</tr>
<tr>
<td>ISDN</td>
<td>integrated services digital network</td>
</tr>
<tr>
<td>ISI</td>
<td>intersymbol interference</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ISM</td>
<td>industrial, scientific, and medical</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Union</td>
</tr>
<tr>
<td>JFET</td>
<td>junction field-effect transistor</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>LC</td>
<td>inductor/capacitor resonant circuit</td>
</tr>
<tr>
<td>LO</td>
<td>local oscillator</td>
</tr>
<tr>
<td>LOS</td>
<td>line of sight</td>
</tr>
<tr>
<td>LPC</td>
<td>linear predictive code</td>
</tr>
<tr>
<td>LPF</td>
<td>lowpass filter</td>
</tr>
<tr>
<td>LSSB or LSB</td>
<td>lower single-sideband modulation</td>
</tr>
<tr>
<td>LTI</td>
<td>linear time-invariant systems</td>
</tr>
<tr>
<td>MA</td>
<td>multiple access</td>
</tr>
<tr>
<td>MAI</td>
<td>multiple access interference</td>
</tr>
<tr>
<td>MAP</td>
<td>maximum a posteriori</td>
</tr>
<tr>
<td>MC</td>
<td>multicarrier modulation</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>MMSE</td>
<td>minimum means-squared error</td>
</tr>
<tr>
<td>modem</td>
<td>modulator/demodulator</td>
</tr>
<tr>
<td>MPEG</td>
<td>motion picture expert group</td>
</tr>
<tr>
<td>MSK</td>
<td>minimum shift keying</td>
</tr>
<tr>
<td>MTSO</td>
<td>mobile telephone switching office</td>
</tr>
<tr>
<td>MUF</td>
<td>maximum useable frequency</td>
</tr>
<tr>
<td>MUX</td>
<td>multiplexer</td>
</tr>
<tr>
<td>NAK</td>
<td>negative acknowledgment</td>
</tr>
<tr>
<td>NAMPS</td>
<td>narrowband advanced mobile phone service</td>
</tr>
<tr>
<td>NBFM</td>
<td>narrowband frequency modulation</td>
</tr>
<tr>
<td>NBPM</td>
<td>narrowband phase modulation</td>
</tr>
<tr>
<td>NET</td>
<td>network</td>
</tr>
<tr>
<td>NF</td>
<td>noise figure</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NRZ</td>
<td>nonreturn-to-zero</td>
</tr>
<tr>
<td>NTSC</td>
<td>National Television System Committee</td>
</tr>
<tr>
<td>OFDM</td>
<td>orthogonal frequency multiplexing</td>
</tr>
<tr>
<td>OFDMA</td>
<td>orthogonal frequency-division multiple access</td>
</tr>
<tr>
<td>OOK</td>
<td>on-off keying</td>
</tr>
<tr>
<td>OQPSK</td>
<td>offset quadrature phase shift keying</td>
</tr>
<tr>
<td>OSI</td>
<td>open systems interconnection</td>
</tr>
<tr>
<td>PAM</td>
<td>pulse-amplitude modulation</td>
</tr>
<tr>
<td>PAR</td>
<td>peak-to-average ratio (power)</td>
</tr>
<tr>
<td>PCC</td>
<td>parallel concatenated codes</td>
</tr>
<tr>
<td>PCM</td>
<td>pulse-code modulation</td>
</tr>
<tr>
<td>PCS</td>
<td>personal communications systems or services</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>PD</td>
<td>phase discriminator</td>
</tr>
<tr>
<td>PDF</td>
<td>probability density function</td>
</tr>
<tr>
<td>PEP</td>
<td>peak envelope power</td>
</tr>
<tr>
<td>PLL</td>
<td>phase-locked loop</td>
</tr>
<tr>
<td>PM</td>
<td>phase modulation</td>
</tr>
<tr>
<td>PN</td>
<td>pseudonoise</td>
</tr>
<tr>
<td>POT</td>
<td>plain old telephone</td>
</tr>
<tr>
<td>PPM</td>
<td>pulse-position modulation</td>
</tr>
<tr>
<td>PRK</td>
<td>phase reverse keying</td>
</tr>
<tr>
<td>PSD</td>
<td>power spectral density</td>
</tr>
<tr>
<td>PSK</td>
<td>phase shift keying</td>
</tr>
<tr>
<td>PWM</td>
<td>pulse width modulation</td>
</tr>
<tr>
<td>QAM</td>
<td>quadrature amplitude modulation</td>
</tr>
<tr>
<td>QoS</td>
<td>quality of service</td>
</tr>
<tr>
<td>QPSK</td>
<td>quadriphase PSK</td>
</tr>
<tr>
<td>RC</td>
<td>time constant: resistance-capacitance</td>
</tr>
<tr>
<td>RF</td>
<td>radio frequency</td>
</tr>
<tr>
<td>RFC</td>
<td>radio frequency choke</td>
</tr>
<tr>
<td>RFI</td>
<td>radio frequency interference</td>
</tr>
<tr>
<td>RMS</td>
<td>root mean squared</td>
</tr>
<tr>
<td>RS</td>
<td>Reed-Solomon</td>
</tr>
<tr>
<td>RV</td>
<td>random variable</td>
</tr>
<tr>
<td>RZ</td>
<td>return-to-zero</td>
</tr>
<tr>
<td>SDR</td>
<td>software-defined radio</td>
</tr>
<tr>
<td>SIR</td>
<td>signal-to-interference ratio</td>
</tr>
<tr>
<td>S/N, SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SDL</td>
<td>symmetrical DSL</td>
</tr>
<tr>
<td>SONET</td>
<td>Synchronous Optical Network</td>
</tr>
<tr>
<td>SS</td>
<td>spread-spectrum</td>
</tr>
<tr>
<td>SSB</td>
<td>single-sideband modulation</td>
</tr>
<tr>
<td>SX</td>
<td>simplex</td>
</tr>
<tr>
<td>TCM</td>
<td>trellis-coded modulation</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>transmission control protocol/Internet protocol</td>
</tr>
<tr>
<td>TDD</td>
<td>time division duplex</td>
</tr>
<tr>
<td>TDM</td>
<td>time-domain multiplexing</td>
</tr>
<tr>
<td>TDMA</td>
<td>time-domain multiple access</td>
</tr>
<tr>
<td>TH</td>
<td>time-hopping</td>
</tr>
<tr>
<td>THSS</td>
<td>time-hopping spread-spectrum</td>
</tr>
<tr>
<td>TH-UWB</td>
<td>time-hopping ultra-wideband</td>
</tr>
<tr>
<td>TR</td>
<td>transmit reference</td>
</tr>
<tr>
<td>TRF</td>
<td>tuned RF receiver</td>
</tr>
<tr>
<td>UHF</td>
<td>ultrahigh frequency</td>
</tr>
<tr>
<td>UMTS</td>
<td>universal mobile telecommunications systems, or 3G</td>
</tr>
<tr>
<td>USSB or USB</td>
<td>upper single-sideband modulation</td>
</tr>
<tr>
<td>UWB</td>
<td>ultra-wideband</td>
</tr>
</tbody>
</table>
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>voltage-controlled clock</td>
</tr>
<tr>
<td>VCO</td>
<td>voltage-controlled oscillator</td>
</tr>
<tr>
<td>VDSL</td>
<td>very high-bit DSL</td>
</tr>
<tr>
<td>VHDL</td>
<td>VHSIC (very high speed integrated circuit) hardware description language</td>
</tr>
<tr>
<td>VHF</td>
<td>very high frequency</td>
</tr>
<tr>
<td>VLSI</td>
<td>very large-scale integration</td>
</tr>
<tr>
<td>VOIP</td>
<td>voice-over-Internet protocol</td>
</tr>
<tr>
<td>VSB</td>
<td>vestigial-sideband modulation</td>
</tr>
<tr>
<td>W</td>
<td>watts</td>
</tr>
<tr>
<td>WBFM</td>
<td>wideband FM</td>
</tr>
<tr>
<td>WCDMA</td>
<td>wideband code division multiple access</td>
</tr>
<tr>
<td>WiLan</td>
<td>wireless local area network</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide Interoperability for Microwave Access</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Wireless Fidelity, or wireless local area network</td>
</tr>
<tr>
<td>WSS</td>
<td>wide sense stationary</td>
</tr>
<tr>
<td>ZOH</td>
<td>zero-order hold</td>
</tr>
</tbody>
</table>
Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A_c</td>
<td>amplitude constant and carrier amplitude constant</td>
</tr>
<tr>
<td>A_e</td>
<td>aperture area</td>
</tr>
<tr>
<td>A_m</td>
<td>tone amplitude</td>
</tr>
<tr>
<td>$A(t)$</td>
<td>envelope of a BP signal</td>
</tr>
<tr>
<td>B</td>
<td>bandwidth in hertz (Hz)</td>
</tr>
<tr>
<td>B_T</td>
<td>transmission bandwidth, or bandwidth of a bandpass signal</td>
</tr>
<tr>
<td>C</td>
<td>channel capacity, bits per second, capacitance in Farads, or check vector</td>
</tr>
<tr>
<td>$C_{vw}(t_1, t_2)$</td>
<td>covariance function of signals $v(t)$ and $w(t)$</td>
</tr>
<tr>
<td>D</td>
<td>deviation ratio, or pulse interval</td>
</tr>
<tr>
<td>DR</td>
<td>dynamic range</td>
</tr>
<tr>
<td>$DFT[], IDFT[]$</td>
<td>discrete and inverse discrete Fourier transform</td>
</tr>
<tr>
<td>E</td>
<td>error vector</td>
</tr>
<tr>
<td>E, E_1, E_0, E_b</td>
<td>signal energy, energy in bit 1, energy in bit 0, and bit energy</td>
</tr>
<tr>
<td>$E[]$</td>
<td>expected value operator</td>
</tr>
<tr>
<td>$F_X(x)$</td>
<td>cumulative distribution function of X</td>
</tr>
<tr>
<td>$F_{XY}(x, y)$</td>
<td>joint cumulative distribution of X and Y</td>
</tr>
<tr>
<td>G</td>
<td>generator vector</td>
</tr>
<tr>
<td>$G_x(f)$</td>
<td>power spectral density of signal $x(t)$</td>
</tr>
<tr>
<td>$G_{vw}(f)$</td>
<td>cross-spectral density functions of signals $v(t)$ and $w(t)$</td>
</tr>
<tr>
<td>$H(f)$</td>
<td>transfer or frequency-response function of a system</td>
</tr>
<tr>
<td>$H_c(f)$</td>
<td>channel’s frequency response</td>
</tr>
<tr>
<td>$H_{eq}(f)$</td>
<td>channel equalizer frequency response</td>
</tr>
<tr>
<td>$H_Q(f)$</td>
<td>transfer function of quadrature filter</td>
</tr>
<tr>
<td>IR</td>
<td>image rejection</td>
</tr>
<tr>
<td>$J_n(\beta)$</td>
<td>Bessel function of first kind, order n, argument β</td>
</tr>
<tr>
<td>L, L_{dB}</td>
<td>loss in linear and decibel units</td>
</tr>
<tr>
<td>L_u, L_d</td>
<td>uplink and downlink losses</td>
</tr>
<tr>
<td>M</td>
<td>numerical base, such that $q = M^r$ or message vector</td>
</tr>
<tr>
<td>N_D</td>
<td>destination noise power</td>
</tr>
<tr>
<td>N_R</td>
<td>received noise power</td>
</tr>
<tr>
<td>N_0</td>
<td>power spectral density or spectral density of white noise</td>
</tr>
<tr>
<td>$NF, or F$</td>
<td>noise figure</td>
</tr>
<tr>
<td>$N(f)$</td>
<td>noise signal spectrum</td>
</tr>
<tr>
<td>P</td>
<td>power in watts</td>
</tr>
<tr>
<td>P_c</td>
<td>unmodulated carrier power</td>
</tr>
<tr>
<td>$P(f)$</td>
<td>pulse spectrum</td>
</tr>
<tr>
<td>P_{er}, P_{er}, P_{e1}</td>
<td>probability of error, probability of zero error, probability of 1 error</td>
</tr>
<tr>
<td>P_{be}, P_{we}</td>
<td>probability of bit and word errors</td>
</tr>
<tr>
<td>P_{out}, P_{in}</td>
<td>output and input power (watts)</td>
</tr>
<tr>
<td>P_{dBW}, P_{dBmW}</td>
<td>power in decibel watts and milliwatts</td>
</tr>
<tr>
<td>P_{sb}</td>
<td>power per sideband</td>
</tr>
<tr>
<td>$P(A), P(i,n)$</td>
<td>probability of event A occurring and probability of i errors in n-bit word</td>
</tr>
<tr>
<td>$Q[]$</td>
<td>gaussian probability function</td>
</tr>
</tbody>
</table>
Mathematical Symbols

R resistance in ohms
$R(t)$ autocorrelation function for white noise
R_c code rate
$R_{v_1}(t_1, t_2)$ autocorrelation function of signal $v(t)$
$R_{vw}(t_1, t_2)$ cross-correlation function of signals $v(t)$ and $w(t)$
S_T average transmitted power
S_X message power
$S/N, (S/N)_R, (S/N)_D$ signal-to-noise ratio (SNR), received SNR, and destination SNR
S_D destination signal power
S_R received signal power
T_b bit duration
T_0, T repetition period
T_c chip interval for DSSS
T_s sample interval or period
$V_{bp}(f)$ frequency domain version of a bandpass signal
W message bandwidth
X code vector
X, Y, Z random variables
Y received code vector
$X(f), Y(f)$ input and output spectrums
$X_{bp}(f)$ bandpass spectrum
a_k kth symbol
a_n, b_n trigonometric Fourier series coefficients
c speed of light in kilometer per second
c_n nth coefficient for exponential Fourier series, or transversal filter weight
c^{n+1}_n $(k + 1)$th estimate of the nth tap coefficient
$c(t)$ output from PN generator or voltage-controlled clock
d physical distance
d_{min} code distance
f frequency in hertz
$f(t)$ instantaneous frequency
f_c carrier or center frequency
f_c' image frequency
f_d frequency interval
f_{IF} intermediate frequency
f_{LO} local oscillator frequency
f_k, f_n discrete frequency
f_m tone frequency
f_Δ frequency deviation constant
f_0 center frequency
f_s sample rate
g, g_T, g_R power gain and transmitter and receiver power gains
g_{dB} power gain in decibels (dB)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(t)$</td>
<td>impulse-response function of a system</td>
</tr>
<tr>
<td>$h_c(t)$</td>
<td>impulse-response function of a channel</td>
</tr>
<tr>
<td>$h_k(t), h_k(n)$</td>
<td>impulse-response function of kth portion of subchannel</td>
</tr>
<tr>
<td>$h_q(t)$</td>
<td>impulse-response function of a quadrature filter</td>
</tr>
<tr>
<td>$\text{Im}[x]$ and $\text{Re}[x]$</td>
<td>imaginary and real components of x</td>
</tr>
<tr>
<td>j</td>
<td>imaginary number operator</td>
</tr>
<tr>
<td>l</td>
<td>length in kilometers</td>
</tr>
<tr>
<td>m</td>
<td>number of repeater sections</td>
</tr>
<tr>
<td>m_k, \hat{m}_k</td>
<td>actual and estimated k message symbol</td>
</tr>
<tr>
<td>$n(t)$</td>
<td>noise signal</td>
</tr>
<tr>
<td>$p(t)$</td>
<td>pulse signal</td>
</tr>
<tr>
<td>$p^0(t), p^1(t)$</td>
<td>gaussian and first-order monocycle pulses</td>
</tr>
<tr>
<td>$\tilde{P}_n(t)$</td>
<td>output of transversal filter’s n delay element</td>
</tr>
<tr>
<td>$p_{eq}(t_k)$</td>
<td>output of an equalizing filter</td>
</tr>
<tr>
<td>$p_{X}(x)$</td>
<td>probability density function of X</td>
</tr>
<tr>
<td>$p_{XY}(x)$</td>
<td>joint probability density function of X and Y</td>
</tr>
<tr>
<td>q</td>
<td>number of quantum levels</td>
</tr>
<tr>
<td>r, r_b</td>
<td>signal rate, bit rate</td>
</tr>
<tr>
<td>$s(t)$</td>
<td>switching function for sampling</td>
</tr>
<tr>
<td>$s_0(t), s_1(t)$</td>
<td>inputs to multiplier of correlation detector</td>
</tr>
<tr>
<td>$\text{sgn}(t)$</td>
<td>signum function</td>
</tr>
<tr>
<td>t</td>
<td>time in seconds</td>
</tr>
<tr>
<td>t_d</td>
<td>time delay in seconds</td>
</tr>
<tr>
<td>t_k</td>
<td>kth instant of time</td>
</tr>
<tr>
<td>t_r</td>
<td>rise time in seconds</td>
</tr>
<tr>
<td>$u(t)$</td>
<td>unit step function, or output from rake diversity combiner</td>
</tr>
<tr>
<td>v</td>
<td>number of bits</td>
</tr>
<tr>
<td>$v(t)$</td>
<td>input to a detector</td>
</tr>
<tr>
<td>$v_k(t)$</td>
<td>kth subcarrier function</td>
</tr>
<tr>
<td>$\langle v(t) \rangle$</td>
<td>average value of $v(t)$</td>
</tr>
<tr>
<td>$v_{by}(t)$</td>
<td>time-domain expression of a bandpass signal</td>
</tr>
<tr>
<td>$w^*(t)$</td>
<td>complex conjugate of $w(t)$</td>
</tr>
<tr>
<td>\hat{x}</td>
<td>Hilbert transform of x, or estimate of x</td>
</tr>
<tr>
<td>$x(t), y(t)$</td>
<td>input and output time functions</td>
</tr>
<tr>
<td>$x(t)$</td>
<td>message signal</td>
</tr>
<tr>
<td>$x(k), x(kT_s)$</td>
<td>sampled version of $x(t)$</td>
</tr>
<tr>
<td>$X(n)$</td>
<td>discrete Fourier transform of $x(k)$</td>
</tr>
<tr>
<td>$x_p(t)$</td>
<td>modulated signal at a subcarrier frequency</td>
</tr>
<tr>
<td>$x_i(t)$</td>
<td>modulated signal</td>
</tr>
<tr>
<td>$x_q(k)$</td>
<td>quantized value for kth value of x</td>
</tr>
<tr>
<td>$y(t)$</td>
<td>detector output</td>
</tr>
<tr>
<td>$x_1(t), y_1(t)$</td>
<td>subchannel signal</td>
</tr>
<tr>
<td>$y_{D}(t)$</td>
<td>signal at destination</td>
</tr>
<tr>
<td>$z_m(t)$</td>
<td>output of matched filter or correlation detector</td>
</tr>
</tbody>
</table>
Mathematical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>loss coefficient in decibels per kilometer, or error probability</td>
</tr>
<tr>
<td>γ</td>
<td>baseband signal to noise ratio</td>
</tr>
<tr>
<td>γ_TH</td>
<td>threshold signal to noise ratio (baseband)</td>
</tr>
<tr>
<td>$\gamma_b = E_b/N_0$</td>
<td>bit energy signal-to-noise ratio</td>
</tr>
<tr>
<td>δ</td>
<td>incremental delay</td>
</tr>
<tr>
<td>$\delta(t)$</td>
<td>unit impulse, or Dirac delta function</td>
</tr>
<tr>
<td>$\epsilon(t), \epsilon, \epsilon_k$</td>
<td>error, increment, and quantization error</td>
</tr>
<tr>
<td>Δ</td>
<td>quantization step size</td>
</tr>
<tr>
<td>λ</td>
<td>wavelength, meters, or time delay</td>
</tr>
<tr>
<td>μ</td>
<td>modulation index, or packet rate</td>
</tr>
<tr>
<td>σ</td>
<td>standard deviation</td>
</tr>
<tr>
<td>σ_y, σ_Y^2</td>
<td>standard deviation and variance of Y</td>
</tr>
<tr>
<td>τ</td>
<td>pulse width, or time constant</td>
</tr>
<tr>
<td>ϕ</td>
<td>phase angle</td>
</tr>
<tr>
<td>$\phi(t)$</td>
<td>instantaneous phase</td>
</tr>
<tr>
<td>ϕ_Δ</td>
<td>phase deviation constant</td>
</tr>
<tr>
<td>$\phi_c(t)$</td>
<td>phase of a BP signal</td>
</tr>
<tr>
<td>ω_c</td>
<td>carrier frequency in radians per second</td>
</tr>
<tr>
<td>ω_m</td>
<td>tone frequency in radians per second</td>
</tr>
<tr>
<td>$\Pi(t/\tau)$</td>
<td>rectangular pulse</td>
</tr>
<tr>
<td>$\Lambda(t/\tau)$</td>
<td>triangle pulse</td>
</tr>
<tr>
<td>L</td>
<td>Laplace operator</td>
</tr>
<tr>
<td>$\mathcal{F}, \mathcal{F}^{-1}$</td>
<td>Fourier transform operator and its inverse</td>
</tr>
<tr>
<td>*</td>
<td>convolution operator</td>
</tr>
<tr>
<td>\Im, \Im_0, \Im_∞</td>
<td>noise temperatures</td>
</tr>
</tbody>
</table>
Introduction
Attention, the Universe! By kingdoms, right wheel!” This prophetic phrase represents the first telegraph message on record. Samuel F. B. Morse sent it over a 16 km line in 1838. Thus a new era was born: the era of electrical communication.

Now, over a century and a half later, communication engineering has advanced to the point that earthbound TV viewers watch astronauts working in space. Telephone, radio, and television are integral parts of modern life. Long-distance circuits span the globe carrying text, data, voice, and images. Computers talk to computers via intercontinental networks, and control virtually every electrical appliance in our homes. Wireless personal communication devices keep us connected wherever we go. Certainly great strides have been made since the days of Morse. Equally certain, coming decades will usher in many new achievements of communication engineering.

This textbook introduces electrical communication systems, including analysis methods, design principles, and hardware considerations. We begin with a descriptive overview that establishes a perspective for the chapters that follow.

1.1 ELEMENTS AND LIMITATIONS OF COMMUNICATION SYSTEMS

A communication system conveys information from its source to a destination some distance away. There are so many different applications of communication systems that we cannot attempt to cover every type, nor can we discuss in detail all the individual parts that make up a specific system. A typical system involves numerous components that run the gamut of electrical engineering—circuits, electronics, electromagnetics, signal processing, microprocessors, and communication networks, to name a few of the relevant fields. Moreover, a piece-by-piece treatment would obscure the essential point that a communication system is an integrated whole that really does exceed the sum of its parts.

We therefore approach the subject from a more general viewpoint. Recognizing that all communication systems have the same basic function of information transfer, we’ll seek out and isolate the principles and problems of conveying information in electrical form. These will be examined in sufficient depth to develop analysis and design methods suited to a wide range of applications. In short, this text is concerned with communication links as systems.

Information, Messages, and Signals

Clearly, the concept of information is central to communication. But information is a loaded word, implying semantic and philosophical notions that defy precise definition. We avoid these difficulties by dealing instead with the message, defined as the physical manifestation of information as produced by the source. Whatever form the message takes, the goal of a communication system is to reproduce at the destination an acceptable replica of the source message.

There are many kinds of information sources, including machines as well as people, and messages appear in various forms. Nonetheless, we can identify two distinct message categories, analog and digital. This distinction, in turn, determines the criterion for successful communication.
An analog message is a physical quantity that varies with time, usually in a smooth and continuous fashion. Examples of analog messages are the acoustic pressure produced when you speak, the angular position of an aircraft gyro, or the light intensity at some point in a television image. Since the information resides in a time-varying waveform, an analog communication system should deliver this waveform with a specified degree of fidelity.

A digital message is an ordered sequence of symbols selected from a finite set of discrete elements. Examples of digital messages are the letters printed on this page, a listing of hourly temperature readings, or the keys you press on a computer keyboard. Since the information resides in discrete symbols, a digital communication system should deliver these symbols with a specified degree of accuracy in a specified amount of time.

Whether analog or digital, few message sources are inherently electrical. Consequently, most communication systems have input and output transducers as shown in Fig. 1.1–1. The input transducer converts the message to an electrical signal, say a voltage or current, and another transducer at the destination converts the output signal to the desired message form. For instance, the transducers in a voice communication system could be a microphone at the input and a loudspeaker at the output.

We’ll assume hereafter that suitable transducers exist, and we’ll concentrate primarily on the task of signal transmission. In this context the terms signal and message will be used interchangeably, since the signal, like the message, is a physical embodiment of information.

Elements of a Communication System

Figure 1.1–2 depicts the elements of a communication system, omitting transducers but including unwanted contaminations. There are three essential parts of any communication system: the transmitter, transmission channel, and receiver. Each part plays a particular role in signal transmission, as follows.

The transmitter processes the input signal to produce a transmitted signal suited to the characteristics of the transmission channel. Signal processing for transmission almost always involves modulation and may also include coding.

The transmission channel is the electrical medium that bridges the distance from source to destination. It may be a pair of wires, a coaxial cable, or a radio wave or laser beam. Every channel introduces some amount of transmission loss or attenuation, so the signal power, in general, progressively decreases with increasing distance.
CHAPTER 1 • Introduction

The receiver operates on the output signal from the channel in preparation for delivery to the transducer at the destination. Receiver operations include amplification, to compensate for transmission loss, and demodulation and decoding to reverse the signal processing performed at the transmitter. Filtering is another important function at the receiver, for reasons discussed next.

Various unwanted undesirable effects crop up in the course of signal transmission. Attenuation is undesirable since it reduces signal strength at the receiver. More serious, however, are distortion, interference, and noise, which appear as alterations of the signal’s waveshape or spectrum. Although such contaminations may occur at any point, the standard convention is to lump them entirely on the channel, treating the transmitter and receiver as being ideal. Figure 1.1–2 reflects this convention. Fig. 1.1–3a is a graph of an ideal 1101001 binary sequence as it leaves the transmitter. Note the sharp edges that define the signal’s values. Figures 1.1–3b through d show the contaminating effects of distortion, interference, and noise respectively.

Distortion is waveform perturbation caused by imperfect response of the system to the desired signal itself. Unlike noise and interference, distortion disappears when the signal is turned off. If the channel has a linear but distorting response, then distortion may be corrected, or at least reduced, with the help of special filters called equalizers.

Interference is contamination by extraneous signals from human sources—other transmitters, power lines and machinery, switching circuits, and so on. Interference occurs most often in radio systems whose receiving antennas usually intercept several signals at the same time. Radio-frequency interference (RFI) also appears in cable systems if the transmission wires or receiver circuitry pick up signals radiated from nearby sources. With the exception of systems that employ code division multiple access (CDMA), appropriate filtering removes interference to the extent that the interfering signals occupy different frequency bands than the desired signal.

Noise refers to random and unpredictable electrical signals produced by natural processes both internal and external to the system. When such random variations are superimposed on an information-bearing signal, the message may be partially corrupted or totally obliterated. Filtering reduces noise contamination, but there inevitably remains some amount of noise that cannot be eliminated. This noise constitutes one of the fundamental system limitations.
Finally, it should be noted that Fig. 1.1–2 represents one-way, or simplex (SX), transmission. Two-way communication, of course, requires a transmitter and receiver at each end. A full-duplex (FDX) system has a channel that allows simultaneous transmission in both directions. A half-duplex (HDX) system allows transmission in either direction but not at the same time.

Fundamental Limitations

An engineer faces two general kinds of constraints when designing a communication system. On the one hand are the **technological problems**, including such diverse considerations as hardware availability, economic factors, governmental regulations, and so on. These are problems of feasibility that can be solved in theory, even though perfect solutions may not be practical. On the other hand are the **fundamental physical limitations**, the laws of nature as they pertain to the task in question. These limitations ultimately dictate what can or cannot be accomplished, irrespective of the technological problems. Two fundamental limitations of information transmission by electrical means are **bandwidth** and **noise**.

The concept of bandwidth applies to both signals and systems as a measure of **speed**. When a signal changes rapidly with time, its frequency content, or **spectrum**, extends over a wide range, and we say that the signal has a large bandwidth. Similarly, the ability of a system to follow signal variations is reflected in its usable frequency response, or **transmission bandwidth**. Now all electrical systems contain energy-storage elements, and stored energy cannot be changed instantaneously. Consequently, every communication system has a finite bandwidth \(B \) that limits the rate of signal variations.

Communication under real-time conditions requires sufficient transmission bandwidth to accommodate the signal spectrum; otherwise, severe distortion will result.
Thus, for example, a bandwidth of several megahertz is needed for a TV video signal, while the much slower variations of a voice signal fit into $B \approx 3$ kHz. For a digital signal with r symbols per second, the bandwidth must be $B \geq r/2$. In the case of information transmission without a real-time constraint, the available bandwidth determines the maximum signal speed. The time required to transmit a given amount of information is therefore inversely proportional to B.

Noise imposes a second limitation on information transmission. Why is noise unavoidable? Rather curiously, the answer comes from kinetic theory. At any temperature above absolute zero, thermal energy causes microscopic particles to exhibit random motion. The random motion of charged particles such as electrons generates random currents or voltages called thermal noise. There are also other types of noise, but thermal noise appears in every communication system.

We measure noise relative to an information signal in terms of the signal-to-noise power ratio S/N (or SNR). Thermal noise power is ordinarily quite small, and S/N can be so large that the noise goes unnoticed. At lower values of S/N, however, noise degrades fidelity in analog communication and produces errors in digital communication. These problems become most severe on long-distance links when the transmission loss reduces the received signal power down close to the noise level. Amplification at the receiver is then to no avail, because the noise will be amplified along with the signal.

Taking both limitations into account, Shannon (1948)† stated that the rate of information transmission cannot exceed the channel capacity.

$$C = B \log_2 (1 + S/N) = 3.32 B \log_{10} (1 + S/N)$$

This relationship, known as the Hartley-Shannon law, sets an upper limit on the performance of a communication system with a given bandwidth and signal-to-noise ratio. Note, this law assumes the noise is random with a gaussian distribution, and the information is randomly coded.

1.2 MODULATION AND CODING

Modulation and coding are operations performed at the transmitter to achieve efficient and reliable information transmission. So important are these operations that they deserve further consideration here. Subsequently, we’ll devote several chapters to modulating and coding techniques.

Modulation Methods

Modulation involves two waveforms: a modulating signal that represents the message and a carrier wave that suits the particular application. A modulator systematically alters the carrier wave in correspondence with the variations of the modulating signal.

†References are indicated in this fashion throughout the text. Complete citations are listed alphabetically by author in the References at www.mhhe.com/carlsoncrilly.
The resulting modulated wave thereby “carries” the message information. We generally require that modulation be a reversible operation, so the message can be retrieved by the complementary process of demodulation.

Figure 1.2–1 depicts a portion of an analog modulating signal (part a) and the corresponding modulated waveform obtained by varying the amplitude of a sinusoidal carrier wave (part b). This is the familiar amplitude modulation (AM) used for radio broadcasting and other applications. A message may also be impressed on a sinusoidal carrier by frequency modulation (FM) or phase modulation (PM). All methods for sinusoidal carrier modulation are grouped under the heading of continuous-wave (CW) modulation.

Incidentally, you act as a CW modulator whenever you speak. The transmission of voice through air is accomplished by generating carrier tones in the vocal cords and modulating these tones with muscular actions of the oral cavity. Thus, what the ear hears as speech is a modulated acoustic wave similar to an AM signal.

Most long-distance transmission systems employ CW modulation with a carrier frequency much higher than the highest frequency component of the modulating signal. The spectrum of the modulated signal then consists of a band of frequency components clustered around the carrier frequency. Under these conditions, we say that CW modulation produces frequency translation. In AM broadcasting, for example, the message spectrum typically runs from 100 Hz to 5 kHz; if the carrier frequency is 600 kHz, then the spectrum of the modulated carrier covers 595–605 kHz.
Another modulation method, called pulse modulation, has a periodic train of short pulses as the carrier wave. Figure 1.2–1c shows a waveform with pulse amplitude modulation (PAM). Notice that this PAM wave consists of short samples extracted from the analog signal at the top of the figure. Sampling is an important signal-processing technique, and, subject to certain conditions, it’s possible to reconstruct an entire waveform from periodic samples.

But pulse modulation by itself does not produce the frequency translation needed for efficient signal transmission. Some transmitters therefore combine pulse and CW modulation. Other modulation techniques, described shortly, combine pulse modulation with coding.

Modulation Benefits and Applications

The primary purpose of modulation in a communication system is to generate a modulated signal suited to the characteristics of the transmission channel. Actually, there are several practical benefits and applications of modulation briefly discussed below.

Modulation for Efficient Transmission

Signal transmission over appreciable distance always involves a traveling electromagnetic wave, with or without a guiding medium. The efficiency of any particular transmission method depends upon the frequency of the signal being transmitted. By exploiting the frequency-translation property of CW modulation, message information can be impressed on a carrier whose frequency has been selected for the desired transmission method.

As a case in point, efficient line-of-sight ratio propagation requires antennas whose physical dimensions are at least 1/10 of the signal’s wavelength. Unmodulated transmission of an audio signal containing frequency components down to 100 Hz would thus call for antennas some 300 km long. Modulated transmission at 100 MHz, as in FM broadcasting, allows a practical antenna size of about one meter. At frequencies below 100 MHz, other propagation modes have better efficiency with reasonable antenna sizes.

For reference purposes, Fig. 1.2–2 shows those portions of the electromagnetic spectrum suited to signal transmission. The figure includes the free-space wavelength, frequency-band designations, and typical transmission media and propagation modes. Also indicated are representative applications authorized by the U.S. Federal Communications Commission (FCC). See http://www.ntia.doc.gov/osmhome/chap04chart.pdf for a complete description of U.S. frequency allocations. It should be noted that, throughout the spectrum, the FCC has authorized industrial, scientific, and medical (ISM) bands.† These bands allow limited power transmission from various wireless industrial, medical, and experimental transmitting devices as well as unintentional radiators such as microwave ovens, etc. It is understood that ISM users in these bands must tolerate interference from inputs from other ISM radiators.

†ISM bands with center frequencies include 6.789 MHz, 13.560 MHz, 27.120 MHz, 40.68 MHz, 915 MHz, 2.45 GHz, 5.8 GHz, 24.125 GHz, 61.25 GHz, 122.5 GHz, and 245 GHz.
Figure 1.2–2 The electromagnetic spectrum.*

*The U.S. Government’s National Institute of Standards and Technology (NIST) broadcasts time and frequency standards at 60 kHz and 2.5, 5, 10, 15, and 20 MHz.
CHAPTER 1 • Introduction

Modulation to Overcome Hardware Limitations

The design of a communication system may be constrained by the cost and availability of hardware, whose performance often depends on the frequencies involved. Modulation permits the designer to place a signal in some frequency range that avoids hardware limitations. A particular concern along this line is the question of fractional bandwidth, defined as absolute bandwidth divided by the center frequency. Hardware costs and complications are minimized if the fractional bandwidth is kept within 1–10 percent. Fractional-bandwidth considerations account for the fact that modulation units are found in receivers as well as in transmitters.

It likewise follows that signals with large bandwidth should be modulated on high-frequency carriers. Since information rate is proportional to bandwidth, according to the Hartley-Shannon law, we conclude that a high information rate requires a high carrier frequency. For instance, a 5 GHz microwave system can accommodate 10,000 times as much information in a given time interval as a 500 kHz radio channel. Going even higher in the electromagnetic spectrum, one optical laser beam has a bandwidth potential equivalent to 10 million TV channels.

Modulation to Reduce Noise and Interference

A brute-force method for combating noise and interference is to increase the signal power until it overwhelms the contaminations. But increasing power is costly and may damage equipment. (One of the early transatlantic cables was apparently destroyed by high-voltage rupture in an effort to obtain a usable received signal.) Fortunately, FM and certain other types of modulation have the valuable property of suppressing both noise and interference.

This property is called wideband noise reduction because it requires the transmission bandwidth to be much greater than the bandwidth of the modulating signal. Wideband modulation thus allows the designer to exchange increased bandwidth for decreased signal power, a trade-off implied by the Hartley-Shannon law. Note that a higher carrier frequency may be needed to accommodate wideband modulation.

Modulation for Frequency Assignment

When you tune a radio or television set to a particular station, you are selecting one of the many signals being received at that time. Since each station has a different assigned carrier frequency, the desired signal can be separated from the others by filtering. Were it not for modulation, only one station could broadcast in a given area; otherwise, two or more broadcasting stations would create a hopeless jumble of interference.

Modulation for Multiplexing

Multiplexing is the process of combining several signals for simultaneous transmission on one channel. Frequency-division multiplexing (FDM) uses CW modulation to put each signal on a different carrier frequency, and a bank of filters separates the signals at the destination. Time-division multiplexing (TDM) uses pulse modulation to put samples of different signals in nonoverlapping time slots. Back in Fig. 1.2–1c, for instance, the gaps between pulses could be filled with samples from other signals. A switching circuit at the destination then separates the samples for signal reconstruction. Applications of multiplexing include FM stereophonic broadcasting, cable TV, and long-distance telephone.
A variation of multiplexing is **multiple access (MA)**. Whereas multiplexing involves a fixed assignment of the common communications resource (such as frequency spectrum) at the local level, MA involves the remote sharing of the resource. For example, code-division multiple access (CDMA) assigns a unique code to each digital cellular user, and the individual transmissions are separated by correlation between the codes of the desired transmitting and receiving parties. Since CDMA allows different users to share the same frequency band simultaneously, it provides another way of increasing communication efficiency.

Coding Methods and Benefits

We've described modulation as a signal-processing operation for effective transmission. Coding is a symbol-processing operation for improved communication when the information is digital or can be approximated in the form of discrete symbols. Both coding and modulation may be necessary for reliable long-distance digital transmission.

The operation of **encoding** transforms a digital message into a new sequence of symbols. **Decoding** converts an encoded sequence back to the original message with, perhaps, a few errors caused by transmission contaminations. Consider a computer or other digital source having $M \gg 2$ symbols. Uncoded transmission of a message from this source would require M different waveforms, one for each symbol. Alternatively, each symbol could be represented by a **binary codeword** consisting of K binary digits. Since there are 2^K possible codewords made up of K binary digits, we need $K \geq \log_2 M$ digits per codeword to encode M source symbols. If the source produces r symbols per second, the binary code will have Kr digits per second, and the transmission bandwidth requirement is K times the bandwidth of an uncoded signal.

In exchange for increased bandwidth, binary encoding of M-ary source symbols offers two advantages. First, less complicated hardware is needed to handle a binary signal composed of just two different waveforms. Second, everything else being equal, contaminating noise has less effect on a binary signal than it does on a signal composed of M different waveforms, so there will be fewer errors caused by the noise. Hence, this coding method is essentially a digital technique for wideband noise reduction. The exception to the above rule would be if each of the M different waveforms were transmitted on a different frequency, space, or were mutually orthogonal.

Channel coding is a technique used to introduce controlled redundancy to further improve the performance reliability in a noisy channel. **Error-control coding** goes further in the direction of wideband noise reduction. By appending extra **check digits** to each binary codeword, we can detect, or even correct, most of the errors that do occur. Error-control coding increases both bandwidth and hardware complexity, but it pays off in terms of nearly error-free digital communication despite a low signal-to-noise ratio.

Now, let's examine the other fundamental system limitation: bandwidth. Many communication systems rely on the telephone network for transmission. Since the
bandwidth of the transmission system is limited by decades-old design specifications, in order to increase the data rate, the signal bandwidth must be reduced. High-speed modems (data modulator/demodulators) are one application requiring such data reduction. **Source-coding** techniques take advantage of the statistical knowledge of the source signal to enable efficient encoding. Thus, source coding can be viewed as the dual of channel coding in that it reduces redundancy to achieve the desired efficiency.

Finally, the benefits of digital coding can be incorporated in analog communication with the help of an analog-to-digital conversion method such as pulse-code-modulation (PCM). A PCM signal is generated by sampling the analog message, digitizing (quantizing) the sample values, and encoding the sequence of digitized samples. In view of the reliability, versatility, and efficiency of digital transmission, PCM has become an important method for analog communication. Furthermore, when coupled with high-speed microprocessors, PCM makes it possible to substitute **digital signal processing** for analog operations.

1.3 ELECTROMAGNETIC WAVE PROPAGATION OVER WIRELESS CHANNELS

Over 100 years ago, Marconi established the first wireless communication between North America and Europe. Today, wireless communication is more narrowly defined to primarily mean the ubiquitous cell phones, wireless computer networks, other personal communication devices, and wireless sensors.

Like light waves, radio signals by nature only travel in a straight line, and therefore propagation beyond line-of-sight (LOS) requires a means of deflecting the waves. Given that the earth is spherical, the practical distance for LOS communication is approximately 48 km, or 30 miles, depending on the terrain and the height of the antennas, as illustrated in Fig. 1.3–1. In order to maximize coverage, therefore, television broadcast antennas and cell-phone base antennas are usually located on hills, high towers, and/or mountains.

However, there are several effects that enable light as well as electromagnetic (EM) waves to propagate around obstructions or beyond the earth’s horizon. These are refraction, diffraction, reflection, and scattering. These mechanisms can be both useful and troublesome to the radio engineer. For example, before satellite technology, international broadcasts and military communications took advantage of the fact that the ionosphere’s F-layer reflects\(^1\) short-wave radio signals, as shown in Fig. 1.3–2. Here signals from Los Angeles (LA) travel 3900 km to New York City (NY). However, the ability to reach a specific destination using ionospheric reflection is dependent on the frequency, type of antenna, solar activity, and other phenomena that affect the ionosphere. We also observe that, while our signal of interest will propagate from LA to NY, it will likely skip over Salt Lake City and Chicago. Therefore, ionospheric propagation is a relatively unreliable means of radio frequency

\(^1\)Radio waves actually refract off the ionosphere. See further discussion.
1.3 Electromagnetic Wave Propagation Over Wireless Channels

Figure 1.3–1 Line-of-sight communication and the earth’s curve.

Figure 1.3–2 Earth’s atmosphere regions and skywave propagation via the E- and F-layers of the ionosphere. Distances are approximate, and for clarity, the figure is not to scale.

(RF) communication. Reliability can be improved, however, if we employ frequency diversity, that is, send the same signal over several different frequencies to increase the probability that one of them will reach the intended destination. On the other hand, as shown in Fig. 1.3–3, reflection of radio signals may cause multipath interference whereby the signal and a delayed version(s) interfere with each other at the destination. This destructive addition of signals causes signal fading. If you observe Fig. 1.3–3, the received signal is the sum of three components: the direct one plus two multipath ones, or simply

\[y(t) = a_1 x(t) + a_2 x(t - \alpha) + a_3 x(t - \beta) \]

Depending on values of \(\alpha \) and \(\beta \), we can have constructive or destructive interference, and thus the amplitude of \(y(t) \) could be greatly reduced or increased.
Signal fading, or attenuation, can also be caused by losses in the medium. Let’s consider the various means by which RF signals can be deflected as well as provide a brief description of general radio propagation. We draw on material from E. Jordan and K. Balmain (1971) and the ARRL Handbook’s chapter on radio propagation.

RF Wave Deflection

In addition to waves reflecting from buildings, they can also reflect off of hills, automobiles, and even airplanes. For example, two stations 900 km apart can communicate via reflection from an airplane whose altitude is 12 km. Of course, this would only be suitable for experimental systems.

Waves bend by refraction because their velocity changes when passing from one medium to another with differing indices of refraction. This explains why an object in water is not located where it appears to be.

Diffraction occurs when the wave front meets a sharp edge and is delayed then reflected off to the other side, redirecting or bending the rays as shown in Fig. 1.3–4a. In some cases, the edge doesn’t have to be sharp, and as shown in Figs. 1.3–4b and c, signals can be diffracted from a building or mountain. Note Fig. 1.3–4b is another illustration of multipath caused by diffraction and reflection. At wavelengths above 300 meters (i.e., below 1 MHz), the earth acts as a diffractor and enables ground-wave propagation.

If the medium contains reflective particles, light or radio waves may be scattered and thus deflected. A common example is fog’s causing automobile headlight beams to be scattered. Similarly, meteor showers will leave ionized trails in the earth’s atmosphere that scatter radio waves and allow non-LOS propagation for signals in the range of 28–432 MHz. This, along with other propagation mechanisms, can be an extremely transient phenomenon.

Skywave Propagation

Skywave propagation is where radio waves are deflected in the troposphere or ionosphere to enable communication distances that well exceed the optical LOS. Figure 1.3–2 shows the regions of the earth’s atmosphere including the troposphere...
1.3 Electromagnetic Wave Propagation Over Wireless Channels

and the ionosphere’s D-, E-, and F-layers. Also shown are their approximate respective distances from the earth’s surface. The troposphere, which is 78 percent nitrogen, 21 percent oxygen, and 1 percent other gases, is the layer immediately above the earth and where we get clouds and weather. Thus its density will vary according to the air temperature and moisture content. The ionosphere starts at about 70 km and contains mostly hydrogen and helium gases. The behavior of these layers depends on solar activity, ionized by the sun’s ultraviolet light, causing an increasing electron density with altitude. The D-layer (70–80 km) is present only during the day and, depending on the transmission angle, will strongly absorb radio signals below about 5–10 MHz. Therefore, signals below these frequencies are propagated beyond LOS primarily via ground wave. This is why you hear only local AM broadcast signals during the day. The E-layer (about 100 km) also exists primarily during the day. Layers F1 and F2 exist during the day, but at night these combine to form a single F-layer. The E and F layers, as well as to a lesser extent the troposphere, are the basis for skywave propagation.

While the primary mechanism for bending radio waves in the E and F layers appears to be reflection, it is actually refraction as shown in Fig. 1.3–5. The particular layer has a refractive index that increases with altitude. This causes the entering radio wave to be refracted in a downward curvature. The thickness of the layer and electron density gradient may be such that the curvature is sufficient enough to refract the wave back to earth.

The geometry and altitude of the E- and F-layers are such that the maximum distance of one hop from these layers is 2500 and 4000 km respectively. Note, in observing Fig. 1.3–2, the distance from LA to NY is 3900 km, and Salt Lake City to Chicago is 2000 km (E-layer). As Fig. 1.3–6 indicates, multiple hops can occur between the earth and E- and F-layers, and/or the F- and E-layers. Multiple hops make it possible for signals to propagate halfway around the earth. Of course, there is some loss of signal strength with each hop.
During the day, and depending on solar activity, the E-layer is capable of deflecting signals up to 20 MHz. At other times, aurora borealis (or australis), the northern (or southern) lights, will cause high-energy particles to ionize gasses in the E-layer, enabling propagation of signals up to 900 MHz. There is also Sporadic E skip, which enables propagation for frequencies up to 220 MHz or so. The F-layer will enable deflection of signals up to approximately 20 MHz, but during sunspot activity signals above 50 MHz have been propagated thousands of miles via the F-layer.

The maximum frequency at which the ionosphere is capable of refracting a perpendicular signal back to earth is referred to as the **maximum usable frequency** (MUF). However, in reality the signal paths are not perpendicular to the ionosphere, and thus the ionosphere may refract even higher frequencies since a lower launch
angle encounters a thicker layer. The MUF will vary depending on solar activity, but is usually at least 14 MHz, even if for a few hours each day.

Similarly, temperature inversions, moisture, and other weather conditions in the troposphere may refract or scatter the radio wave. Even under normal circumstances, because air has a nonhomogenous index of refraction, horizontal waves will have a downward curvature and thus be capable of traveling just beyond LOS. In any case, troposphere bending, or tropo scatter, primarily affects signals above 30 MHz. While this is a short-term effect, there have been cases where 220 and 432 MHz signals have traveled more than 2500 miles.

We summarize with the following statements with respect to propagation via the atmosphere: (a) The ionosphere will enable signals below the MUF to propagate great distances beyond LOS, but may skip over the intended destination; thus, we have to employ frequency diversity and different antenna angles to increase the probability of the signal’s reaching its destination. (b) There can be a great variation in the MUF depending on solar activity. (c) Signal propagation beyond LOS for frequencies above 14–30 MHz is extremely transient and unreliable. This is why we now use satellites for reliable communications for signals above 30 MHz. (d) While propagation beyond LOS using the atmosphere as well as other objects is not dependable, when it does occur it can cause interference between different users as well as multipath interference. The radio engineer needs to be aware of all of the mentioned propagation modes and design a system accordingly.

1.4 EMERGING DEVELOPMENTS

Traditional telephone communication has been implemented via circuit switching, as shown in Fig. 1.4–1a, in which a dedicated (or a virtual) line is assigned to connect the source and destination. The Internet, originally designed for efficient and fast text and data transmission, uses packet switching in which the data stream is broken up into packets and then routed to the destination via a set of available channels to be reconstructed at the destination. Fig. 1.4–1b shows how telephone and text information is sent via packet switching. Packet switching is more efficient than circuit switching if the data are bursty or intermittent, as is the case with text, but would not normally be tolerated for voice telephone. With the continued development of high-speed data routers and with the existing cable television infrastructure, Internet telephone, or Voice-over-Internet Protocol (VoIP), is becoming a viable alternative to standard telephone circuit switching. In fact, third-generation (3G) wireless phones will primarily use packet switching.

3G wireless systems, or Universal Mobile Telecommunications Systems (UMTS), are the successor to the original first- and second-generation (1G and 2G) voice-only cell-phone systems. 3G is now a global standard for wireless phone networks and has the following features: (a) voice and data, (b) packet-only switching (some systems are compatible with circuit switching), (c) code division multiple access (CDMA), (d) full global roaming, and (e) evolutionary migration from the existing base of 2G systems. For example, 2.5G cell phone systems are a combination of voice and data. See

In addition to packet switching, there has been continued development of better multiple access methods to enable ways to more efficiently utilize an existing channel. In the case of wireless or cell phones, this enables lower cost service and more users per cell without degradation in quality of service (QoS). The traditional methods include frequency, time, and code division multiple access (FDMA, TDMA, and CDMA). FDMA and TDMA are covered in Chap. 7, and CDMA, which uses direct sequence spread spectrum, is covered in Chap. 15. FDMA and TDMA share a channel via an assigned frequency or time slot respectively. In both of these methods, too many users on a channel will cause cross-talk such that one user may hear the other’s conversation in the background. Thus with FDMA and TDMA there is the proverbial trade-off between interference and economics. This is particularly the case with cell phones, where we have to set a hard limit on the number of users per cell. This hard limit prevents additional users from making calls even though some other existing user will soon be hanging up and releasing the frequency or time slot. On the other hand, with CDMA an unauthorized listener will hear only noise, and thus when someone wants to make a phone call in an already busy cell area, the additional CDMA user will temporarily raise the level of background noise since someone else is soon likely to be hanging up. Therefore, we can set a soft limit to the number of CDMA users per cell and allow more users per cell. This is one important reason why CDMA

\[\text{Figure 1.4–1} \quad (a) \text{Standard telephone lines that use circuit switching, (b) Internet telephone (VoIP) using packet switching and someone else communicating via the Internet.} \]
Emerging Developments

is being used in 3G wireless systems. CDMA also reduces the multipath problem since the multipath component is treated as another user.

Orthogonal frequency division multiplexing (OFDM) is a variation of frequency division multiplexing (FDM) in which we can reduce interference between users by selecting a set of carrier frequencies that are orthogonal to each other. Another application of OFDM is that, instead of sending a message at a high rate over a single channel, we can send the same message over several channels at a lower rate; this reduces the problem of multipath. OFDM is covered in Chap. 14 and is used widely in wireless computer networks such as Wi-Fi and WiMax.

Ultra-wideband (UWB) systems can operate at average power levels below the ambient levels of existing RF interference, or in other words, the power output of a UWB is below such unintentional radiators as computer boards and other digital logic hardware. Recent Federal Communications Commission (FCC) guidelines allow for unlicensed UWB operation from approximately 3.1 to 10.6 GHz at power levels not to exceed –41 dBm. This combined with continued development of UWB technology will enable greater use of the RF spectrum and thus allow for even more users and services on the RF spectrum.

Computer networks Wi-Fi (or IEEE 802.11) and WiMax (or IEEE 802.16) are two wireless computer network systems that have proliferated due to the FCC’s making available portions of the 915 MHz, 2.45 GHz, and 5.8-GHz ISM as well as other UHF and microwave bands available for communication purposes. Wi-Fi technology is used in local area networks (LANs) such as those used by laptop computers seen in coffee shops, etc., hence the often-used term “hot spots.” Its range is approximately a hundred meters. WiMax is a mobile wireless system and often uses the existing cell phone tower infrastructure and has a range comparable to that of cell phones. WiMax has been touted as an alternative to wireless phones for data service and can be used as an alternative to cable to enable Internet access in buildings. In other words, WiMax can serve as the last mile for broadband connectivity. Note that WiMax, Wi-Fi, and cell phones all operate on separate frequencies and thus are separate systems.

Software radio, or software-defined radio (SDR), as shown in the receiver of Fig. 1.4–2a, is another relatively recent development in communication technology that promises greater flexibility than is possible with standard analog circuit methods. The signal at the antenna is amplified by a radio frequency (RF) amplifier and digitized using an analog-to-digital converter (ADC). The ADC’s output is fed to the digital signal processor (DSP), which does the appropriate demodulation, and so on, and then to the digital-to-analog converter (DAC), which changes it back to a form the user can hear. A software radio transmitter would be the inverse. The flexibility includes varying the parameters of station frequency, filter characteristics, modulation types, gain, and so on, via software control. Note, in many cases, because of technological hardware limitations particularly in the GHz frequency range, the equipment is often a hybrid of analog and software radio. Software radios are often implemented via field programmable gate arrays (FPGA) wherein the transmitter or receiver design is first developed in some high-level software language such as Simulink, converted to VHSC (very high speed integrated circuits) hardware description language (VHDL) to be compiled, and then downloaded to the FPGA as shown in Fig. 1.4–2b.
1.5 SOCIETAL IMPACT AND HISTORICAL PERSPECTIVE

The tremendous technological advances of communication systems once again affirms that “Engineers are the agents of social change”\footnote{Daitch, P. B. “Introduction to College Engineering” (Reading, MA: Addison Wesley, 1973), p. 106.} and are the driving force behind drastic changes in public policy, whether it be privacy, commerce, or intellectual property. These paradigm changes are all due to the diligence of engineers and investors who create and develop the next generation of communications technology. Let us cite some examples. At one time, telephone service was available only through landlines and was a government-regulated monopoly. You paid a premium for long distance and it was priced by the minute. Today, the consumer has the additional choices of phone service through the Internet, simply Voice-Over-Internet Protocol (VOIP), and the cell phone. These new technologies have removed the distinction between local and long distance, and usually both are available for a low, fixed rate regardless of the amount of time spent using the service, diminishing the role of government utility commissions. Similarly, with digital subscriber lines (DSLs), the

\[\text{(a) Software radio receiver, (b) software radio receiver implemented via an FPGA.}\]
telephone companies can also provide both standard phone and video services. WiMax and, to a lesser extent, Wi-Fi technologies are diminishing the need for wired access to the network. For example, just like cable can now provide a home or business with video, data, and voice services, WiMax is expected to do the same. What is even more interesting is that, unlike many cell phone providers that are part of a local telephone company, WiMax companies are often small independent startups. Some of the motivation for WiMax startups is to provide an alternative to the regulated local phone or cable company (Andrews et al., 2007). Finally, television via satellite is now available using dishes less than a meter in diameter, making it possible to receive satellite TV without running afoul of local zoning restrictions. You can observe on any college campus that most college students have a wireless phone service that can reach anywhere in the United States at a quality and cost rivaling those of landlines. Phones can send and receive voice, music, text, and video information. E-commerce sales via the Internet have forced state governments to rethink their sales tax policies, but at the same time the VOIP and cell phone service has provided government another resource to tax! The ubiquitous cell phone and Internet has made us all available “24/7” no matter where we are. An employee who wants to take his or her vacation in some remote spot to “get away from it all” may now have to politely tell the employer that he or she does not want to be reached by cell phone and that, since there will be no “hot spots,” he or she will not be checking email. Internet and digital recording techniques that make it easier to download music and video content have caused the recording industry to rethink their business model as well as find new ways to protect their copyrights.

However, this upheaval in public policy and societal norms driven by advances in communication science and technology has really always been the case. The dynamics of diplomacy drastically changed after the mid 1800s with the laying down of transoceanic telegraph cables, whereas previously, international diplomacy had been limited by the speed of ship or ground travel, which could take months. Prior to the telegraph, high-speed communication was a fast runner or perhaps smoke signals. The advent of wireless communication allowed for rapid military communications, but it also enabled interception, code breaking, and jamming by rival states and thus has affected the outcomes of wars and diplomacy. It has been said that many national upheavals and revolutions have been facilitated by citizens’ being able to easily and quickly communicate with outsiders via Internet or fax. Whether it be by creating the annoyance of a cell phone going off in a theater or influencing the outcome of a major political conflict, the communications engineers have had and will continue to have a significant impact on society.

Historical Perspective

The organization of this text is dictated by pedagogical considerations and does not necessarily reflect the evolution of communication systems. To provide at least some historical perspective, a chronological outline of electrical communication is presented in Table 1.5–1. The table lists key inventions, scientific discoveries, and important papers and the names associated with these events.

Several of the terms in the chronology have been mentioned already, while others will be described in later chapters when we discuss the impact and interrelationships of particular events. You may therefore find it helpful to refer back to this table from time to time.
Table 1.5–1 A chronology of electrical communication

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800–1837</td>
<td>Preliminary developments Volta discovers the primary battery; the mathematical treatises by Fourier, Cauchy, and Laplace; experiments on electricity and magnetism by Oersted, Ampere, Faraday, and Henry; Ohm's law (1826); early telegraph systems by Gauss, Weber, and Wheatstone.</td>
</tr>
<tr>
<td>1838–1866</td>
<td>Telegraphy Morse perfects his system; Steinheil finds that the earth can be used for a current path; commercial service initiated (1844); multiplexing techniques devised; William Thomson (Lord Kelvin) calculates the pulse response of a telegraph line (1855); transatlantic cables installed by Cyrus Field and associates.</td>
</tr>
<tr>
<td>1845</td>
<td>Kirchhoff's circuit laws enunciated.</td>
</tr>
<tr>
<td>1864</td>
<td>Maxwell's equations predict electromagnetic radiation.</td>
</tr>
<tr>
<td>1876–1899</td>
<td>Telephony Acoustic transducer perfected by Alexander Graham Bell, after earlier attempts by Reis; first telephone exchange, in New Haven, with eight lines (1878); Edison's carbon-button transducer; cable circuits introduced; Strowger devises automatic step-by-step switching (1887); the theory of cable loading by Heaviside, Pupin, and Campbell.</td>
</tr>
<tr>
<td>1887–1907</td>
<td>Wireless telegraphy Heinrich Hertz verifies Maxwell's theory; demonstrations by Marconi and Popov; Marconi patents a complete wireless telegraph system (1897); the theory of tuning circuits developed by Sir Oliver Lodge; commercial service begins, including ship-to-shore and transatlantic systems.</td>
</tr>
<tr>
<td>1892–1899</td>
<td>Oliver Heaviside's publications on operational calculus, circuits, and electromagnetics.</td>
</tr>
<tr>
<td>1904–1920</td>
<td>Communication electronics Lee De Forest invents the Audion (triode) based on Fleming's diode; basic filter types devised by G. A. Campbell and others; experiments with AM radio broadcasting; transcontinental telephone line with electronic repeaters completed by the Bell System (1915); multiplexed carrier telephony introduced; E. H. Armstrong perfects the superheterodyne radio receiver (1918); first commercial broadcasting station, KDKA, Pittsburgh.</td>
</tr>
<tr>
<td>1923–1938</td>
<td>Television Mechanical image-formation system demonstrated by Baird and Jenkins; theoretical analysis of bandwidth requirements; Farnsworth and Zworykin propose electronic systems; vacuum cathode-ray tubes perfected by DuMont and others; field tests and experimental broadcasting begin.</td>
</tr>
<tr>
<td>1927</td>
<td>Federal Communications Commission established.</td>
</tr>
<tr>
<td>1931</td>
<td>Teletypewriter service initiated.</td>
</tr>
<tr>
<td>1934</td>
<td>H. S. Black develops the negative-feedback amplifier.</td>
</tr>
<tr>
<td>1936</td>
<td>Armstrong's paper states the case for FM radio.</td>
</tr>
<tr>
<td>1937</td>
<td>Alec Reeves conceives pulse-code modulation.</td>
</tr>
<tr>
<td>1938–1945</td>
<td>World War II Radar and microwave systems developed; FM used extensively for military communications; improved electronics, hardware, and theory in all areas.</td>
</tr>
<tr>
<td>1948–1950</td>
<td>Information theory and coding C. E. Shannon publishes the founding papers of information theory; Hamming and Golay devise error-correcting codes at AT&T Labs.</td>
</tr>
<tr>
<td>1948–1951</td>
<td>Transistor devices invented by Bardeen, Brattain, and Shockley at AT&T Labs.</td>
</tr>
</tbody>
</table>
Table 1.5-1

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>Time-division multiplexing applied to telephony.</td>
</tr>
<tr>
<td>1953</td>
<td>Color TV standards established in the United States.</td>
</tr>
<tr>
<td>1955</td>
<td>J. R. Pierce proposes satellite communication systems.</td>
</tr>
<tr>
<td>1956</td>
<td>First transoceanic telephone cable (36 voice channels).</td>
</tr>
<tr>
<td>1958</td>
<td>Long-distance data transmission system developed for military purposes.</td>
</tr>
<tr>
<td>1960</td>
<td>Maiman demonstrates the first laser.</td>
</tr>
<tr>
<td>1961</td>
<td>Integrated circuits go into commercial production; stereo FM broadcasts begin in the U.S.</td>
</tr>
<tr>
<td>1962</td>
<td>Satellite communication begins with Telstar I.</td>
</tr>
<tr>
<td>1962-1966</td>
<td>High-speed digital communication Data transmission service offered commercially; Touch-Tone telephone service introduced; wideband channels designed for digital signaling; pulse-code modulation proves feasible for voice and TV transmission; major breakthroughs in theory and implementation of digital transmission, including error-control coding methods by Viterbi and others, and the development of adaptive equalization by Lucky and coworkers.</td>
</tr>
<tr>
<td>1963</td>
<td>Solid-state microwave oscillators perfected by Gunn.</td>
</tr>
<tr>
<td>1964</td>
<td>Fully electronic telephone switching system (No. 1 ESS) goes into service.</td>
</tr>
<tr>
<td>1965</td>
<td>Mariner IV transmits pictures from Mars to Earth.</td>
</tr>
<tr>
<td>1966-1975</td>
<td>Wideband communication systems Cable TV systems; commercial satellite relay service becomes available; optical links using lasers and fiber optics.</td>
</tr>
<tr>
<td>1969</td>
<td>ARPANET created (precursor to Internet).</td>
</tr>
<tr>
<td>1971</td>
<td>Intel develops first single-chip microprocessor.</td>
</tr>
<tr>
<td>1972</td>
<td>Motorola develops cellular telephone; first live TV broadcast across Atlantic ocean via satellite.</td>
</tr>
<tr>
<td>1980</td>
<td>Compact disc developed by Philips and Sony.</td>
</tr>
<tr>
<td>1981</td>
<td>FCC adopts rules creating commercial cellular telephone service; IBM PC is introduced (hard drives introduced two years later).</td>
</tr>
<tr>
<td>1982</td>
<td>AT&T agrees to divest 22 local service telephone companies; seven regional Bell system operating companies formed.</td>
</tr>
<tr>
<td>1985</td>
<td>Fax machines widely available in offices.</td>
</tr>
<tr>
<td>1985</td>
<td>FCC opens 900 MHz, 2.4 GHz, and 5.8 GHz bands for unlicensed operation. These eventually were used for Wi-Fi technology/standards for short range, broadband wireless networks.</td>
</tr>
<tr>
<td>1990-2000</td>
<td>Digital communication systems 2G digital cellular phones; digital subscriber lines (DSLs); Wi-Fi for wireless local area networks; digital television (DTV) standards developed; digital pagers.</td>
</tr>
<tr>
<td>1997-2000</td>
<td>Wi-Fi (IEEE 802.11) standards published; Wi-Fi products start being used.</td>
</tr>
<tr>
<td>1998</td>
<td>Digital television service launched in U.S.</td>
</tr>
</tbody>
</table>

(continued)
CHAPTER 1 • Introduction

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000–present</td>
<td>Third-generation (3G) cell phone systems introduced; WiMax (IEEE 802.16) for mobile and longer, wider-area networks.</td>
</tr>
<tr>
<td>2002</td>
<td>FCC permits marketing and operation of products containing ultra-wideband technology.</td>
</tr>
<tr>
<td>2009</td>
<td>All over the air, TV signals will be by digital programming; analog-only TVs will no longer work.</td>
</tr>
</tbody>
</table>

1.6 PROSPECTUS

This text provides a comprehensive introduction to analog and digital communications. A review of relevant background material precedes each major topic that is presented. Each chapter begins with an overview of the subjects covered and a listing of learning objectives. Throughout the text we rely heavily on mathematical models to cut to the heart of complex problems. Keep in mind, however, that such models must be combined with appropriate physical reasoning and engineering judgment.

Chapters 2 and 3 deal with deterministic signals, emphasizing time-domain and frequency-domain analysis of signal transmission, distortion, and filtering. Included in Chap. 2 is a brief presentation of the discrete fourier transform (DFT). The DFT is not only an essential part of signal processing, but its implementation and that of the inverse DFT enables us to efficiently implement orthogonal frequency division multiplexing (OFDM). OFDM is covered in Chap. 14. Chapters 4 and 5 discuss the how and why of various types of CW modulation. Particular topics include modulated waveforms, transmitters, and transmission bandwidth. Sampling and pulse modulation are covered in Chap. 6. Chapter 7 covers topics in analog modulation systems, including receiver and multiplexing systems and television. In preparation for a discussion of the impact of noise on CW modulation systems in Chap. 10, Chaps. 8 and 9 apply probability theory and statistics to the representation of random signals and noise.

The discussion of digital communication starts in Chap. 11 with baseband (unmodulated) transmission, so that we can focus on the important concepts of digital signals and spectra, noise and errors, and synchronization. Chapter 12 then draws upon previous chapters for the study of coded pulse modulation, including PCM and digital multiplexing systems. Error control coding is presented in Chap. 13. Chapter 14 describes and analyzes digital transmission systems with CW modulation, culminating in a performance comparison of various methods. Chapter 15 covers both spread spectrum-systems, other wireless systems, and a new section on ultra-wideband systems. Finally, an introduction to information theory in Chap. 16 provides a retrospective view of digital communication and returns us to the fundamental Hartley-Shannon law. Because computer networks have become a separate but related field, the book’s website (www.mhhe.com/Carlson) has a brief section on computer networks in order to tie together the area of networks with traditional communications.
Each chapter contains various exercises designed to clarify and reinforce the
concepts and analytical techniques. You should work these exercises as you come to
them, checking your results with the answers in the back of the book. Also, at the
back of the book, you’ll find tables containing handy summaries of important text
material and mathematical relations pertinent to the exercises and problems at the
end of each chapter. In addition to the end-of-chapter problems, we have added qual-
itative questions that have been designed to help students gain insight for applying
the theory and to provide practical meaning to the formulas. Answers may require
you to use information covered in previous chapters or even in previous courses.
Computer problems have also been added to the book’s website (www.mhhe.com/
Carlson) to reinforce the theory and add to students’ problem-solving skills. Finally,
there is a list of key symbols and abbreviations.

Although we mostly describe communication systems in terms of “black boxes”
with specified properties, we’ll occasionally lift the lid to look at electronic circuits
that carry out particular operations. Such digressions are intended to be illustrative
rather than compose a comprehensive treatment of communication electronics.
Besides discussions of electronics, certain optional or more advanced topics are
interspersed in various chapters and identified by an asterisk (*). These topics may
be omitted without loss of continuity. Other optional material of a supplementary
nature is also contained in the Appendix.

Two types of references have been included. Books and papers cited within
chapters provide further information about specific items. Additional references are
further collected in a supplementary reading list and serve as an annotated bibliogra-
phy for those who wish to pursue subjects in greater depth.

1.7 QUESTIONS

1. In the London bombings of July 7, 2005, people near the bomb blast were not
able to communicate via voice with their wireless phones, but could send and
receive text messages. Why?

2. Why are more AM broadcast stations heard at night than during the day, and
why is there so much more interference at night?

3. Why is the upper bit rate on a telephone modem only 56 kbits/s versus a DSL
or cable modem whose speed can be in M bits/s?

4. Why is bandwidth important?

5. List the means by which several users share a channel.

6. Why can shortwave radio signals go worldwide, whereas AM, FM, and TV
broadcast signals are local?

7. What are FM, AM, UHF and VHF, PCS, CDMA, TDMA, and FDMA?

8. How are data transferred via the Internet versus conventional telephone lines?
9. What are the primary metrics for analog and digital communications?
10. Why are wireless phones with their relatively low bandwidth able to receive pictures, whereas standard television requires relatively high bandwidth?
11. Why do some AM stations go off the air or reduce their power at sunset?
12. Provide at least two reasons why satellite repeaters operate above the short-wave bands.
13. What object above the atmosphere has been used to reflect radio signals (note: a satellite retransmits the signal)?
14. Give a non-radio-wave example of multipath communication.
15. Why is a high-speed router essential for Internet telephone?
16. Why do TV signals use high frequencies and voice use low frequencies?
17. Why do antennas vary in shape and size?
18. Why do some FM broadcast stations want the FCC to assign them a carrier frequency at the lower portion of the band (i.e. \(f_c < 92 \text{ MHz} \) versus \(f_c > 100 \text{ MHz} \))?
19. Consider a bandlimited wireless channel. How can we increase the channel capacity without an increase in bandwidth or signal-to-noise ratio and not violate the Hartley-Shannon law?
20. How can we make fire talk?
21. Define a microsecond, nanosecond, and picosecond in a way that a nontechnical person could understand.
Signals and Spectra

CHAPTER OUTLINE

2.1 Line Spectra and Fourier Series
 - Phasors and Line Spectra
 - Periodic Signals and Average Power
 - Fourier Series
 - Convergence Conditions and Gibbs Phenomenon
 - Parseval’s Power Theorem

2.2 Fourier Transforms and Continuous Spectra
 - Fourier Transforms
 - Symmetric and Causal Signals
 - Rayleigh’s Energy Theorem
 - Duality Theorem
 - Transform Calculations

2.3 Time and Frequency Relations
 - Superposition
 - Time Delay and Scale Change
 - Frequency Translation and Modulation
 - Differentiation and Integration

2.4 Convolution
 - Convolution Integral
 - Convolution Theorems

2.5 Impulses and Transforms in the Limit
 - Properties of the Unit Impulse
 - Impulses in Frequency
 - Step and Signum Functions
 - Impulses in Time

2.6 Discrete Time Signals and the Discrete Fourier Transform
 - Convolution using the DFT
Electrical communication signals are time-varying quantities such as voltage or current. Although a signal physically exists in the time domain, we can also represent it in the frequency domain where we view the signal as consisting of sinusoidal components at various frequencies. This frequency-domain description is called the spectrum.

Spectral analysis, using the Fourier series and transform, is one of the fundamental methods of communication engineering. It allows us to treat entire classes of signals that have similar properties in the frequency domain, rather than getting bogged down in detailed time-domain analysis of individual signals. Furthermore, when coupled with the frequency-response characteristics of filters and other system components, the spectral approach provides valuable insight for design work.

This chapter therefore is devoted to signals and spectral analysis, giving special attention to the frequency-domain interpretation of signal properties. We’ll examine line spectra based on the Fourier series expansion of periodic signals, and continuous spectra based on the Fourier transform of nonperiodic signals. These two types of spectra will ultimately be merged with the help of the impulse concept.

As the first step in spectral analysis we must write equations representing signals as functions of time. But such equations are only mathematical models of the real world, and imperfect models at that. In fact, a completely faithful description of the simplest physical signal would be quite complicated and impractical for engineering purposes. Hence, we try to devise models that represent with minimum complexity the significant properties of physical signals. The study of many different signal models provides us with the background needed to choose appropriate models for specific applications. In many cases, the models will apply only to particular classes of signals. Throughout the chapter the major classifications of signals will be highlighted for their special properties.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Sketch and label the one-sided or two-sided line spectrum of a signal consisting of a sum of sinusoids (Sect. 2.1).
2. Calculate the average value, average power, and total energy of a simple signal (Sects. 2.1 and 2.2).
3. Write the expressions for the exponential Fourier series and coefficients, the trigonometric Fourier series, and the direct and inverse Fourier transform (Sects. 2.1 and 2.2).
4. Identify the time-domain properties of a signal from its frequency-domain representation and vice versa (Sect. 2.2).
5. Sketch and label the spectrum of a rectangular pulse train, a single rectangular pulse, or a sinc pulse (Sects. 2.1 and 2.2).
6. State and apply Parseval’s power theorem and Rayleigh’s energy theorem (Sects. 2.1 and 2.2).
7. State the following transform theorems: superposition, time delay, scale change, frequency translation and modulation, differentiation, and integration (Sect. 2.3).
8. Use transform theorems to find and sketch the spectrum of a signal defined by time-domain operations (Sect. 2.3).
9. Set up the convolution integral and simplify it as much as possible when one of the functions is a rectangular pulse (Sect. 2.4).
10. State and apply the convolution theorems (Sect. 2.4).
11. Evaluate or otherwise simplify expressions containing impulses (Sect. 2.5).
12. Find the spectrum of a signal consisting of constants, steps, impulses, sinusoids, and/or rectangular and triangular functions (Sect. 2.5).
13. Determine the discrete Fourier transform (DFT) for a set of signal samples.
2.1 LINE SPECTRA AND FOURIER SERIES

This section introduces and interprets the frequency domain in terms of rotating phasors. We'll begin with the line spectrum of a sinusoidal signal. Then we'll invoke the Fourier series expansion to obtain the line spectrum of any periodic signal that has finite average power.

Phasors and Line Spectra

Consider the familiar sinusoidal or AC (alternating-current) waveform \(v(t) \) plotted in Fig. 2.1–1. By convention, we express sinusoids in terms of the cosine function and write

\[
v(t) = A \cos(\omega_0 t + \phi)
\]

where \(A \) is the peak value or amplitude and \(\omega_0 \) is the radian frequency. The phase angle \(\phi \) represents the fact that the peak has been shifted away from the time origin and occurs at \(t = -\phi/\omega_0 \). Equation (1) implies that \(v(t) \) repeats itself for all time, with repetition period \(T_0 = 2\pi/\omega_0 \). The reciprocal of the period equals the cyclical frequency

\[
f_0 \triangleq \frac{1}{T_0} = \frac{\omega_0}{2\pi}
\]

measured in cycles per second, or hertz (Hz).

Obviously, no real signal goes on forever, but Eq. (1) could be a reasonable model for a sinusoidal waveform that lasts a long time compared to the period. In particular, AC steady-state circuit analysis depends upon the assumption of an eternal sinusoid—usually represented by a complex exponential or phasor. Phasors also play a major role in the spectral analysis.

The phasor representation of a sinusoidal signal comes from Euler's theorem

\[
e^{\pm j\theta} = \cos \theta \pm j \sin \theta
\]

Figure 2.1–1 A sinusoidal waveform \(v(t) = A \cos(\omega_0 t + \phi) \).
where $j = \sqrt{-1}$ and θ is an arbitrary angle. If we let $\theta = \omega_0 t + \phi$, we can write any sinusoid as the real part of a complex exponential, namely

$$A \cos (\omega_0 t + \phi) = A \Re \{ e^{j(\omega_0 t + \phi)} \}$$

This is called a phasor representation because the term inside the brackets may be viewed as a rotating vector in a complex plane whose axes are the real and imaginary parts, as Fig. 2.1–2 illustrates. The phasor has length A, rotates counterclockwise at a rate of f_0 revolutions per second, and at time $t = 0$ makes an angle ϕ with respect to the positive real axis.† The projection of the phasor on the real axis equals the sinusoid in Eq. (4).

Now observe that only three parameters completely specify a phasor: amplitude, phase angle, and rotational frequency. To describe the same phasor in the frequency domain, we must associate the corresponding amplitude and phase with the particular frequency f_0. Hence, a suitable frequency-domain description would be the line spectrum in Fig. 2.1–2b, which consists of two plots: amplitude versus frequency and phase versus frequency. While this figure appears simple to the point of being trivial, it does have great conceptual value when extended to more complicated signals.

But before taking that step, four conventions regarding line spectra should be stated.

1. In all our spectral drawings the independent variable will be cyclical frequency f hertz, rather than radian frequency ω, and any specific frequency such as f_0 will be identified by a subscript. (We'll still use ω with or without subscripts as a shorthand notation for $2\pi f$ since that combination occurs so often.)

2. Phase angles will be measured with respect to cosine waves or, equivalently, with respect to the positive real axis of the phasor diagram. Hence, sine waves need to be converted to cosines via the identity

$$\sin \omega t = \cos (\omega t - 90^\circ)$$

†The phasor can be represented in 3-D by the right hand rule, where positive time is upward out of the page; the phasor’s trajectory will appear as a helix rotating counter-clockwise and simultaneously rising out of the page toward the reader. The time rate of precession is one revolution per period, f_0 revs (P. Ceperley, 2007).
3. We regard amplitude as always being a **positive** quantity. When negative signs appear, they must be absorbed in the phase using

\[-A \cos \omega t = A \cos (\omega t \pm 180^\circ)\] \hspace{1cm} (6)

It does not matter whether you take +180° or –180° since the phasor ends up in the same place either way.

4. Phase angles usually are expressed in degrees even though other angles such as \(\omega t\) are inherently in radians. No confusion should result from this mixed notation since angles expressed in degrees will always carry the appropriate symbol.

To illustrate these conventions and to carry further the idea of line spectrum, consider the signal

\[w(t) = 7 - 10 \cos (40\pi t - 60^\circ) + 4 \sin 120\pi t\]

which is sketched in Fig. 2.1–3a. Converting the constant term to a zero frequency or DC (direct-current) component and applying Eqs. (5) and (6) gives the sum of cosines

\[w(t) = 7 \cos 2\pi 0t + 10 \cos (2\pi 20t + 120^\circ) + 4 \cos (2\pi 60t - 90^\circ)\]

whose spectrum is shown in Fig. 2.1–3b.

Drawings like Fig. 2.1–3b, called **one-sided** or positive-frequency line spectra, can be constructed for any linear combination of sinusoids. But another spectral representation turns out to be more valuable, even though it involves negative frequencies. We obtain this representation from Eq. (4) by recalling that \(\text{Re}[z] = \frac{1}{2}(z + z^*)\), where \(z\) is any complex quantity with complex conjugate \(z^*\). Hence, if \(z = Ae^{j\phi}e^{j\omega t}\) then \(z^* = Ae^{-j\phi}e^{-j\omega t}\) and Eq. (4) becomes

\[A \cos (\omega_0 t + \phi) = \frac{A}{2} e^{j\phi}e^{j\omega t} + \frac{A}{2} e^{-j\phi}e^{-j\omega t}\] \hspace{1cm} (7)

so we now have a pair of conjugate phasors.

The corresponding phasor diagram and line spectrum are shown in Fig. 2.1–4. The phasor diagram consists of two phasors with equal lengths but opposite angles and directions of rotation. The phasor sum always falls along the real axis to yield \(A \cos (\omega_0 t + \phi)\). The line of spectrum is **two-sided** since it must include negative frequencies to allow for the opposite rotational directions, and one-half of the original amplitude is associated with each of the two frequencies \(\pm f_0\). The amplitude spectrum has **even symmetry** while the phase spectrum has **odd symmetry** because we are dealing with conjugate phasors. This symmetry appears more vividly in Fig. 2.1–5, which is the two-sided version of Fig. 2.1–3b.

It should be emphasized that these line spectra, one-sided or two-sided, are just pictorial ways of representing sinusoidal or phasor time functions. A single line in the one-sided spectrum represents a real cosine wave, whereas a single line in the two-sided spectrum represents a complex exponential, and the conjugate term must be added to get a real cosine wave. Thus, whenever we speak of some frequency interval such as \(f_1\) to \(f_2\) in a two-sided spectrum, we should also include the corresponding
CHAPTER 2 • Signals and Spectra

Figure 2.1–3

Figure 2.1–4
(a) Conjugate phasors; (b) two-sided spectrum.
negative-frequency interval \(-f_1\) to \(-f_2\). A simple notation for specifying both intervals is \(f_1 \leq |f| \leq f_2\).

Finally, note that the amplitude spectrum in either version conveys more information than the phase spectrum. Both parts are required to define the time-domain function, but the amplitude spectrum by itself tells us what frequencies are present and in what proportion.

Putting this another way, the amplitude spectrum displays the signal’s frequency content.

Construct the one-sided and two-sided spectrum of \(v(t) = -3 - 4 \sin 30\pi t\).

EXERCISE 2.1–1

Periodic Signals and Average Power

Sinusoids and phasors are members of the general class of periodic signals. These signals obey the relationship

\[
v(t \pm mT_0) = v(t) \quad -\infty < t < \infty
\]

where \(m\) is any integer and \(T_0\) is the fundamental signal period. This equation simply says that shifting the signal by an integer number of periods to the left or right leaves the waveform unchanged. Consequently, a periodic signal is fully described by specifying its behavior over any one period.

The frequency-domain representation of a periodic signal is a line spectrum obtained by Fourier series expansion. The expansion requires that the signal have
finite average power. Because average power and other time averages are important signal properties, we’ll formalize these concepts here.

Given any time function \(v(t) \), its average value over all time is defined as

\[
\langle v(t) \rangle \triangleq \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} v(t) \, dt
\]

(9)

The notation \(\langle v(t) \rangle \) represents the averaging operation on the right-hand side, which comprises three steps: integrate \(v(t) \) to get the net area under the curve from \(-T/2 \leq t \leq T/2\); divide that area by the duration \(T \) of the time interval; then let \(T \to \infty \) to encompass all time. In the case of a periodic signal, Eq. (9) reduces to the average over any interval of duration \(T_0 \). Thus

\[
\langle v(t) \rangle = \frac{1}{T_0} \int_{t_1}^{t_2 + T_0} v(t) \, dt = \frac{1}{T_0} \int_{T_0}^{T_0 + t_2} v(t) \, dt
\]

(10)

where the shorthand symbol \(\int_{T_0}^{T_0 + t_2} \) stands for an integration from any time \(t_1 \) to \(t_1 + T_0 \).

If \(v(t) \) happens to be the voltage across a resistance \(R \), it produces the current \(i(t) = v(t)/R \), and we could compute the resulting average power by averaging the instantaneous power \(v(t)i(t) = v^2(t)/R = R i^2(t) \). But we don’t necessarily know whether a given signal is a voltage or current, so let’s normalize power by assuming henceforth that \(R = 1 \) \(\Omega \). Our definition of the average power associated with an arbitrary periodic signal then becomes

\[
P \triangleq \langle |v(t)|^2 \rangle = \frac{1}{T_0} \int_{T_0}^{T_0 + t_2} |v(t)|^2 \, dt
\]

(11)

where we have written \(|v(t)|^2 \) instead of \(v^2(t) \) to allow for the possibility of complex signal models. In any case, the value of \(P \) will be real and nonnegative.

When the integral in Eq. (11) exists and yields \(0 < P < \infty \), the signal \(v(t) \) is said to have well-defined average power, and will be called a periodic power signal. Almost all periodic signals of practical interest fall in this category. The average value of a power signal may be positive, negative, or zero.

Some signal averages can be found by inspection, using the physical interpretation of averaging. As a specific example take the sinusoid

\[
v(t) = A \cos(\omega_0 t + \phi)
\]

which has

\[
\langle v(t) \rangle = 0 \quad P = \frac{A^2}{2}
\]

(12)

You should have no trouble confirming these results if you sketch one period of \(v(t) \) and \(|v(t)|^2 \).
Fourier Series

The signal $w(t)$ back in Fig. 2.1–3 was generated by summing a DC term and two sinusoids. Now we'll go the other way and decompose periodic signals into sums of sinusoids or, equivalently, rotating phasors. We invoke the exponential Fourier series for this purpose.

Let $v(t)$ be a power signal with period $T_0 = 1/f_0$. Its exponential Fourier series expansion is

$$v(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_0 t} \quad n = 0, 1, 2, \ldots$$ \tag{13}

The series coefficients are related to $v(t)$ by

$$c_n = \frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} \, dt$$ \tag{14}

so c_n equals the average of the product $v(t) e^{-j2\pi n f_0 t}$. Since the coefficients are complex quantities in general, they can be expressed in the polar form

$$c_n = |c_n| e^{j \arg c_n}$$

where $\arg c_n$ stands for the angle of c_n. Equation (13) thus expands a periodic power signal as an infinite sum of phasors, the nth term being

$$c_n e^{j2\pi n f_0 t} = |c_n| e^{j \arg c_n} e^{j2\pi n f_0 t}$$

The series convergence properties will be discussed after considering its spectral implications.

Observe that $v(t)$ in Eq. (13) consists of phasors with amplitude $|c_n|$ and angle $\arg c_n$ at the frequencies $nf_0 = 0, \pm f_0, \pm 2f_0, \ldots$ Hence, the corresponding frequency-domain picture is a two-sided line spectrum defined by the series coefficients. We emphasize the spectral interpretation by writing

$$c(nf_0) \triangleq c_n$$

so that $|c(nf_0)|$ represents the amplitude spectrum as a function of f, and $\arg c(nf_0)$ represents the phase spectrum. Three important spectral properties of periodic power signals are listed below.

1. All frequencies are integer multiples or harmonics of the fundamental frequency $f_0 = 1/T_0$. Thus the spectral lines have uniform spacing f_0.

2. The DC component equals the average value of the signal, since setting $n = 0$ in Eq. (14) yields

$$c(0) = \frac{1}{T_0} \int_{T_0} v(t) \, dt = \langle v(t) \rangle$$ \tag{15}
Calculated values of $c(0)$ may be checked by inspecting $v(t)$—a wise practice when the integration gives an ambiguous result.

3. If $v(t)$ is a real (noncomplex) function of time, then

$$c_{-n} = c^*_n = |c_n| \, e^{-j \arg c_n} \quad (16a)$$

which follows from Eq. (14) with n replaced by $-n$. Hence

$$|c(-nf_o)| = |c(nf_o)| \quad \arg c(-nf_o) = -\arg c(nf_o) \quad (16b)$$

which means that the amplitude spectrum has even symmetry and the phase spectrum has odd symmetry.

When dealing with real signals, the property in Eq. (16) allows us to regroup the exponential series into complex-conjugate pairs, except for c_0. Equation (13) then becomes

$$v(t) = c_0 + \sum_{n=1}^{\infty} [2c_n \cos(2\pi nf_0 t + \arg c_n)] \quad (17a)$$

or

$$v(t) = c_0 + \sum_{n=1}^{\infty} [a_n \cos 2\pi nf_0 t + b_n \sin 2\pi nf_0 t] \quad (17b)$$

and $b_n = \text{Im}[c_n]$. Re[] and Im[] being the real and imaginary operators respectively.

Equation 17a is the trigonometric Fourier Series and suggests a one-sided spectrum. Most of the time, however, we’ll use the exponential series and two-sided spectra.

The sinusoidal terms in Eq. (17) represent a set of orthogonal basis functions. Functions $v_n(t)$ and $v_m(t)$ are orthogonal over an interval from t_1 to t_2 if

$$\int_{t_1}^{t_2} v_n(t)v_m(t) dt = \begin{cases}
0 & n \neq m \\
K & n = m
\end{cases} \quad \text{with } K \text{ a constant.}$$

Later we will see in Sect. 7.2 (QAM) and 14.5 that a set of users can share a channel without interfering with each other by using orthogonal carrier signals.

One final comment should be made before taking up an example. The integration for c_n often involves a phasor average in the form

$$\frac{1}{T} \int_{-T/2}^{T/2} e^{j2\pi ft} dt = \frac{1}{j2\pi f T} (e^{j\pi f T} - e^{-j\pi f T})$$

$$= \frac{1}{\pi f T} \sin \pi f T \quad (18)$$

Since this expression occurs time and again in spectral analysis, we’ll now introduce the sinc function defined by
2.1 Line Spectra and Fourier Series

Line Spectra and Fourier Series

\[\text{(19)}\]

where \(l\) represents the independent variable. Some authors use the related sampling function defined as so that sinc \(\frac{\sin \pi l}{\pi l}\). Fig. 2.1–6 shows that sinc \(\frac{l}{H}\) is an even function of \(l\) having its peak at \(l = 0\) and zero crossings at all other integer values of \(l\), so

\[
\text{sinc} \ l = \begin{cases}
1 & l = 0 \\
0 & l = \pm 1, \pm 2, \ldots
\end{cases}
\]

Numerical values of sinc \(l\) and sinc\(^2\) \(l\) are given in Table T.4 at the back of the book, while Table T.3 includes several mathematical relations that you’ll find helpful for Fourier analysis.

Rectangular Pulse Train

Consider the periodic train of rectangular pulses in Fig. 2.1–7. Each pulse has height, or amplitude, \(A\) and width, or duration, \(\tau\). There are stepwise discontinuities at each pulse-edge location \(t = \pm \tau/2\), and so on, so the values of \(v(t)\) are mathematically undefined at these points of discontinuity. This brings out another possible difference between a physical signal and its mathematical model, for a physical signal never makes a perfect stepwise transition. However, the model may still be reasonable if the actual transition times are quite small compared to the pulse duration.

To calculate the Fourier coefficients, we’ll take the range of integration in Eq. (14) over the central period \(-T_0/2 \leq t \leq T_0/2\), where

\[
v(t) = \begin{cases}
A & |t| < \tau/2 \\
0 & |t| > \tau/2
\end{cases}
\]

Thus

\[
c_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} v(t) e^{-j2\pi n ft} \, dt = \frac{A}{T_0} \int_{-\tau/2}^{\tau/2} e^{-j2\pi n ft} \, dt
\]

Figure 2.1–6 The function sinc \(\frac{l}{H}\) = \(\frac{\sin \pi l}{\pi l}\).
CHAPTER 2 • Signals and Spectra

Multiplying and dividing by t finally gives

$$\frac{20}{nf_0 t}$$

which follows from Eq. (19) with

$$\frac{1}{nT_0}$$

The amplitude spectrum obtained from

$$\frac{20}{T_0}$$

is shown in Fig. 2.1–8 for the case of

$$\frac{1}{T_0}$$

We construct this plot by drawing the continuous function

$$\frac{20}{T_0}$$

as a dashed curve, which becomes the envelope of the lines. The spectral lines at

$$\frac{1}{4}$$

are “missing” since they fall precisely at multiples of $1/\tau$ where the envelope equals zero. The dc component has amplitude $c(0) = \frac{20}{T_0} A f_0 \tau$ which should be recognized as the average value of $v(t)$ by inspection of Fig. 2.1–7. Incidentally, τ/T_0 equals the ratio of “on” time to period, frequently designated as the duty cycle in pulse electronics work.

Figure 2.1–7 Rectangular pulse train.

$$\frac{20}{T_0}$$

Figure 2.1–8 Spectrum of rectangular pulse train with $\frac{1}{T_0} = 1/4$. (a) Amplitude; (b) phase.
The phase spectrum in Fig. 2.1–8b is obtained by observing that c_n is always real but sometimes negative. Hence, $\arg(c(nf_0))$ takes on the values 0° and $\pm 180^\circ$, depending on the sign of $\text{sinc} \, nf_0 \, \tau$. Both $+180^\circ$ and -180° were used here to bring out the odd symmetry of the phase.

Having decomposed the pulse train into its frequency components, let’s build it back up again. For that purpose, we’ll write out the trigonometric series in Eq. (17), still taking $t/T_0 = \tau = 1/4$ so $c_0 = A/4$ and $|2c_n| = (2A/\pi n)|\sin \pi n/4| = (2A/\pi n)|\sin \pi n/4|$. Thus

$$v(t) = \frac{A}{4} + \frac{\sqrt{2} \, A}{\pi} \cos \omega_0 t + \frac{A}{\pi} \cos 2\omega_0 t + \frac{\sqrt{2} \, A}{3\pi} \cos 3\omega_0 t + \cdots$$

Summing terms through the third harmonic gives the approximation of $v(t)$ sketched in Fig. 2.1–9a. This approximation contains the gross features of the pulse train but lacks sharp corners. A more accurate approximation shown in Fig. 2.1–9b comprises all components through the seventh harmonic. Note that the small-amplitude higher harmonics serve primarily to square up the corners. Also note that the series is converging toward the midpoint value $A/2$ at $t = \pm \tau/2$ where $v(t)$ has discontinuities.

 sketch the amplitude spectrum of a rectangular pulse train for each of the following cases: $\tau = T_0/5$, $\tau = T_0/2$, $\tau = T_0$. In the last case the pulse train degenerates into a constant for all time; how does this show up in the spectrum?

EXERCISE 2.1–2

Convergence Conditions and Gibbs Phenomenon

We’ve seen that a periodic signal can be approximated with a finite number of terms of its Fourier series. But does the infinite series converge to $v(t)$? The study of convergence involves subtle mathematical considerations that we’ll not go into here. Instead, we’ll state without proof some of the important results. Further details are given by Ziemer, Tranter, and Fannin (1998) or Stark, Tuteur, and Anderson (1988).

The **Dirichlet conditions** for Fourier series expansion are as follows: If a periodic function $v(t)$ has a finite number of maxima, minima, and discontinuities per period, and if $v(t)$ is **absolutely integrable**, so that $v(t)$ has a finite area per period, then the Fourier series exists and converges uniformly wherever $v(t)$ is continuous. These conditions are sufficient but not strictly necessary.

An alternative condition is that $v(t)$ be **square integrable**, so that $|v(t)|^2$ has finite area per period—equivalent to a power signal. Under this condition, the series converges in the mean such that if

$$v_N(t) = \sum_{n=-N}^{N} c_n e^{j2\pi n f_0 t}$$

then

$$\lim_{N \to \infty} \int_{T_0} |v(t) - v_N(t)|^2 \, dt = 0$$
Figure 2.1–9 Fourier-series reconstruction of a rectangular pulse train.
In other words, the mean square difference between $v(t)$ and the partial sum $v_n(t)$ vanishes as more terms are included.

Regardless of whether $v(t)$ is absolutely integrable or square integrable, the series exhibits a behavior known as Gibbs phenomenon at points of discontinuity. Figure 2.1–10 illustrates this behavior for a stepwise discontinuity at $t = t_0$. The partial sum $v_n(t)$ converges to the midpoint at the discontinuity, which seems quite reasonable. However, on each side of the discontinuity, $v_n(t)$ has oscillatory overshoot with period $T_0/2N$ and peak value of about 9 percent of the step height, independent of N. Thus, as $N \to \infty$, the oscillations collapse into nonvanishing spikes called "Gibbs ears" above and below the discontinuity as shown in Fig. 2.1–9c. Kamen and Heck (1997, Chap. 4) provide MATLAB examples to further illustrate Gibbs phenomenon.

Since a real signal must be continuous, Gibbs phenomenon does not occur, and we're justified in treating the Fourier series as being identical to $v(t)$. But idealized signal models like the rectangular pulse train often do have discontinuities. You therefore need to pay attention to convergence when working with such models.

Gibbs phenomenon also has implications for the shapes of the filters used with real signals. An ideal filter that is shaped like a rectangular pulse will result in discontinuities in the spectrum that will lead to distortions in the time signal. Another way to view this is that multiplying a signal in the frequency domain by a rectangular filter results in the time signal being convolved with a sinc function. Therefore, real applications use other window shapes with better time-frequency characteristics, such as Hamming or Hanning windows. See Oppenheim, Schafer, and Buck (1999) for a more complete discussion on the effects of window shape.

Figure 2.1–10 Gibbs phenomenon at a step discontinuity.
Parseval’s Power Theorem

Parseval’s theorem relates the average power P of a periodic signal to its Fourier coefficients. To derive the theorem, we start with

$$P = \frac{1}{T_0} \int_{T_0} |v(t)|^2 \, dt = \frac{1}{T_0} \int_{T_0} v(t) v^*(t) \, dt$$

Now replace $v^*(t)$ by its exponential series

$$v^*(t) = \left[\sum_{n=-\infty}^{\infty} c_n e^{j2\pi n f_0 t} \right]^* = \sum_{n=-\infty}^{\infty} c_n^* e^{-j2\pi n f_0 t}$$

so that

$$P = \frac{1}{T_0} \int_{T_0} v(t) \left[\sum_{n=-\infty}^{\infty} c_n^* e^{-j2\pi n f_0 t} \right] \, dt$$

$$= \sum_{n=-\infty}^{\infty} \left[\frac{1}{T_0} \int_{T_0} v(t) e^{-j2\pi n f_0 t} \, dt \right] c_n^*$$

and the integral inside the sum equals c_n. Thus

$$P = \sum_{n=-\infty}^{\infty} c_n c_n^* = \sum_{n=-\infty}^{\infty} |c_n|^2$$

which is Parseval’s theorem.

The spectral interpretation of this result is extraordinarily simple:

The average power can be found by squaring and adding the heights $|c_n| = |c(nf_0)|$ of the amplitude lines.

Observe that Eq. (21) does not involve the phase spectrum, underscoring our prior comment about the dominant role of the amplitude spectrum relative to a signal’s frequency content. For further interpretation of Eq. (21) recall that the exponential Fourier series expands $v(t)$ as a sum of phasors of the form $c_n e^{j2\pi n f_0 t}$. You can easily show that the average power of each phasor is

$$\langle |c_n e^{j2\pi n f_0 t}|^2 \rangle = |c_n|^2$$

Therefore, Parseval’s theorem implies superposition of average power, since the total average power of $v(t)$ is the sum of the average powers of its phasor components.

Several other theorems pertaining to Fourier series could be stated here. However, they are more conveniently treated as special cases of Fourier transform theorems covered in Sect. 2.3. Table T.2 lists some of the results, along with the Fourier coefficients for various periodic waveforms encountered in communication systems.
2.2 FOURIER TRANSFORMS AND CONTINUOUS SPECTRA

Now let's turn from periodic signals that last forever (in theory) to nonperiodic signals concentrated over relatively short time durations. If a nonperiodic signal has finite total energy, its frequency-domain representation will be a continuous spectrum obtained from the Fourier transform.

Fourier Transforms

Figure 2.2–1 shows two typical nonperiodic signals. The single rectangular pulse (Fig. 2.2–1a) is strictly timelimited since \(v(t) \) is identically zero outside the pulse duration. The other signal is asymptotically timelimited in the sense that \(v(t) \to 0 \) as \(t \to \pm \infty \). Such signals may also be described loosely as “pulses.” In either case, if you attempt to average \(v(t) \) or \(|v(t)|^2 \) over all time you’ll find that these averages equal zero. Consequently, instead of talking about average power, a more meaningful property of a nonperiodic signal is its energy.

If \(v(t) \) is the voltage across a resistance, the total delivered energy would be found by integrating the instantaneous power \(v^2(t)/R \). We therefore define normalized signal energy as

\[
E \triangleq \int_{-\infty}^{\infty} |v(t)|^2 \, dt
\]

EXERCISE 2.1–3

(a)
(b)
Some energy calculations can be done by inspection, since \(E \) is just the total area under the curve of \(|v(t)|^2\). For instance, the energy of a rectangular pulse as in Fig. 2.2–1a with amplitude \(A \) is simply \(E = A^2 \tau \).

When the integral in Eq. (1) exists and yields \(0 < E < \infty \), the signal \(v(t) \) is said to have well-defined energy and is called a nonperiodic energy signal. Almost all timelimited signals of practical interest fall in this category, which is the essential condition of spectral analysis using the Fourier transform.

To introduce the Fourier transform, we’ll start with the Fourier series representation of a periodic power signal

\[
v(t) = \sum_{n=-\infty}^{\infty} c(nf_0) e^{i2\pi n f_0 t}
\]

(2)

where the integral expression for \(c(nf_0) \) has been written out in full. According to the Fourier integral theorem there’s a similar representation for a nonperiodic energy signal that may be viewed as a limiting form of the Fourier series of a signal as the period goes to infinity. Example 2.1–1 showed that the spectral components of a pulse train are spaced at intervals of \(nf_0 = n/T_0 \), so they become closer together as the period of the pulse train increased. However, the shape of the spectrum remains unchanged if the pulse width \(\tau \) stays constant. Let the frequency spacing \(f_0 = T_0^{-1} \) approach zero (represented in Eq. 3 as \(df \)) and the index \(n \) approach infinity such that the product \(nf_0 \) approaches a continuous frequency variable \(f \). Then

\[
v(t) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} v(t) e^{-i2\pi ft} dt \right] e^{i2\pi ft} df
\]

(3)

The bracketed term is the Fourier transform of \(v(t) \) symbolized by \(V(f) \) or \(\mathcal{F}[v(t)] \) and defined as

\[
V(f) = \mathcal{F}[v(t)] \triangleq \int_{-\infty}^{\infty} v(t) e^{-i2\pi ft} dt
\]

(4)

an integration over all time that yields a function of the continuous variable \(f \).

The time function \(v(t) \) is recovered from \(V(f) \) by the inverse Fourier transform

\[
v(t) = \mathcal{F}^{-1}[V(f)] \triangleq \int_{-\infty}^{\infty} V(f) e^{i2\pi ft} df
\]

(5)

an integration over all frequency \(f \). To be more precise, it should be stated that \(\mathcal{F}^{-1}[V(f)] \) converges in the mean to \(v(t) \), similar to Fourier series convergence, with Gibbs phenomenon occurring at discontinuities. But we’ll regard Eq. (5) as being an equality for most purposes. A proof that \(\mathcal{F}^{-1}[V(f)] = v(t) \) will be outlined in Sect. 2.5.
Equations (4) and (5) constitute the pair of Fourier integrals. At first glance, these integrals seem to be a closed circle of operations. In a given problem, however, you usually know either \(V(f) \) or \(v(t) \). If you know \(V(f) \), you can find \(v(t) \) from Eq. (5); if you know \(v(t) \), you can find \(V(f) \) from Eq. (4).

Turning to the frequency-domain picture, a comparison of Eqs. (2) and (5) indicates that \(V(f) \) plays the same role for nonperiodic signals that \(c(nf_o) \) plays for periodic signals. Thus, \(V(f) \) is the spectrum of the nonperiodic signal \(v(t) \). But \(V(f) \) is a continuous function defined for all values of \(f \) whereas \(c(nf_o) \) is defined only for discrete frequencies. Therefore, a nonperiodic signal will have a continuous spectrum rather than a line spectrum. Again, comparing Eqs. (2) and (5) helps explain this difference: in the periodic case we return to the time domain by summing discrete-frequency phasors, while in the nonperiodic case we integrate a continuous frequency function. Three major properties of \(V(f) \) are listed below.

1. The Fourier transform is a complex function, so \(|V(f)| \) is the amplitude spectrum of \(v(t) \) and \(\arg V(f) \) is the phase spectrum.
2. The value of \(V(f) \) at \(f = 0 \) equals the net area of \(v(t) \), since

\[
V(0) = \int_{-\infty}^{\infty} v(t) \, dt
\]

which compares with the periodic case where \(c(0) \) equals the average value of \(v(t) \).
3. If \(v(t) \) is real, then

\[
V(-f) = V^*(f)
\]

and

\[
|V(-f)| = |V(f)| \quad \arg V(-f) = -\arg V(f)
\]

so again we have even amplitude symmetry and odd phase symmetry. The term hermitian symmetry describes complex functions that obey Eq. (7).

Rectangular Pulse

In the last section we found the line spectrum of a rectangular pulse train. Now consider the single rectangular pulse in Fig. 2.2–1a. This is so common a signal model that it deserves a symbol of its own. Let’s adopt the pictorial notation

\[
\Pi(t/\tau) \triangleq \begin{cases} 1 & |t| < \tau/2 \\ 0 & |t| > \tau/2 \end{cases}
\]

EXAMPLE 2.2–1

Other definitions take \(\omega \) for the frequency variable and therefore include \(1/2\pi \) or \(1/\sqrt{2\pi} \) as multiplying terms.
which stands for a rectangular function with unit amplitude and duration τ centered at $t = 0$. Some of the literature uses the expression Rect (\cdot) instead of $\Pi (\cdot)$. The pulse in the figure is then written

$$v(t) = A\Pi(t/\tau)$$ \hspace{2cm} (9a)

Inserting $v(t)$ in Eq. (4) yields

$$V(f) = \int_{-\tau/2}^{\tau/2} A e^{-j2\pi ft} dt = \frac{A}{\pi f} \sin \pi f\tau$$ \hspace{2cm} (9b)

$$= A\tau \text{sinc} f\tau$$

so $V(0) = A\tau$, which clearly equals the pulse’s area. The corresponding spectrum, plotted in Fig. 2.2–2, should be compared with Fig. 2.1–8 to illustrate the similarities and differences between line spectra and continuous spectra.

Further inspection of Fig. 2.2–2 reveals that the significant portion of the spectrum is in the range $|f| < 1/\tau$ since $|V(f)| \ll |V(0)|$ for $|f| > 1/\tau$. We therefore may take $1/\tau$ as a measure of the spectral “width.” Now if the pulse duration is reduced (small τ), the frequency width is increased, whereas increasing the duration reduces the spectral width. Thus, short pulses have broad spectra, and long pulses have narrow spectra. This phenomenon, called \textit{reciprocal spreading}, is a general property of all signals, pulses or not, because high-frequency components are demanded by rapid time variations while smoother and slower time variations require relatively little high-frequency content.

![Figure 2.2–2](image)

\textbf{Figure 2.2–2} Rectangular pulse spectrum $V(f) = A\tau \text{sinc} f\tau$.

Symmetric and Causal Signals

When a signal possesses symmetry with respect to the time axis, its transform integral can be simplified. Of course any signal symmetry depends upon both the wave-shape and the location of the time origin. But we’re usually free to choose the time origin since it’s not physically unique—as contrasted with the frequency-domain origin which has a definite physical meaning.

To develop the time-symmetry properties, we’ll sometimes write \(\omega \) in place of \(2\pi f \) for notational convenience and expand Eq. (4) using \(e^{-j2\pi ft} = \cos \omega t - j \sin \omega t \).

Thus, in general

\[
V(f) = V_e(f) + jV_o(f)
\]

(10a)

where

\[
V_e(f) \triangleq \int_{-\infty}^{\infty} v(t) \cos 2\pi ft \, dt
\]

(10b)

\[
V_o(f) \triangleq -\int_{-\infty}^{\infty} v(t) \sin 2\pi ft \, dt
\]

which are the even and odd parts of \(V(f) \), regardless of \(v(t) \). Incidentally, note that if \(v(t) \) is real, then

\[
\text{Re} [V(f)] = V_e(f) \quad \text{Im} [V(f)] = V_o(f)
\]

so \(V^*(f) = V_e(f) - jV_o(f) = V(-f) \), as previously asserted in Eq. (7).

When \(v(t) \) has time symmetry, we simplify the integrals in Eq. (10b) by applying the general relationship

\[
\int_{-\infty}^{\infty} w(t) \, dt = \int_{0}^{\infty} w(t) \, dt + \int_{-\infty}^{0} w(t) \, dt
\]

(11)

\[
= \begin{cases}
2 \int_{0}^{\infty} w(t) \, dt & \text{w(t) even} \\
0 & \text{w(t) odd}
\end{cases}
\]

where \(w(t) \) stands for either \(v(t) \cos \omega t \) or \(v(t) \sin \omega t \). If \(v(t) \) has even symmetry so that

\[
v(-t) = v(t)
\]

(12a)

then \(v(t) \cos \omega t \) is even whereas \(v(t) \sin \omega t \) is odd. Hence, \(V_o(f) = 0 \) and

\[
V(f) = V_e(f) = 2 \int_{0}^{\infty} v(t) \cos \omega t \, dt
\]

(12b)

Conversely, if \(v(t) \) has odd symmetry so that

\[
v(-t) = -v(t)
\]

(13a)
then

\[V(f) = jV_\text{d}(f) = -j2 \int_0^\infty v(t) \sin \omega t \, dt \] \hspace{1cm} (13b)

and \(V_e(f) = 0 \).

Equations (12) and (13) further show that the spectrum of a real symmetrical signal will be either purely real and even or purely imaginary and odd. For instance, the rectangular pulse in Example 2.2-1 is a real and even time function and its spectrum was found to be a real and even frequency function.

Now consider the case of a causal signal, defined by the property that

\[v(t) = 0 \quad t < 0 \] \hspace{1cm} (14a)

This simply means that the signal “starts” at or after \(t = 0 \). Since causality precludes any time symmetry, the spectrum consists of both real and imaginary parts computed from

\[V(f) = \int_0^\infty v(t) e^{-j2\pi ft} \, dt \] \hspace{1cm} (14b)

This integral bears a resemblance to the Laplace transform commonly used for the study of transients in linear circuits and systems. Therefore, we should briefly consider the similarities and differences between these two types of transforms.

The unilateral or one-sided Laplace transform is a function of the complex variable \(s = \sigma + j\omega \) defined by

\[\mathcal{L}[v(t)] \triangleq \int_0^\infty v(t) e^{-\sigma t} \, dt \]

which implies that \(v(t) = 0 \) for \(t < 0 \). Comparing \(\mathcal{L}[v(t)] \) with Eq. (14b) shows that if \(v(t) \) is a causal energy signal, you can get \(V(f) \) from the Laplace transform by letting \(s = j\omega = j2\pi f \). But a typical table of Laplace transforms includes many nonenergy signals whose Laplace transforms exist only with \(\sigma > 0 \) so that \(|v(t)e^{-\sigma t}| = |v(t)e^{-j\omega t}| \to 0 \) as \(t \to \infty \). Such signals do not have a Fourier transform because \(s = \sigma + j\omega \) falls outside the frequency domain when \(\sigma \neq 0 \). On the other hand, the Fourier transform exists for noncausal energy signals that do not have a Laplace transform. See Kamen and Heck (1997, Chap. 7) for further discussion.

EXAMPLE 2.2-2 Causal Exponential Pulse

Figure 2.2-3a shows a causal waveform that decays exponentially with time constant 1/b, so

\[v(t) = \begin{cases}
Ae^{-bt} & t > 0 \\
0 & t < 0
\end{cases} \] \hspace{1cm} (15a)
The spectrum can be obtained from Eq. (14b) or from the Laplace transform \(\mathcal{L}[v(t)] = A/(s + b) \), with the result that

\[
V(f) = \frac{A}{b + j2\pi f} \tag{15b}
\]

which is a complex function in unrationalized form. Multiplying numerator and denominator of Eq. (15b) by \(b - j2\pi f \) yields the rationalized expression

\[
V(f) = \frac{b - j2\pi f}{b^2 + (2\pi f)^2} A
\]

Figure 2.2–3 Causal exponential pulse: (a) waveform; (b) spectrum.
and we see that

\[V_\text{e}(f) = \text{Re} \left[V(f) \right] = \frac{bA}{b^2 + (2\pi f)^2} \]

\[V_\text{o}(f) = \text{Im} \left[V(f) \right] = -\frac{2\pi f A}{b^2 + (2\pi f)^2} \]

Conversion to polar form then gives the amplitude and phase spectrum

\[|V(f)| = \sqrt{V_\text{e}^2(f) + V_\text{o}^2(f)} = \frac{A}{\sqrt{b^2 + (2\pi f)^2}} \]

\[\arg V(f) = \arctan \frac{V_\text{o}(f)}{V_\text{e}(f)} = -\arctan \frac{2\pi f}{b} \]

which are plotted in Fig. 2.2–3b.

The phase spectrum in this case is a smooth curve that includes all angles from \(-90^\circ\) to \(+90^\circ\). This is due to the signal’s lack of time symmetry. But \(V(f)\) still has hermitian symmetry since \(v(t)\) is a real function. Also note that the spectral width is proportional to \(b\), whereas the time “width” is proportional to the time constant \(1/b\)—another illustration of reciprocal spreading.

EXERCISE 2.2–1

Find and sketch \(V(f)\) for the symmetrical decaying exponential \(v(t) = Ae^{-b|t|}\) in Fig. 2.2–1b. (You must use a definite integral from Table T.3.) Compare your result with \(V_\text{o}(f)\) in Example 2.2–2. Confirm the reciprocal-spreading effect by calculating the frequency range such that \(|V(f)| \geq (1/2)|V(0)|\).

Rayleigh’s Energy Theorem

Rayleigh’s energy theorem is analogous to Parseval’s power theorem. It states that the energy \(E\) of a signal \(v(t)\) is related to the spectrum \(V(f)\) by

\[E = \int_{-\infty}^{\infty} V(f) V^*(f) \, df = \int_{-\infty}^{\infty} |V(f)|^2 \, df \tag{16} \]

Therefore,

Integrating the square of the amplitude spectrum over all frequency yields the total energy.
The value of Eq. (16) lies not so much in computing E, since the time-domain integration of $|v(t)|^2$ often is easier. Rather, it implies that $|V(f)|^2$ gives the distribution of energy in the frequency domain, and therefore may be termed the energy spectral density. By this we mean that the energy in any differential frequency band df equals $|V(f)|^2 df$, an interpretation we'll further justify in Sect. 3.6. That interpretation, in turn, lends quantitative support to the notion of spectral width in the sense that most of the energy of a given signal should be contained in the range of frequencies taken to be the spectral width.

By way of illustration, Fig. 2.2–4 is the energy spectral density of a rectangular pulse, whose spectral width was claimed to be $|f| < 1/\tau$. The energy in that band is the shaded area in the figure, namely

$$
\int_{-1/\tau}^{1/\tau} |V(f)|^2 df = \int_{-1/\tau}^{1/\tau} (A \tau)^2 \text{sinc}^2 \frac{f \tau}{1/\tau} df = 0.92 A^2 \tau
$$

a calculation that requires numerical methods. But the total pulse energy is $E = A^2 \tau$, so the asserted spectral width encompasses more than 90 percent of the total energy.

Rayleigh's theorem is actually a special case of the more general integral relationship

$$
\int_{-\infty}^{\infty} \nu(t)w^*(t) \, dt = \int_{-\infty}^{\infty} V(f)W^*(f) \, df \tag{17}
$$

where $\nu(t)$ and $w(t)$ are arbitrary energy signals with transforms $V(f)$ and $W(f)$. Equation (17) yields Eq. (16) if you let $w(t) = \nu(t)$ and note that $\int_{-\infty}^{\infty} \nu(t) \nu^*(t) \, dt = E$. Other applications of Eq. (17) will emerge subsequently.

The proof of Eq. (17) follows the same lines as our derivation of Parseval's theorem. We substitute for $w^*(t)$ the inverse transform

$$
w^*(t) = \left[\int_{-\infty}^{\infty} W(f) e^{j\omega t} \, df \right]^* = \int_{-\infty}^{\infty} W^*(f) e^{-j\omega t} \, df
$$

Figure 2.2–4 Energy spectral density of a rectangular pulse.
Interchanging the order of time and frequency integrations then gives
\[
\int_{-\infty}^{\infty} v(t) W^*(t) \, dt = \int_{-\infty}^{\infty} v(t) \left[\int_{-\infty}^{\infty} W^*(f) e^{-j\omega t} \, df \right] \, dt
\]
\[
= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} v(t) e^{-j\omega t} \, dt \right] W^*(f) \, df
\]
which completes the proof since the bracketed term equals \(V(f) \).

The interchange of integral operations illustrated here is a valuable technique in signal analysis, leading to many useful results. However, you should not apply the technique willy-nilly without giving some thought to the validity of the interchange. As a pragmatic guideline, you can assume that the interchange is valid if the results make sense. If in doubt, test the results with some simple cases having known answers.

EXERCISE 2.2–2 Calculate the energy of a causal exponential pulse by applying Rayleigh’s theorem to \(V(f) \) in Eq. (15b). Then check the result by integrating \(|v(t)|^2\).

Duality Theorem

If you reexamine the pair of Fourier integrals, you’ll see that they differ only by the variable of integration and the sign in the exponent. A fascinating consequence of this similarity is the duality theorem. The theorem states that if \(v(t) \) and \(V(f) \) constitute a known transform pair, and if there exists a time function \(z(t) \) related to the function \(V(f) \) by
\[
z(t) = V(t)
\]

then
\[
\mathcal{F}[z(t)] = v(-f)
\]

(18b)

where \(v(-f) \) equals \(v(t) \) with \(t = -f \).

Proving the duality theorem hinges upon recognizing that Fourier transforms are definite integrals whose variables of integration are dummy variables. Therefore, we may replace \(f \) in Eq. (5) with the dummy variable \(\lambda \) and write
\[
v(t) = \int_{-\infty}^{\infty} V(\lambda) e^{j2\pi\lambda t} \, d\lambda
\]

Furthermore, since \(t \) is a dummy variable in Eq. (4) and since \(z(t) = V(t) \) in the theorem,
\[
\mathcal{F}[z(t)] = \int_{-\infty}^{\infty} z(\lambda) e^{-j2\pi\lambda} \, d\lambda = \int_{-\infty}^{\infty} V(\lambda) e^{j2\pi\lambda(-f)} \, d\lambda
\]

Comparing these integrals then confirms that \(\mathcal{F}[z(t)] = v(-f) \).
Although the statement of duality in Eq. (18) seems somewhat abstract, it turns out to be a handy way of generating new transform pairs without the labor of integration. The theorem works best when \(v(t) \) is real and even so \(z(t) \) will also be real and even, and \(Z(f) = \mathcal{F}[z(t)] = \nu(-f) = \nu(f) \). The following example should clarify the procedure.

Sinc Pulse

A rather strange but important time function in communication theory is the *sinc pulse* plotted in Fig. 2.2–5a and defined by

\[
 z(t) = A \text{sinc} 2Wt
\]
(19a)

We'll obtain \(Z(f) \) by applying duality to the transform pair

\[
 \nu(t) = B \Pi(t/\tau) \quad V(f) = B \tau \text{sinc} f\tau
\]

Rewriting Eq. (19a) as

\[
 z(t) = \left(\frac{A}{2W} \right) (2W) \text{sinc} t(2W)
\]

brings out the fact that \(z(t) = V(t) \) with \(\tau = 2W \) and \(B = A/2W \). Duality then says that \(\mathcal{F}[z(t)] = \nu(-f) = B \Pi(-f/\tau) = (A/2W) \Pi(-f/2W) \) or

\[
 Z(f) = \frac{A}{2W} \Pi \left(\frac{f}{2W} \right)
\]
(19b)

since the rectangle function has even symmetry.

The plot of \(Z(f) \), given in Fig. 2.2–5b, shows that the spectrum of a sinc pulse equals zero for \(|f| > W\). Thus, the spectrum has clearly defined width \(W \), measured in terms of positive frequency, and we say that \(Z(f) \) is *bandlimited*. Note, however, that the signal \(z(t) \) goes on forever and is only asymptotically timelimited.

Find the transform of \(z(t) = B/[1 + (2\pi t)^2] \) by applying duality to the result of Exercise 2.2–1.

Figure 2.2–5
A sinc pulse and its bandlimited spectrum.
Transform Calculations
Except in the case of a very simple waveform, brute-force integration should be viewed as the method of last resort for transform calculations. Other, more practical methods are discussed here.

When the signal in question is defined mathematically, you should first consult a table of Fourier transforms to see if the calculation has been done before. Both columns of the table may be useful, in view of the duality theorem. A table of Laplace transforms also has some value, as mentioned in conjunction with Eq. (14).

Besides duality, there are several additional transform theorems covered in Sect. 2.3. These theorems often help you decompose a complicated waveform into simpler parts whose transforms are known. Along this same line, you may find it expedient to approximate a waveform in terms of idealized signal models. Suppose \(\tilde{z}(t) \) approximates \(z(t) \) and magnitude-squared error \(|z(t) - \tilde{z}(t)|^2 \) is a small quantity. If \(Z(f) = \mathcal{F}[z(t)] \) and \(\tilde{Z}(f) = \mathcal{F}[\tilde{z}(t)] \) then

\[
\int_{-\infty}^{\infty} |Z(f) - \tilde{Z}(f)|^2 df = \int_{-\infty}^{\infty} |z(t) - \tilde{z}(t)|^2 dt
\]

(20)
which follows from Rayleigh’s theorem with \(v(t) = z(t) - \tilde{z}(t) \). Thus, the integrated approximation error has the same value in the time and frequency domains.

The above methods are easily modified for the calculation of Fourier series coefficients. Specifically, let \(v(t) \) be a periodic signal and let \(z(t) = v(t)\Pi(t/T_0) \), a nonperiodic signal consisting of one period of \(v(t) \). If you can obtain

\[
Z(f) = \mathcal{F}[v(t)\Pi(t/T_0)]
\]

(21a)
then, from Eq. (14), Sect. 2.1, the coefficients of \(v(t) \) are given by

\[
c_n = \frac{1}{T_0} Z(nf_0)
\]

(21b)
This relationship facilitates the application of transform theorems to Fourier series calculations.

Finally, if the signal is expressed in numerical form as a set of samples, its transform, as we will see in Sect. 2.6, can be found via numerical calculations. For this purpose the Discrete Fourier Transform (DFT) and its faster version, the Fast Fourier Transform is used.

2.3 TIME AND FREQUENCY RELATIONS
Rayleigh’s theorem and the duality theorem in the previous section helped us draw useful conclusions about the frequency-domain representation of energy signals. Now we’ll look at some of the many other theorems associated with Fourier transforms. They are included not just as manipulation exercises but for two very practical reasons. First, the theorems are invaluable when interpreting spectra, for they express
2.3 Time and Frequency Relations

relationships between time-domain and frequency-domain operations. Second, we can build up an extensive catalog of transform pairs by applying the theorems to known pairs—and such a catalog will be useful as we seek new signal models.

In stating the theorems, we indicate a signal and its transform (or spectrum) by lowercase and uppercase letters, as in \(V(f) = \mathcal{F}[v(t)] \) and \(v(t) = \mathcal{F}^{-1}[V(f)] \). This is also denoted more compactly by \(v(t) \leftrightarrow V(f) \). Table T.1 at the back lists the theorems and transform pairs covered here, plus a few others.

Superposition

Superposition applies to the Fourier transform in the following sense. If \(a_1 \) and \(a_2 \) are constants and

\[
v(t) = a_1v_1(t) + a_2v_2(t)
\]

then

\[
\mathcal{F}[v(t)] = a_1\mathcal{F}[v_1(t)] + a_2\mathcal{F}[v_2(t)]
\]

Generalizing to sums with an arbitrary number of terms, we write the superposition (or linearity) theorem as

\[
\sum_k a_k v_k(t) \leftrightarrow \sum_k a_k V_k(f)
\]

(1)

This theorem simply states that linear combinations in the time domain become linear combinations in the frequency domain.

Although proof of the theorem is trivial, its importance cannot be overemphasized. From a practical viewpoint Eq. (1) greatly facilitates spectral analysis when the signal in question is a linear combination of functions whose individual spectra are known. From a theoretical viewpoint it underscores the applicability of the Fourier transform for the study of linear systems.

Time Delay and Scale Change

Given a time function \(v(t) \), various other waveforms can be generated from it by modifying the argument of the function. Specifically, replacing \(t \) by \(t - t_d \) produces the **time-delayed** signal \(v(t - t_d) \). The delayed signal has the same shape as \(v(t) \) but shifted \(t_d \) units to the right along the time axis. In the frequency domain, time delay causes an added linear phase with slope \(-2\pi t_d\), so that

\[
v(t - t_d) \leftrightarrow V(f)e^{-j2\pi ft_d}
\]

(2)

If \(t_d \) is a negative quantity, the signal is advanced in time and the added phase has positive slope. The amplitude spectrum remains unchanged in either case, since

\[
|V(f)e^{-j2\pi ft_d}| = |V(f)||e^{-j2\pi ft_d}| = |V(f)|.
\]
Proof of the time-delay theorem is accomplished by making the change of variable $\lambda = t - t_d$ in the transform integral. Thus, using $\omega = 2\pi f$ for compactness, we have

$$
\mathcal{F}[v(t - t_d)] = \int_{-\infty}^{\infty} v(t - t_d)e^{-j\omega t} \, dt
= \int_{-\infty}^{\infty} v(\lambda)e^{-j\omega(\lambda + t_d)} \, d\lambda
= \int_{-\infty}^{\infty} v(\lambda)e^{-j\omega \lambda} \, d\lambda e^{-j\alpha t_d}
$$

The integral in brackets is just $V(f)$, so $\mathcal{F}[v(t - t_d)] = V(f)e^{-j\alpha t_d}$.

Another time-axis operation is scale change, which produces a horizontally scaled image of $y(t)$ by replacing t with αt. The scale signal $v(\alpha t)$ will be expanded if $|\alpha| < 1$ or compressed if $|\alpha| > 1$; a negative value of α yields time reversal as well as expansion or compression. These effects may occur during playback of recorded signals, for instance.

Scale change in the time domain becomes reciprocal scale change in the frequency domain, since

$$
v(\alpha t) \leftrightarrow \frac{1}{|\alpha|} V\left(\frac{f}{\alpha}\right) \quad \alpha \neq 0 \quad (3)
$$

Hence, compressing a signal expands its spectrum, and vice versa. If $\alpha = -1$, then $v(-t) \leftrightarrow V(-f)$ so both the signal and spectrum are reversed.

We’ll prove Eq. (3) for the case $\alpha < 0$ by writing $\alpha = -|\alpha|$ and making the change of variable $\lambda = -|\alpha|t$. Therefore, $t = \lambda/\alpha$, $dt = -d\lambda/|\alpha|$, and

$$
\mathcal{F}[v(-|\alpha|t)] = \int_{-\infty}^{+\infty} v(-|\alpha|t)e^{-j\omega t} \, dt
= \frac{-1}{|\alpha|} \int_{+\infty}^{-\infty} v(\lambda)e^{-j\omega \lambda/\alpha} \, d\lambda
= \frac{1}{|\alpha|} \int_{-\infty}^{+\infty} v(\lambda)e^{-j2\pi(f/\alpha)\lambda} \, d\lambda
= \frac{1}{|\alpha|} V\left(\frac{f}{\alpha}\right)
$$

Observe how this proof uses the general relationship

$$
\int_{a}^{b} x(\lambda) \, d(-\lambda) = -\int_{-b}^{-a} x(\lambda) \, d\lambda = \int_{-a}^{b} x(\lambda) \, d\lambda
$$

Hereafter, the intermediate step will be omitted when this type of manipulation occurs.
Superposition and Time Delay

The signal in Fig. 2.3–1a has been constructed using two rectangular pulses
\[v(t) = A \Pi (t/\tau) \] such that
\[z_d(t) = v(t - t_d) + (-1)v[t - (t_d + T)] \]

Application of the superposition and time-delay theorems yields
\[Z_d(f) = V(f)e^{-j2\pi f t_d} + (-1)V(f)e^{-j2\pi f(t_d + T)} \]
\[= V(f)[e^{-j2\pi f t_d} - e^{-j2\pi f(t_d + T)}] \]

where \(V(f) = A \tau \text{sinc } f \tau \).

The bracketed term in \(Z_d(f) \) is a particular case of the expression \(e^{j\theta_1} \pm e^{j\theta_2} \), which often turns up in Fourier analysis. A more informative version of this expression is obtained by factoring and using Euler's theorem, as follows:
\[e^{j\theta_1} \pm e^{j\theta_2} = [e^{j(\theta_1 - \theta_2)} \pm e^{-j(\theta_1 - \theta_2)}]e^{j(\theta_1 + \theta_2)} \]
(4)
\[= \begin{cases}
2 \cos(\theta_1 - \theta_2)e^{j(\theta_1 + \theta_2)} \\
2 \sin(\theta_1 - \theta_2)e^{j(\theta_1 + \theta_2)}
\end{cases} \]

The upper result in Eq. (4) corresponds to the upper (+) sign and the lower result to the lower (−) sign.

In the problem at hand we have \(\theta_1 = -\pi f t_d \) and \(\theta_2 = -\pi f(t_d + T) \), so \(\theta_1 - \theta_2 = \pi f T \) and \(\theta_1 + \theta_2 = -2\pi f t_d \) where \(t_0 = t_d + T/2 \) as marked in Fig. 2.3–1a. Therefore, after substituting for \(V(f) \), we obtain
\[Z_d(f) = (A \tau \text{sinc } f \tau)(j2 \sin \pi f T e^{-j2\pi f t_d}) \]

Note that \(Z_d(0) = 0 \), agreeing with the fact that \(z_d(t) \) has zero net area.

If \(t_0 = 0 \) and \(T = \tau \), \(z_d(t) \) degenerates to the waveform in Fig. 2.3–1b where
\[z_d(t) = A \Pi \left(\frac{t + \tau/2}{\tau} \right) - A \Pi \left(\frac{t - \tau/2}{\tau} \right) \]
the spectrum then becomes

\[Z_b(f) = (A \tau \text{sinc } f \tau)(j2 \sin \pi f \tau) \]

\[= (j2\pi f \tau)A \tau \text{sinc}^2 f \tau \]

This spectrum is purely imaginary because \(z_b(t) \) has odd symmetry.

EXERCISE 2.3–1 Let \(\nu(t) \) be a real but otherwise arbitrary energy signal. Show that if

\[z(t) = a_1\nu(t) + a_2\nu(-t) \quad (5a) \]

then

\[Z(f) = (a_1 + a_2)V_\nu(f) + j(a_1 - a_2)V_\nu(f) \quad (5b) \]

where \(V_\nu(f) \) and \(V_\nu(f) \) are the real and imaginary parts of \(V(f) \).

Frequency Translation and Modulation

Besides generating new transform pairs, duality can be used to generate transform theorems. In particular, a dual of the time-delay theorem is

\[\nu(t) e^{j\omega_c t} \leftrightarrow V(f - \omega_c) \quad \omega_c = 2\pi f_c \quad (6) \]

We designate this as **frequency translation** or **complex modulation**, since multiplying a time function by \(e^{j\omega_c t} \) causes its spectrum to be translated in frequency by \(+f_c \).

To see the effects of frequency translation, let \(\nu(t) \) have the bandlimited spectrum of Fig. 2.3–2a, where the amplitude and phase are plotted on the same axes using solid and broken lines, respectively. Also let \(f_c > W \). Inspection of the translated spectrum \(V(f - f_c) \) in Fig. 2.3–2b reveals the following:

Figure 2.3–2 Frequency translation of a bandlimited spectrum.
1. The significant components are concentrated around the frequency f_c.
2. Though $V(f)$ was bandlimited in W, $V(f - f_c)$ has a spectral width of $2W$. Translation has therefore doubled spectral width. Stated another way, the negative-frequency portion of $V(f)$ now appears at positive frequencies.
3. $V(f - f_c)$ is not hermitian but does have symmetry with respect to translated origin at $f = f_c$.

These considerations may appear somewhat academic in view of the fact that $\nu(t)e^{j\omega_0 t}$ is not a real time function and cannot occur as a communication signal. However, signals of the form $\nu(t)\cos(\omega_0 t + \phi)$ are common—in fact, they are the basis of carrier modulation—and by direct extension of Eq. (6) we have the following modulation theorem:

$$V(f) \leftrightarrow \frac{e^{j\phi}}{2} V(f - f_c) + \frac{e^{-j\phi}}{2} V(f + f_c)$$ \hspace{1cm} (7)

In words, multiplying a signal by a sinusoid translates its spectrum up and down in frequency by f_c. All the comments about complex modulation also apply here. In addition, the resulting spectrum is hermitian, which it must be if $\nu(t)\cos(\omega_0 t + \phi)$ is a real function of time. The theorem is easily proved with the aid of Euler’s theorem and Eq. (6).

RF Pulse

Consider the finite-duration sinusoid of Fig. 2.3–3a, sometimes referred to as an RF pulse when f_c falls in the radio-frequency band. (See Fig. 1.1–2 for the range of frequencies that supports radio waves.) Since

$$z(t) = A \Pi\left(\frac{t}{\tau}\right) \cos \omega_0 t$$

we have immediately

$$Z(f) = \frac{A\tau}{2} \text{sinc} (f - f_c) + \frac{A\tau}{2} \text{sinc} (f + f_c)$$

obtained by setting $\nu(t) = A \Pi (t/\tau)$ and $V(f) = A\tau \text{sinc} \ f \tau$ in Eq. (7). The resulting amplitude spectrum is sketched in Fig. 2.3–3b for the case of $f_c \gg 1/\tau$ so the two translated sinc functions have negligible overlap.

Because this is a sinusoid of finite duration, its spectrum is continuous and contains more than just the frequencies $f = \pm f_c$. Those other frequencies stem from the fact that $z(t) = 0$ for $|t| > \tau/2$, and the smaller τ is, the larger the spectral spread around $\pm f_c$—reciprocal spreading, again. On the other hand, had we been dealing with a sinusoid of infinite duration, the frequency-domain representation would be a two-sided line spectrum containing only the discrete frequencies $\pm f_c$.
Differentiation and Integration

Certain processing techniques involve differentiating or integrating a signal. The frequency-domain effects of these operations are indicated in the theorems below. A word of caution, however: The theorems should not be applied before checking to make sure that the differentiated or integrated signal is Fourier-transformable; the fact that $v(t)$ has finite energy is not a guarantee that the same holds true for its derivative or integral.

To derive the differentiation theorem, we replace $v(t)$ by the inverse transform integral and interchange the order of operations, as follows:

$$
\frac{d}{dt} v(t) = \frac{d}{dt} \left[\int_{-\infty}^{\infty} V(f) e^{j2\pi ft} df \right]
$$

$$
= \int_{-\infty}^{\infty} V(f) \left(\frac{d}{dt} e^{j2\pi ft} \right) df
$$

$$
= \int_{-\infty}^{\infty} \left[j2\pi f V(f) \right] e^{j2\pi ft} df
$$

Referring back to the definition of the inverse transform reveals that the bracketed term must be $\mathcal{F}[dV(t)/dt]$, so

$$
\frac{d}{dt} v(t) \leftrightarrow j2\pi f V(f)
$$

and by iteration we get

Figure 2.3–3 (a) RF pulse; (b) amplitude spectrum.
which is the differentiation theorem.

Now suppose we generate another function from \(v(t) \) by integrating it over all past time. We write this operation as \(\int_{-\infty}^{t} v(\lambda) \, d\lambda \), where the dummy variable \(\lambda \) is needed to avoid confusion with the independent variable \(t \) in the upper limit. The integration theorem says that if

\[
V(0) = \int_{-\infty}^{\infty} v(\lambda) \, d\lambda = 0 \tag{9a}
\]

then

\[
\int_{-\infty}^{t} v(\lambda) \, d\lambda \leftrightarrow \frac{1}{j2\pi f} V(f) \tag{9b}
\]

The zero net area condition in Eq. (9a) ensures that the integrated signal goes to zero as \(t \to \infty \). (We’ll relax this condition in Sect. 2.5.)

To interpret these theorems, we see that differentiation enhances the high-frequency components of a signal, since \(|j2\pi fV(f)| > |V(f)| \) for \(|f| > 1/2\pi \). Conversely, integration suppresses the high-frequency components.

Spectral interpretation thus agrees with the time-domain observation that differentiation accentuates time variations while integration smooths them out.

Triangular Pulse

The waveform \(z_b(t) \) in Fig. 2.3–1b has zero net area, and integration produces a triangular pulse shape. Specifically, let

\[
w(t) = \frac{1}{\tau} \int_{-\infty}^{t} z_b(\lambda) \, d\lambda = \begin{cases} A \left(1 - \frac{t}{\tau} \right) & |t| < \tau \\ 0 & |t| \geq \tau \end{cases}
\]

which is sketched in Fig. 2.3–4a. Applying the integration theorem to \(Z_b(f) \) from Example 2.3-1, we obtain

\[
W(f) = \frac{1}{\tau} \frac{1}{j2\pi f} Z_b(f) = A \tau \text{sinc}^2 f \tau
\]

as shown in Fig. 2.3–4b. A comparison of this spectrum with Fig. 2.2–2 reveals that the triangular pulse has less high-frequency content than a rectangular pulse with.
amplitude A and duration τ, although they both have area $A\tau$. The difference is traced to the fact that the triangular pulse is spread over 2τ seconds and does not have the sharp, stepwise time variations of the rectangular shape.

This transform pair can be written more compactly by defining the triangular function

$$\Lambda(t) = \begin{cases} 1 - \frac{|t|}{\tau} & |t| < \tau \\ 0 & |t| > \tau \end{cases}$$

(10)

Then $w(t) = A\Lambda(t/\tau)$ and

$$A\Lambda(t/\tau) \leftrightarrow A\tau \text{sinc}^2 f \tau$$

(11)

Some of the literature uses the expression Tri() instead of $\Lambda()$. It so happens that triangular functions can be generated from rectangular functions by another mathematical operation, namely, convolution. And convolution happens to be the next item on our agenda.

EXERCISE 2.3–2 A dual of the differentiation theorem is

$$t^n v(t) \leftrightarrow \frac{1}{(-j2\pi)^n} \frac{d^n}{df^n} V(f)$$

(12)

Derive this relationship for $n = 1$ by differentiating the transform integral $\mathcal{F}[v(t)]$ with respect to f.

2.4 CONVOLUTION

The mathematical operation known as convolution ranks high among the tools used by communication engineers. Its applications include systems analysis and probability theory as well as transform calculations. Here we are concerned with convolution, specifically in the time and frequency domains.
Convolution Integral
The convolution of two functions of the same variable, say \(\nu(t)\) and \(w(t)\), is defined by

\[
\nu(t) * w(t) \triangleq \int_{-\infty}^{\infty} \nu(\lambda)w(t - \lambda) \, d\lambda
\]

(1)

The notation \(\nu(t) * w(t)\) merely stands for the operation on the right-hand side of Eq. (1) and the asterisk (*) has nothing to do with complex conjugation. Equation (1) is the convolution integral, often denoted \(\nu * w\) when the independent variable is unambiguous. At other times the notation \([\nu(t)] * [w(t)]\) is necessary for clarity. Note carefully that the independent variable here is \(t\), the same as the independent variable of the functions being convolved; the integration is always performed with respect to a dummy variable (such as \(\lambda\)), and \(t\) is a constant insofar as the integration is concerned.

Calculating \(\nu(t) * w(t)\) is no more difficult than ordinary integration when the two functions are continuous for all \(t\). Often, however, one or both of the functions is defined in a piecewise fashion, and the graphical interpretation of convolution becomes especially helpful.

By way of illustration, take the functions in Fig. 2.4–1a where

\[
\nu(t) = Ae^{-t} \quad 0 < t < \infty
\]

\[
w(t) = \frac{t}{T} \quad 0 < t < T
\]

For the integrand in Eq. (1), \(\nu(\lambda)\) has the same shape as \(\nu(t)\) and

\[
w(t - \lambda) = \frac{t - \lambda}{T} \quad 0 < t - \lambda < T
\]

But obtaining the picture of \(w(t - \lambda)\) as a function of \(\lambda\) requires two steps: First, we reverse \(w(t)\) in time and replace \(t\) with \(\lambda\) to get \(w(-\lambda)\); second, we shift \(w(-\lambda)\) to the right by \(t\) units to get \(w[-(\lambda - t)] = w(t - \lambda)\) for a given value of \(t\). Fig. 2.4–1b shows \(\nu(\lambda)\) and \(w(t - \lambda)\) with \(t < 0\). The value of \(t\) always equals the distance from the origin of \(\nu(\lambda)\) to the shifted origin of \(w(-\lambda)\) indicated by the dashed line.

As \(\nu(t) * w(t)\) is evaluated for \(-\infty < t < \infty\), \(w(t - \lambda)\) slides from left to right with respect to \(\nu(\lambda)\), so the convolution integrand changes with \(t\). Specifically, we see in Fig. 2.4–1b that the functions don’t overlap when \(t < 0\); hence, the integrand equals zero and

\[
\nu(t) * w(t) = 0 \quad t < 0
\]

When \(0 < t < T\) as in Fig. 2.4–1c, the functions overlap for \(0 < \lambda < t\), so \(t\) becomes the upper limit of integration and

\[
\nu(t) * w(t) = \int_{0}^{t} Ae^{-\lambda} \left(\frac{t - \lambda}{T}\right) \, d\lambda
\]

\[
= \frac{A}{T} (t - 1 + e^{-t}) \quad 0 < t < T
\]
Finally, when \(t > T \) as in Fig. 2.4–1d, the functions overlap for \(t - T < \lambda < t \) and

\[
\nu(t) * w(t) = \int_{t-T}^{t} A e^{-\lambda} \left(\frac{t - \lambda}{T} \right) \, d\lambda
\]

\[
= \frac{A}{T} (T - 1 + e^{-T}) e^{-(t-T)} \quad t > T
\]

The complete result plotted in Fig. 2.4–2 shows that convolution is a smoothing operation in the sense that \(\nu * w(t) \) is “smoother” than either of the original functions.
Convolution Theorems

The convolution operation satisfies a number of important and useful properties. They can all be derived from the convolution integral in Eq. (1). In some cases they are also apparent from graphical analysis. For example, further study of Fig. 2.4–1 should reveal that you get the same result by reversing \(y \) and sliding it past \(w \), so convolution is commutative. This property is listed below along with the associative and distributive properties.

\[
\begin{align*}
(2a) & \quad v * w = w * v \\
(2b) & \quad v * (w * z) = (v * w) * z \\
(2c) & \quad v * (w + z) = (v * w) + (v * z)
\end{align*}
\]

All of these can be derived from Eq. (1).

Having defined and examined the convolution operation, we now list the two convolution theorems:

\[
\begin{align*}
(3) & \quad v(t) * w(t) \leftrightarrow V(f)W(f) \\
(4) & \quad v(t)w(t) \leftrightarrow V(f) * W(f)
\end{align*}
\]

These theorems state that convolution in the time domain becomes multiplication in the frequency domain, while multiplication in the time domain becomes convolution in the frequency domain. Both of these relationships are important for future work.

The proof of Eq. (3) uses the time-delay theorem, as follows:

\[
\begin{align*}
\mathcal{F}[v * w(t)] & = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} v(\lambda)w(t - \lambda) \, d\lambda \right] e^{-j\omega t} \, dt \\
& = \int_{-\infty}^{\infty} v(\lambda) \left[\int_{-\infty}^{\infty} w(t - \lambda) e^{-j\omega t} \, dt \right] \, d\lambda \\
& = \int_{-\infty}^{\infty} v(\lambda) \left[W(f) e^{-j\omega \lambda} \right] \, d\lambda
\end{align*}
\]
CHAPTER 2 • Signals and Spectra

Equation (4) can be proved by writing out the transform of \(v(t)w(t) \) and replacing \(w(t) \) by the inversion integral \(\mathcal{F}^{-1}[W(f)] \).

EXAMPLE 2.4.1 Trapezoidal Pulse

To illustrate the convolution theorem—and to obtain yet another transform pair—let’s convolve the rectangular pulses in Fig. 2.4–3a. This is a relatively simple task using the graphical interpretation and symmetry considerations. If \(\tau_1 > \tau_2 \), the problem breaks up into three cases: no overlap, partial overlap, and full overlap. Fig. 2.4–3b shows \(v(\lambda) \) and \(w(t - \lambda) \) in one case where there is no overlap and \(v(t) \ast w(t) = 0 \). For this region

\[
\begin{align*}
t + \frac{\tau_2}{2} &< - \frac{\tau_1}{2} \\
\text{or} & \\
t &< -\frac{(\tau_1 + \tau_2)}{2}
\end{align*}
\]

There is a corresponding region with no overlap where \(t - \frac{\tau_2}{2} > \frac{\tau_1}{2} \), or \(t > \frac{(\tau_1 + \tau_2)}{2} \). Combining these together yields the region of no overlap as \(|t| > \frac{(\tau_1 + \tau_2)}{2} \). In the region where there is partial overlap, \(t + \frac{\tau_2}{2} > -\frac{\tau_1}{2} \) and \(t - \frac{\tau_2}{2} < -\frac{\tau_1}{2} \), which yields

\[
v(t) \ast w(t) = \int_{-\frac{\tau_1}{2}}^{\frac{\tau_1 + \tau_2}{2}} A_1A_2 d\lambda = A_1A_2 \left(t + \frac{\tau_1 + \tau_2}{2} \right) - \frac{\tau_1 + \tau_2}{2} < t < -\frac{\tau_1 - \tau_2}{2}
\]

By properties of symmetry the other region of partial overlap can be found to be

\[
v(t) \ast w(t) = \int_{-\frac{\tau_1}{2}}^{\frac{\tau_1 + \tau_2}{2}} A_1A_2 d\lambda = A_1A_2 \left(-t + \frac{\tau_1 + \tau_2}{2} \right) \frac{\tau_1 - \tau_2}{2} < t < \frac{\tau_1 + \tau_2}{2}
\]

Finally, the convolution in the region of total overlap is

\[
v(t) \ast w(t) = \int_{-\frac{\tau_1}{2}}^{\frac{\tau_1 + \tau_2}{2}} A_1A_2 d\lambda = A_1A_2 \tau_2 |t| < \frac{\tau_1 - \tau_2}{2}
\]

The result is the trapezoidal pulse shown in Fig. 2.4–3c, whose transform will be the product \(V(f)W(f) = (A_1\tau_1 \text{ sinc } f\tau_1) (A_2\tau_2 \text{ sinc } f\tau_2) \).

Now let \(\tau_1 = \tau_2 = \tau \) so the trapezoidal shape reduces to the triangular pulse back in Fig. 2.3–4a with \(A = A_1A_2\tau \). Correspondingly, the spectrum becomes \((A_1\tau \text{ sinc } f\tau)(A_2\tau \text{ sinc } f\tau) = A\tau \text{ sinc}^2 f\tau \), which agrees with our prior result.
In Section 2.1 we mentioned the impact of the discontinuities introduced in a signal as a result of filtering with an ideal filter. We will examine this further by taking the rectangular function from Example 2.2-1 $v(t) = A\Pi(t/\tau)$ whose transform, $V(f) = A\tau \text{sinc} f\tau$, exists for all values of f. We can lowpass filter this signal at $f = 1/\tau$ by multiplying $V(f)$ by the rectangular function.

Figure 2.4–3 Convolution of rectangular pulses.
The output function is

\[z(t) = v(t) * w(t) = w(t) * v(t) = \int_{t-\tau/2}^{t+\tau/2} \frac{2A}{\tau} \sin\left(\frac{2\lambda}{\tau}\right) d\lambda \]

This integral cannot be evaluated in closed form; however, it can be evaluated numerically using Table T.4 to obtain the result shown in Fig. 2.4–4. Note the similarity to the result in Fig. 2.1–9b.

EXERCISE 2.4–1

Let \(v(t) = A \sin 2Wt \), whose spectrum is bandlimited in \(W \). Use Eq. (4) with \(w(t) = v(t) \) to show that the spectrum of \(v^2(t) \) will be bandlimited in \(2W \).

2.5 IMPULSES AND TRANSFORMS IN THE LIMIT

So far we've maintained a distinction between two spectral classifications: line spectra that represent periodic power signals and continuous spectra that represent non-periodic energy signals. But the distinction poses something of a quandary when you encounter a signal consisting of periodic and non-periodic terms. We'll resolve this quandary here by allowing impulses in the frequency domain for the representation of discrete frequency components. The underlying notion of transforms in the limit also permits the spectral representation of time-domain impulses and other signals whose transforms don't exist in the usual sense.

Properties of the Unit Impulse

The **unit impulse** or **Dirac delta function** \(\delta(t) \) is not a function in the strict mathematical sense. Rather, it belongs to a special class known as **generalized functions**
or distributions whose definitions are stated by assignment rules. In particular, the
properties of \(\delta(t) \) will be derived from the defining relationship

\[
\int_{t_1}^{t_2} \nu(t) \delta(t) \, dt = \begin{cases}
\nu(0) & t_1 < 0 < t_2 \\
0 & \text{otherwise}
\end{cases}
\] (1)

where \(\nu(t) \) is any ordinary function that’s continuous at \(t = 0 \). This rule assigns a
number—either \(\nu(0) \) or 0—to the expression on the left-hand side. Equation (1) and
all subsequent expressions will also apply to the frequency-domain impulse \(\delta(f) \) by
replacing \(t \) with \(f \).

If \(\nu(t) = 1 \) in Eq. (1), it then follows that

\[
\int_{-\infty}^{\infty} \delta(t) \, dt = \int_{-\epsilon}^{\epsilon} \delta(t) \, dt = 1
\] (2)

with \(\epsilon \) being arbitrarily small. We interpret Eq. (2) by saying that \(\delta(t) \) has unit area
concentrated at the discrete point \(t = 0 \) and no net area elsewhere. Carrying this
argument further suggests that

\[
\delta(t) = 0 \quad t \neq 0
\] (3)

Equations (2) and (3) are the more familiar definitions of the impulse, and lead to the
common graphical representation. For instance, the picture of \(A \delta(t - t_d) \) is shown
in Fig. 2.5–1, where the letter \(A \) next to the arrowhead means that \(A \delta(t - t_d) \) has
area or weight \(A \) located at \(t = t_d \).

Although an impulse does not exist physically, there are numerous conventional
functions that have all the properties of \(\delta(t) \) in the limit as some parameter \(\epsilon \) goes to
zero. In particular, if the function \(\delta_\epsilon(t) \) is such that

\[
\lim_{\epsilon \to 0} \int_{-\infty}^{\infty} \nu(t) \delta_\epsilon(t) \, dt = \nu(0)
\] (4a)

then we say that

\[
\lim_{\epsilon \to 0} \delta_\epsilon(t) = \delta(t)
\] (4b)

Figure 2.5–1 Graphical representation of \(A \delta(t - t_d) \).
Two functions satisfying Eq. (4a) are

\[
\delta_\epsilon(t) = \frac{1}{\epsilon} \Pi\left(\frac{t}{\epsilon}\right)
\]

(5)

\[
\delta_\epsilon(t) = \frac{1}{\epsilon} \text{sinc} \frac{t}{\epsilon}
\]

(6)

which are plotted in Fig. 2.5–2. You can easily show that Eq. (5) satisfies Eq. (4a) by expanding \(\nu(t)\) in a Maclaurin series prior to integrating. An argument for Eq. (6) will be given shortly when we consider impulses and transforms.

By definition, the impulse has no mathematical or physical meaning unless it appears under the operation of integration. Two of the most significant integration properties are

\[
\nu(t) \ast \delta(t - t_0) = \nu(t - t_0)
\]

(7)

\[
\int_{-\infty}^{\infty} \nu(t) \delta(t - t_0) \, dt = \nu(t_0)
\]

(8)

both of which can derived from Eq. (1). Equation (7) is a replication operation, since convolving \(\nu(t)\) with \(\delta(t - t_0)\) reproduces the entire function \(\nu(t)\) delayed by \(t_0\).

In contrast, Eq. (8) is a sampling operation that picks out or samples the value of \(\nu(t)\) at \(t = t_0\) — the point where \(\delta(t - t_0)\) is “located.”

Given the stipulation that any impulse expression must eventually be integrated, you can use certain nonintegral relations to simplify expressions before integrating. Two such relations are

\[
\nu(t) \delta(t - t_0) = \nu(t_0) \delta(t - t_0)
\]

(9a)

\[
\delta(\alpha t) = \frac{1}{|\alpha|} \delta(t) \quad \alpha \neq 0
\]

(9b)
which are justified by integrating both sides over $-\infty < t < \infty$. The product relation in Eq. (9a) simply restates the sampling property. The scale-change relation in Eq. (9b) says that, relative to the independent variable t, $\delta(\alpha t)$ acts like $\delta(t)/|\alpha|$. Setting $\alpha = -1$ then brings out the even-symmetry property $\delta(-t) = \delta(t)$.

Evaluate or simplify each of the following expressions with $v(t) = (t - 3)^2$:

(a) $\int_{-\infty}^{\infty} v(t) \delta(t + 4) \, dt$; (b) $v(t) * \delta(t + 4)$; (c) $v(t) \delta(t + 4)$; (d) $v(t) * \delta(-t/4)$.

Impulses in Frequency

Impulses in frequency represent phasors or constants. In particular, let $v(t) = A$ be a constant for all time. Although this signal has infinite energy, we can obtain its transform in a limiting sense by considering that

$$v(t) = \lim_{W \to 0} A \text{sinc} 2Wt = A$$

(10a)

Now we already have the transform pair $A \text{sinc} 2Wt \leftrightarrow (A/2W) \Pi(f/2W)$, so

$$\mathcal{F}[v(t)] = \lim_{W \to 0} A \frac{2W}{2W} \Pi\left(\frac{f}{2W}\right) = A \delta(f)$$

(10b)

which follows from Eq. (5) with $\epsilon = 2W$ and $t = f$. Therefore,

$$A \leftrightarrow A \delta(f)$$

(11)

and the spectrum of a constant in the time domain is an impulse in the frequency domain at $f = 0$.

This result agrees with intuition in that a constant signal has no time variation and its spectral content ought to be confined to $f = 0$. The impulsive form results simply because we use integration to return to the time domain, via the inverse transform, and an impulse is required to concentrate the nonzero area at a discrete point in frequency. Checking this argument mathematically using Eq. (1) gives

$$\mathcal{F}^{-1}[A \delta(f)] = \left. \int_{-\infty}^{\infty} A \delta(f)e^{j2\pi ft} \, dt \right|_{f=0} = A$$

which justifies Eq. (11) for our purposes. Note that the impulse has been integrated to obtain a physical quantity, namely the signal $v(t) = A$.

As an alternative to the above procedure, we could have begun with a rectangular pulse, $A\Pi(t/\tau)$, and let $\tau \to \infty$ to get a constant for all time. Then, since $\mathcal{F}[A\Pi(t/\tau)] = A\tau \text{sinc} f\tau$, agreement with Eq. (11) requires that

$$\lim_{\tau \to \infty} A\tau \text{sinc} f\tau = A \delta(f)$$
Further, this supports the earlier assertion in Eq. (6) that a sinc function becomes an impulse under appropriate limiting conditions.

To generalize Eq. (11), direct application of the frequency-translation and modulation theorems yields

\[A e^{j\omega t} \leftrightarrow A \delta(f - f_c) \] \hspace{1cm} (12)

\[A \cos(\omega_c t + \phi) \leftrightarrow \frac{A e^{j\phi}}{2} \delta(f - f_c) + \frac{A e^{-j\phi}}{2} \delta(f + f_c) \] \hspace{1cm} (13)

Thus, the spectrum of a single phasor is an impulse at \(f = f_c \) while the spectrum of a sinusoid has two impulses, shown in Fig. 2.5–3. Going even further in this direction, if \(v(t) \) is an arbitrary periodic signal whose exponential Fourier series is

\[v(t) = \sum_{n=-\infty}^{\infty} c(nf_0) e^{j2\pi nf_0 t} \] \hspace{1cm} (14a)

then its Fourier transform is

\[V(f) = \sum_{n=-\infty}^{\infty} c(nf_0) \delta(f - nf_0) \] \hspace{1cm} (14b)

where superposition allows us to transform the sum term by term.

By now it should be obvious from Eqs. (11)–(14) that any two-sided line spectrum can be converted to a “continuous” spectrum using this rule: convert the spectral lines to impulses whose weights equal the line heights. The phase portion of the line spectrum is absorbed by letting the impulse weights be complex numbers. Hence, with the aid of transforms in the limit, we can represent both periodic and nonperiodic signals by continuous spectra. That strange beast the impulse function thereby emerges as a key to unifying spectral analysis.

But you may well ask: What’s the difference between the line spectrum and the “continuous” spectrum of a period signal? Obviously there can be no physical difference; the difference lies in the mathematical conventions. To return to the time domain from the line spectrum, we sum the phasors which the lines represent. To return to the time domain from the continuous spectrum, we integrate the impulses to get phasors.

Figure 2.5–3 Spectrum of \(A \cos(\omega_c t + \phi) \).
Impulses and Continuous Spectra

The sinusoidal waveform in Fig. 2.5–4 has constant frequency f_c, except for the interval $-1/f_c < t < 1/f_c$ where the frequency jumps to $2f_c$. Such a signal might be produced by the process of frequency modulation, to be discussed in Chap. 5. Our interest here is the spectrum, which consists of both impulsive and nonimpulsive components.

For analysis purposes, we'll let $\tau = 2/f_c$ and decompose $\nu(t)$ into a sum of three terms as follows:

$$\nu(t) = A \cos \omega_c t - A\Pi(t/\tau) \cos \omega_c t + A\Pi(t/\tau) \cos 2\omega_c t$$

The first two terms represent a cosine wave with a “hole” to make room for an RF pulse at frequency $2f_c$ represented by the third term. Transforming $\nu(t)$ term by term then yields

$$V(f) = \frac{A}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right] - \frac{A\tau}{2} \left[\text{sinc}(f - f_c)\tau + \text{sinc}(f + f_c)\tau \right] + \frac{A\tau}{2} \left[\text{sinc}(f - 2f_c)\tau + \text{sinc}(f + 2f_c)\tau \right]$$

where we have drawn upon Eq. (13) and the results of Example 2.3–2. The amplitude spectrum is sketched in Fig. 2.5–4b, omitting the negative-frequency portion. Note that $|V(f)|$ is not symmetric about $f = f_c$ because the nonimpulsive component must include the term at $2f_c$.

Figure 2.5–4 Waveform and amplitude spectrum in Example 2.5–1.
Step and Signum Functions

We’ve seen that a constant for all time becomes a DC impulse in the frequency domain. Now consider the unit step function in Fig. 2.5–5a which steps from “off” to “on” at $t = 0$ and is defined as

$$u(t) \triangleq \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases} \quad (15)$$

This function has several uses in Fourier theory, especially with regard to causal signals since any time function multiplied by $u(t)$ will equal zero for $t < 0$. However, the lack of symmetry creates a problem when we seek the transform in the limit, because limiting operations are equivalent to contour integrations and must be performed in a symmetrical fashion—as we did in Eq. (10). To get around this problem, we’ll start with the signum function (also called the sign function) plotted in Fig. 2.5–5b and defined as

$$sgn t \triangleq \begin{cases} +1 & t > 0 \\ -1 & t < 0 \end{cases} \quad (16)$$

which clearly has odd symmetry.

The signum function is a limited case of the energy signal $z(t)$ in Fig. 2.5–6 where $v(t) = e^{-bt}u(t)$ and

$$z(t) = v(t) - v(-t) = \begin{cases} +e^{-bt} & t > 0 \\ -e^{+bt} & t < 0 \end{cases}$$
so that \(z(t) \to \text{sgn}\ t \) if \(b \to 0 \). Combining the results of Example 2.2–2 and Exercise 2.3–1 yields

\[
\mathcal{Z}[z(t)] = Z(f) = 2V_0(f) = \frac{-4\pi f}{b^2 + (2\pi f)^2}
\]

Therefore,

\[
\mathcal{Z}[\text{sgn}\ t] = \lim_{b \to 0} Z(f) = \frac{-j}{\pi f}
\]

and we have the transform pair

\[
\text{sgn}\ t \leftrightarrow \frac{1}{j\pi f}
\] \hspace{1cm} (17)

We then observe from Fig. 2.5–5 that the step and signum functions are related by

\[
u(t) = \frac{1}{2}(\text{sgn}\ t + 1) = \frac{1}{2}\text{sgn}\ t + \frac{1}{2}
\]

Hence,

\[
u(t) \leftrightarrow \frac{1}{j2\pi f} + \frac{1}{2} \delta(f)
\] \hspace{1cm} (18)

since \(\mathcal{Z}[1/2] = \frac{1}{2}\delta(f) \).

Note that the spectrum of the signum function does not include a DC impulse. This agrees with the fact that \(\text{sgn}\ t \) is an odd function with zero average value when averaged over all time, as in Eq. (9), Sect. 2.1. In contrast, the average value of the unit step is \(<u(t)> = 1/2 \) so its spectrum includes \(\frac{1}{2} \delta(f) \) — just as the transform of a periodic signal with average value \(c(0) \) would include the DC term \(c(0) \delta(f) \).

A nonimpulsive DC term also appears in the integration theorem when the signal being integrated has nonzero net area. We derive this property by convolving \(u(t) \) with an arbitrary energy signal \(\nu(t) \) to get

\[
u(t) * u(t) = \int_{-\infty}^{\infty} \nu(\lambda)u(t - \lambda) \, d\lambda
\] \hspace{1cm} (19)
\[
\int_{-\infty}^{t} u(\lambda) \, d\lambda
\]
since \(u(t - \lambda) = 0\) for \(\lambda > t\). But from the convolution theorem and Eq. (18)

\[
\mathcal{F}[u(t) \ast u(t)] = V(f) \left[\frac{1}{j2\pi f} + \frac{1}{2} \delta(f) \right]
\]
so

\[
\int_{-\infty}^{t} u(\lambda) \, d\lambda \leftrightarrow \frac{1}{j2\pi f} V(f) + \frac{1}{2} V(0) \delta(f)
\]

where we have used \(V(f) \delta(f) = V(0) \delta(f)\). Equation (20) reduces to our previous statement of the integration theorem when \(V(0) = 0\).

EXERCISE 2.5–2

Apply the modulation theorem to obtain the spectrum of the causal sinusoid \(v(t) = Au(t) \cos \omega_c t\).

Impulses in Time

Although the time-domain impulse \(\delta(t)\) seems a trifle farfetched as a signal model, we’ll run into meaningful practical applications in subsequent chapters. Equally important is the value of \(\delta(t)\) as an analytic device. To derive its transform, we let \(\tau \to 0\) in the known pair

\[
\frac{A}{\tau} \Pi \left(\frac{t}{\tau} \right) \leftrightarrow A \text{sinc} f \tau
\]

which becomes

\[
A \delta(t) \leftrightarrow A
\]

Hence, the transform of a time impulse has **constant amplitude**, meaning that its spectrum contains **all frequencies in equal proportion**.

You may have noticed that \(A \delta(t) \leftrightarrow A\) is the dual of \(A \leftrightarrow A \delta(f)\). This dual relationship embraces the two extremes of reciprocal spreading in that

An impulsive signal with “zero” duration has infinite spectral width, whereas a constant signal with infinite duration has “zero” spectral width.

Applying the time-delay theorem to Eq. (21) yields the more general pair

\[
A \delta(t - t_d) \leftrightarrow Ae^{-j2\pi f t_d}
\]
It's a simple matter to confirm the direct transform relationship \(\mathcal{F}[A \delta(t - t_d)] = A e^{-j2\pi ft_d} \); consistency therefore requires that \(\mathcal{F}^{-1}[A e^{-j2\pi ft_d}] = A \delta(t - t_d) \), which leads to a significant integral expression for the unit impulse. Specifically, since

\[
\mathcal{F}^{-1}[e^{-j2\pi ft_d}] = \int_{-\infty}^{\infty} e^{-j2\pi ft_d} e^{j2\pi ft} df
\]

we conclude that

\[
\int_{-\infty}^{\infty} e^{j2\pi (t-t_d)} df = \delta(t - t_d) \quad (23)
\]

Thus, the integral on the left side may be evaluated in the limiting form of the unit impulse—a result we'll put immediately to work in a proof of the Fourier integral theorem.

Let \(\nu(t) \) be a continuous time function with a well-defined transform \(\mathcal{F}[\nu(t)] \). Our task is to show that the inverse transform does, indeed, equal \(\nu(t) \). From the definitions of the direct and inverse transforms we can write

\[
\mathcal{F}^{-1}[\nu(t)] = \int_{-\infty}^{\infty} \nu(\lambda) e^{-j2\pi ft} df = \int_{-\infty}^{\infty} \nu(\lambda) \left[\int_{-\infty}^{\infty} e^{j2\pi (t-\lambda)} df \right] d\lambda
\]

But the bracketed integral equals \(\delta(t - \lambda) \), from Eq. (23), so

\[
\mathcal{F}^{-1}[\nu(t)] = \int_{-\infty}^{\infty} \nu(\lambda) \delta(t - \lambda) d\lambda = \nu(t) * \delta(t) \quad (24)
\]

Therefore \(\mathcal{F}^{-1}[\nu(t)] \) equals \(\nu(t) \), in the same sense that \(\nu(t) * \delta(t) = \nu(t) \). A more rigorous proof, including Gibbs's phenomena at points of discontinuity, is given by Papoulis (1962, Chap. 2).

Lastly, we relate the unit impulse to the unit step by means of the integral

\[
\int_{-\infty}^{t} \delta(\lambda - t_d) d\lambda = \begin{cases}
1 & t > t_d \\
0 & t < t_d
\end{cases} \quad (25)
\]

\[
= u(t - t_d)
\]

Differentiating both sides then yields

\[
\delta(t - t_d) = \frac{d}{dt} u(t - t_d) \quad (26)
\]

which provides another interpretation of the impulse in terms of the derivative of a step discontinuity.

Equations (26) and (22), coupled with the differentiation theorem, expedite certain transform calculations and help us predict a signal's high-frequency spectral
rolloff. The method is as follows. Repeatedly differentiate the signal in question until one or more stepwise discontinuities first appear. The next derivative, say the \(n \)th, then includes an impulse \(A_k \delta(t - t_k) \) for each discontinuity of height \(A_k \) at \(t = t_k \), so

\[
\frac{d^n}{dt^n} v(t) = w(t) + \sum_k A_k \delta(t - t_k) \quad (27a)
\]

where \(w(t) \) is a nonimpulsive function. Transforming Eq. (27a) gives

\[
(j 2 \pi f)^n V(f) = W(f) + \sum_k A_k e^{j 2 \pi f t_k} \quad (27b)
\]

which can be solved for \(V(f) \) if we know \(W(f) = \mathcal{F}[w(t)] \).

Furthermore, if \(|W(f)| \to 0 \) as \(f \to \infty \), the high-frequency behavior of \(|V(f)| \) will be proportional to \(|f|^{-n} \) and we say that the spectrum has an \textbf{nth-order rolloff}. A large value of \(n \) thus implies that the signal has very little high-frequency content—an important consideration in the design of many communication systems.

EXAMPLE 2.5-2

\textbf{Raised Cosine Pulse}

Figure 2.5–7a shows a waveform called the raised cosine pulse because

\[
v(t) = \frac{A}{2} \left(1 + \cos \frac{\pi t}{\tau} \right) \Pi \left(\frac{t}{2\tau} \right) \]

We’ll use the differentiation method to find the spectrum \(V(f) \) and the high-frequency rolloff. The first three derivatives of \(v(t) \) are sketched in Fig. 2.5–7b, and we see that

\[
\frac{dv(t)}{dt} = -\left(\frac{\pi}{\tau} \right) \frac{A}{2} \sin \frac{\pi t}{\tau} \Pi \left(\frac{t}{2\tau} \right)
\]

which has no discontinuities. However, \(d^2 v(t)/dt^2 \) is discontinuous at \(t = \pm \tau \) so

\[
\frac{d^3}{dt^3} v(t) = \left(\frac{\pi}{\tau} \right)^3 \frac{A}{2} \sin \frac{\pi t}{\tau} \Pi \left(\frac{t}{2\tau} \right) + \left(\frac{\pi}{\tau} \right)^2 \frac{A}{2} \delta(t + \tau) - \left(\frac{\pi}{\tau} \right)^2 \frac{A}{2} \delta(t - \tau)
\]

This expression has the same form as Eq. (27a), but we do not immediately know the transform of the first term.

Fortunately, a comparison of the first and third derivatives reveals that the first term of \(d^3 v(t)/dt^3 \) can be written as \(w(t) = -(\pi/\tau)^2 d v(t)/dt \). Therefore, \(W(f) = -(\pi/\tau)^2 (j 2 \pi f) V(f) \) and Eq. (27b) gives

\[
(j 2 \pi f)^3 V(f) = -\left(\frac{\pi}{\tau} \right)^2 (j 2 \pi f) V(f) + \left(\frac{\pi}{\tau} \right)^2 \frac{A}{2} (e^{j 2 \pi f \tau} - e^{-j 2 \pi f \tau})
\]
Routine manipulations finally produce the result

\[V(f) = \frac{jA \sin 2\pi fr}{j2\pi f + (\tau/\pi)^2(j2\pi f)^3} = \frac{A\tau \sin 2fr}{1 - (2fr)^2} \]

whose amplitude spectrum is sketched in Fig. 2.5–7c for \(f \gg 0 \). Note that \(|V(f)|\) has a third-order rolloff \((n = 3)\), whereas a rectangular pulse with \(|V(f)| = |\text{sinc} \frac{\tau}{\pi}f| = |\sin \frac{\pi fr}{\pi}\frac{\tau}{\pi}f|\) would have only a first-order rolloff.
CHAPTER 2 • Signals and Spectra

Let \(v(t) = (2At/\tau) \Pi (t/\tau) \). Sketch \(dv(t)/dt \) and use Eq. (27) to find \(V(f) \).

2.6 DISCRETE TIME SIGNALS AND THE DISCRETE FOURIER TRANSFORM

It will be shown in Sect. 6.1 that if we sample a signal at a rate at least twice its bandwidth, then it can be completely represented by its samples. Consider a rectangular pulse train that has been sampled at rate \(f_s = 1/T_s \) and is shown in Fig. 2.6–1a. It is readily observed that the sampling interval is \(\Delta t = T_s \). The samples can be expressed as

\[
x(t)|_{t=kT_s} = x(kT_s) \quad (1a)
\]

Furthermore, if our sampler is a periodic impulse function, we have

\[
x(kT_s) = x(t) \delta(t - kT_s) \quad (1b)
\]

Then we drop the \(T_s \) to get

\[
x(k) = x(kT_s) \quad (1c)
\]

where \(x(k) \) is a **discrete-time signal**, an ordered sequence of numbers, possibly complex, and consists of \(k = 0, 1, \ldots, N - 1 \), a total of \(N \) points.

It can be shown that because our sampler is a periodic impulse function \(\delta(t - kT_s) \), then we can replace the Fourier transform integral of Eq. (4) of Sect. 2.2 with a summation operator, giving us

\[
X(n) = \sum_{k=0}^{N-1} x(k) e^{-j2\pi nk/N} \quad n = 0, 1 \ldots N \quad (2)
\]

Alternatively, we can get Eq. (2) by converting the integral of Eq. (4), Sect. 2.2, to a summation and changing \(dt \to \Delta t = T_s \). Function \(X(n) \) is the **Discrete Fourier transform** (DFT), written as DFT \(\{x(k)\} \) and consisting of \(N \) samples, where each sample is spaced at a frequency of \(1/(NT_s) = f_s/N \) Hz. The DFT of the sampled signal of Fig. 2.6–1a is shown in Fig. 2.6–1b. Note how the DFT spectrum repeats itself every \(N \) samples or every \(f_s \) Hz. The DFT is computed only for positive \(N \). Note the interval from \(n \to (n + 1) \) represents \(f_s /N \) Hz, and thus the discrete frequency would then be

\[
n \to f_n = nf_s/N \quad (3)
\]

Observe that both \(x(k) \) and \(X(n) \) are an ordered sequence of numbers and thus can easily be processed by a computer or some other digital signal processor (DSP).
Discrete Time Signals and the Discrete Fourier Transform

The corresponding inverse discrete Fourier transform (IDFT) is

\[x(k) = \text{IDFT}[X(n)] = \frac{1}{N} \sum_{n=0}^{N-1} X(n) e^{2\pi i nk/N} \quad k = 0, 1 \ldots N \quad (4) \]

Equations (2) and (4) can be separated into their real and imaginary components giving

\[X_R(n) = \text{Re}[X(n)] \quad \text{and} \quad X_I(n) = \text{Im}[X(n)] \]

and

\[x_R(k) = \text{Re}[x(k)] \quad \text{and} \quad x_I(k) = \text{Im}[x(k)]. \]

Sect. 6.1 will discuss how \(x(t) \) is reconstructed from \(X(n) \) or \(x(k) \).

In examining Eqs. (2) and (4) we see that the number of complex multiplications required to do a DFT or IDFT is \(N^2 \). If we are willing to work with \(N = 2^\nu \) samples, where \(\nu \) is an integer, we can use the Cooley-Tukey technique, otherwise known as the fast Fourier transform (FFT) and inverse FFT (IFFT), and thereby reduce the number of complex multiplications to \(\frac{N}{2} \log_2 N \). This technique greatly
improves the system throughput. Furthermore, as we will see in Sect. 14.5, the architecture of the IFFT/IFT enables an efficient implementation of orthogonal frequency multiplexing.

EXAMPLE 2.6–1 Discrete Time Monocycle and Its DFT

Use MATLAB to generate and plot a \(N = 64 \)-point monocycle pulse centered at \(k = 32 \) and constant \(a = 100 \), sampled at \(f_s = 1 \) Hz, then calculate and plot its DFT. A monocycle is a derivative of the gaussian function and can be shown to be

\[
x(t) = \frac{t}{a} e^{-\frac{t^2}{a}}
\]

(5)

Let's assume the sample interval is 1 second, to reflect the \(k = 32 \) point delay, Eq. (6) becomes

\[
x(k) = \frac{(k - 32)}{100} e^{-\frac{t^2}{a}}
\]

(6)

The DFT calculation produces the real and imaginary components, and therefore its power spectrum is the magnitude squared or

\[
P_{uu}(n) = X(n)X^*(n) = |X(n)|^2
\]

The MATLAB program is shown below. Fig. 2.6–2 is a plot of its sampled signal, with the real and imaginary components of its DFT.

```matlab
% Generate a 64 point monocycle centered at n=32.
N=64;
k=(0:N-1);
for j=1:N
    x(j)=(j-N/2)/a*exp(-((j-N/2)^2)/a);end;
x=x/max(x); % normalize x
subplot(4,1,1), stem(k,x);    % Generate its 64 point-DFT, plot real, imaginary and
nu=fft(x,N);
xreal=nu(1:N);
ximag=nu(1:N);
Puu=nu(1:N);
% subplot(4,1,2), stem(n,xreal);
% subplot(4,1,3), stem(n,ximag);
% subplot(4,1,4), stem(n,Puu);
end
```

Puu

\[
\frac{1}{N} \sum_{n=1}^{N} X(n)X^*(n) = |X(n)|^2
\]
Note that \(k \) to \((k/11001) \) corresponds to a 1-second interval and \(n \) to \((n/11002) \) corresponds to a \(1/64 \) Hz interval. Therefore, the graphs of \(x(k) \) and \(X(n) \) span 64 seconds and 64 Hz respectively.

EXERCISE 2.6–1

Convolution Using the DFT

Just as with the continuous-time system, the output of a discrete-time system is the linear convolution of the input with the system’s impulse response system, or simply

\[
y(k) = x(k) * h(k) = \sum_{l=0}^{N} x(l)h(k - l)
\]

where the lengths of \(x(k) \) and \(h(k) \) are bounded by \(N_1 \) and \(N_2 \) respectively, the length of \(y(k) \) is bounded by \(N \geq (N_1 + N_2 - 1) \), \(y(k) \) and \(x(k) \) are the sampled versions of \(y(t) \) and \(x(t) \) respectively, and \(* \) denotes the linear convolution operator. The system’s discrete-time impulse response function, \(h(k) \), is approximately equal to its analog counterpart, \(h(t) \). However, for reasons of brevity, we will not discuss under what conditions they are closely equal. Note that we still have the DFT pair of \(h(k) \leftrightarrow H(k) \) where \(H(k) \) is discrete system response.

\[\text{Function } h(k) \cong h(t) \text{ if } f_s \gg \text{Nyquist rate. See Ludeman (1986) for more information.} \]
If

\[X_1(n) = \text{DFT}[x_1(k)] \text{ and } X_2(n) = \text{DFT}[x_2(k)] \]

then we have

\[x_1(k) \otimes x_2(k) \leftrightarrow X_1(n)X_2(n) \] \hspace{1cm} (8)

where \(\otimes \) denotes circular convolution. Circular convolution is similar to linear convolution, except both functions must be the same length, and the resultant function's length can be less than the bound of \(N_1 + N_2 - 1 \). Furthermore, while the operation of linear convolution adds to the resultant sequence's length, with circular convolution, the new terms will circulate back to the beginning of the sequence.

It is advantageous to use specialized DFT hardware to perform the computations, particularly as we will see in Sect. 14.5. If we are willing to constrain the lengths of \(N_1 = N_2 \) and \(N \geq (2N_1 - 1) \), then the linear convolution is equal to the circular convolution,

\[y(k) = x_1(k) \ast x_2(k) = x_1(k) \otimes x_2(k) \] \hspace{1cm} (9a)

\[Y(n) = \text{DFT}[x_1(k)] \times \text{DFT}[x_2(k)] \] \hspace{1cm} (9b)

\[Y(k) = \text{DFT}[x_1(n) \otimes x_2(n)] \] \hspace{1cm} (9c)

and

\[y(k) = \text{IDFT}[Y(n)] \] \hspace{1cm} (9d)

The lengths of \(x_1(k) \) and \(x_2(k) \) can be made equal by appending zeros to the sequence with the shorter length. Thus, just as the CFT replaces convolution in continuous-time systems, so can the DFT be used to replace linear convolution for discrete-time systems. For more information on the DFT and circular convolution, see Oppenheim, Schafer, and Buck (1999).

2.7 QUESTIONS AND PROBLEMS

Questions

1. Why would periodic signals be easier to intercept than nonperiodic ones?

2. Both the \(H(f) = \text{sinc}(f\tau) \) and \(H(f) = \text{sinc}^2(f\tau) \) have low-pass-frequency responses, and thus could be used to reconstruct a sampled signal. What is their equivalent operation in the time domain?

3. You have designed a noncommunications product that emits radio frequency (RF) interference that exceeds the maximum limits set by the FCC. What signal shapes would most likely be the culprit?
4. What is the effect on the output pulse width if two identical signals are multiplied in the frequency domain?

5. What is the effect on the output bandwidth if two signals are multiplied in the time domain?

6. Why is an ideal filter not realizable?

7. What is the effect on a signal's bandwidth if the pulse width is reduced?

8. Using a numerical example, show that the integration operator obeys the linearity theorem.

10. Many electrical systems such as resistive networks have a linear relationship between the input and output voltages. Give an example of a device where voltage output is not a linear function of voltage input.

11. Why is the term nonperiodic energy signal redundant?

Problems

2.1–1 Consider the phasor signal \(v(t) = Ae^{j\omega_0 t} \). Confirm that Eq. (14) yields just one nonzero coefficient \(c_m \) having the appropriate amplitude and phase.

2.1–2 If a periodic signal has the even-symmetry property \(v(-t) = v(t) \), then Eq. (14) may be written as

\[
 c_n = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} v(t) \cos(2\pi nt/T_0) \, dt
\]

Use this expression to find \(c_n \) when \(v(t) = A \) for \(|t| < T_0/4\) and \(v(t) = -A \) for \(T_0/4 < |t| < T_0/2\). As a preliminary step you should sketch the waveform and determine \(c_0 \) directly from \(\langle v(t) \rangle \). Then sketch and label the spectrum after finding \(c_n \).

2.1–3 Do Prob. 2.1–2 with \(v(t) = A - 2A|t|/T_0 \) for \(|t| < T_0/2\).

2.1–4 Do Prob. 2.1–2 with \(v(t) = A \cos(2\pi t/T_0) \) for \(|t| < T_0/2\).

2.1–5 If a periodic signal has the odd-symmetry property \(v(-t) = -v(t) \), then Eq. (14) may be written as

\[
 c_n = -j \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} v(t) \sin(2\pi nt/T_0) \, dt
\]

Use this expression to find \(c_n \) when \(v(t) = A \) for \(0 < t < T_0/2 \) and \(v(t) = -A \) for \(-T_0/2 < t < 0\). As a preliminary step you should sketch the waveform and determine \(c_0 \) directly from \(\langle v(t) \rangle \). Then sketch and label the spectrum after finding \(c_n \).
2.1–6 Do Prob. 2.1–5 with \(v(t) = A \sin(2\pi t/T_0) \) for \(|t| < T_0/2 \).

2.1–7‡ Consider a periodic signal with the **half-wave symmetry** property \(\langle v(t+T_0/2) = -v(t) \rangle \), so the second half of any period looks like the first half inverted. Show that \(c_n = 0 \) for all even harmonics.

2.1–8 How many harmonic terms are required in the Fourier series of a periodic square wave with 50 percent duty cycle and amplitude \(\pm A \) to represent 99 percent of its power?

2.1–9* Use Parseval’s power theorem to calculate the average power in the rectangular pulse train with \(\tau/T_0 = 1/4 \) if all frequencies above \(|f| > 1/\tau \) are removed. Repeat for the cases where all frequencies above \(|f| > 2/\tau \) and \(|f| > 1/2\tau \) are removed.

2.1–10 Let \(v(t) \) be the triangular wave with even symmetry listed in Table T.2, and let \(v'(t) \) be the approximating obtained with the first three nonzero terms of the trigonometric Fourier series. (a) What percentage of the total signal power is contained in \(v'(t) \)? (b) Sketch \(v'(t) \) for \(|t| < T_0/2 \).

2.1–11 Do Prob. 2.1–10 for the square wave in Table T.2.

2.1–12‡ Calculate \(P \) for the sawtooth wave listed in Table T.2. Then apply Parseval’s power theorem to show that the infinite sum \(1/1^2 + 1/2^2 + 1/3^2 + \cdots \) equals \(\pi^2/6 \).

2.1–13‡ Calculate \(P \) for the triangular wave listed in Table T.2. Then apply Parseval’s power theorem to show that the infinite sum \(1/1^4 + 1/3^4 + 1/5^4 + \cdots \) equals \(\pi^4/96 \).

2.2–1 Consider the **cosine pulse** \(v(t) = A \cos(\pi t/\tau) \Pi(t/\tau) \). Show that \(V(f) = (A\tau/2)[\text{sinc}(f\tau - 1/2) + \text{sinc}(f\tau + 1/2)] \). Then sketch and label \(|V(f)| \) for \(f \geq 0 \) to verify reciprocal spreading.

2.2–2 Consider the **sine pulse** \(v(t) = A \sin(2\pi t/\tau) \Pi(t/\tau) \). Show that \(V(f) = -j[A\tau/2][\text{sinc}(f\tau - 1) - \text{sinc}(f\tau + 1)] \). Then sketch and label \(|V(f)| \) for \(f \geq 0 \) to verify reciprocal spreading.

2.2–3 Find \(V(f) \) when \(v(t) = (A - A|t|/\tau) \Pi(t/2\tau) \). Express your result in terms of the sinc function.

2.2–4* Find \(V(f) \) when \(v(t) = (A|t|/\tau) \Pi(t/2\tau) \). Express your result in terms of the sinc function.

2.2–5 Given \(v(t) = \Pi(t/\tau) \) with \(\tau = 1 \) ms. Determine \(f_0 \) such that \(|V(f)| < \frac{1}{30} V(0) \) for all \(f > f_0 \).

2.2–6 Repeat Prob. 2.2–5 for \(v(t) = A \,(t/\tau) \).

*Indicates answer given in the back of the book.
2.2–7 Use Rayleigh’s theorem to calculate the energy in the signal $v(t) = \text{sinc}2Wt$.

2.2–8* Let $v(t)$ be the causal exponential pulse in Example 2.2–2. Use Rayleigh’s theorem to calculate the percentage of the total energy contained in $|f| < W$ when $W = b/2\pi$ and $W = 2b/\pi$.

2.2–9 Suppose the left-hand side of Eq. (17) had been written as
$$\int_{-\infty}^{\infty} v(t) w(t) \, dt$$
Find the resulting right-hand side and simplify for the case when $v(t)$ is real and $w(t) = v(t)$.

2.2–10 Show that $\mathbb{F}[w'(t)] = W'(-f)$. Then use Eq. (17) to obtain a frequency-domain expression for $\int_{-\infty}^{\infty} v(t) z(t) \, dt$.

2.2–11 Use the duality theorem to find the Fourier transform of $v(t) = \text{sinc}2t/\tau$.

2.2–12* Apply duality to the result of Prob. 2.2–1 to find $z(t)$ when $Z(f) = A\cos(\pi f/2W)\Pi(f/2W)$.

2.2–13 Apply duality to the result of Prob. 2.2–2 to find $z(t)$ when $Z(f) = -jA\sin(\pi f/2W)\Pi(f/2W)$.

2.2–14‡ Use Eq. (16) and a known transform pair to show that

2.3–1* Let $v(t)$ be the rectangular pulse in Fig. 2.2–1. Find and sketch $Z(f)$ for $z(t) = v(t - \tau) + v(t + \tau)$ taking $\tau \ll T$.

2.3–2 Repeat Prob. 2.3–1 for $z(t) = v(t - 2\tau) + 2v(t) + v(t + 2\tau)$.

2.3–3 Repeat Prob. 2.3–1 for $z(t) = v(t - 2\tau) - 2v(t) + v(t + 2\tau)$.

2.3–4 Sketch $v(t)$ and find $V(f)$ for
$$v(t) = A\Pi(t - T/2) + B\Pi(t - 3T/2)$$

2.3–5 Sketch $v(t)$ and find $V(f)$ for
$$v(t) = A\Pi(t - 2T/4) + B\Pi(t - 2T/2T)$$

2.3–6* Find $Z(f)$ in terms of $V(f)$ when $z(t) = v(at - t_0)$.

2.3–7 Prove Eq. (6).

2.3–8 Consider 100 MHz sine wave functions as an on-off keyed binary system such that a logic 1 has a duration of τ seconds and is determined by
a rectangular window. What is the minimum \(\tau \) such that the magnitude of its spectrum at 100.2 MHz will not exceed 1/10 of its maximum value?

2.3–9 Repeat Prob. 2.3–8 for a triangle pulse. Compare this with the result obtained from Prob. 2.3–8. Which waveform occupies more spectrum?

2.3–10 Given a system with input-output relationship of \(y = f(x) = 2x + 10 \), is this system linear?

2.3–11 Do Prob. 2.3–10 with \(y = f(x) = x^2 \).

2.3–12 Do Prob. 2.3–10 with \(y = \int 2x dx \).

2.3–13 Convert \(x(t) = 10\cos(20\pi t + \pi/5) \) to its equivalent time-delayed version.

2.3–14 Signal \(x_c(t) = 10\cos(2\pi \times 7 \times 10^6) \) is transmitted to some destination. The received signal is \(x_R(t) = 10\cos(2\pi \times 7 \times 10^6 \times t - \pi/6) \). What is the minimum distance between the source and destination, and what are the other possible distances?

2.3–15 Two delayed versions of signal \(x_c(t) = 10\cos(2\pi \times 7 \times 10^6) \) are received with delays of 10 and 30\(\mu \)s respectively. What are the possible differences in path lengths?

2.3–16 Use Eq. (7) to obtain the transform pair in Prob. 2.2–1.

2.3–17 Use Eq. (7) to obtain the transform pair in Prob. 2.2–2.

2.3–18 Use Eq. (7) to find \(Z(f) \) when \(z(t) = Ae^{-\pi t} \cos \omega_c t \).

2.3–19 Use Eq. (7) to find \(Z(f) \) when \(z(t) = Ae^{-t} \sin \omega_c t \) for \(t \geq 0 \) and \(z(t) = 0 \) for \(t < 0 \).

2.3–20 Use Eq. (12) to do Prob. 2.2–4.

2.3–21 Use Eq. (12) to find \(Z(f) \) when \(z(t) = Ae^{-b|t|} \).

2.3–22 Use Eq. (12) to find \(Z(f) \) when \(z(t) = Ae^{-b|t|} \) for \(t \geq 0 \) and \(z(t) = 0 \) for \(t < 0 \).

2.3–23 Consider the gaussian pulse listed in Table T.1. Generate a new transform pair by (a) applying Eq. (8) with \(n = 1 \); (b) applying Eq. (12) with \(n = 1 \).

2.4–1 Using convolution, prove Eq. (7) in Sect. 2.3. You may assume \(\phi = 0 \).

2.4–2 Find and sketch \(y(t) = \nu(t) \ast w(t) \) when \(\nu(t) = t \) for \(0 < t < 2 \) and \(w(t) = A \) for \(t > 0 \). Both signals equal zero outside the specified ranges.

2.4–3 Do Prob. 2.4–2 with \(w(t) = A \) for \(0 < t < 3 \).

2.4–4 Do Prob. 2.4–2 with \(w(t) = A \) for \(0 < t < 1 \).

2.4–5 Find and sketch \(y(t) = \nu(t) \ast w(t) \) when \(\nu(t) = 211(1-t^3), \ w(t) = A \) for \(t \geq 4 \), and \(w(t) = 0 \) otherwise.

2.4–6 Do Prob. 2.4–5 with \(w(t) = e^{-t^2} \) for \(t > 0 \) and \(w(t) = 0 \) otherwise.

2.4–7 Do Prob. 2.4–5 with \(w(t) = \Lambda(t^2) \).
2.4–8* Find \(y(t) = v(t) * w(t) \) for \(v(t) = Ae^{-at} \) for \(t > 0 \) and \(w(t) = Be^{-bt} \) for \(t > 0 \). Both signals equal zero outside the specified ranges.

2.4–9 Do Prob. 2.4–8 with \(w(t) = \sin \pi t \) for \(0 \leq t \leq 2 \), \(w(t) = 0 \) otherwise. (Hint: Express a sinusoid as a sum of exponentials.)

2.4–10 Prove Eq. (2a) from Eq. (1).

2.4–11 Let \(v(t) \) and \(w(t) \) have even symmetry. Show from Eq. (1) that \(v(t) * w(t) \) will have even symmetry.

2.4–12 Let \(v(t) \) and \(w(t) \) have odd symmetry. Show from Eq. (1) that \(v(t) * w(t) \) will have odd symmetry.

2.4–13 Find and sketch \(v(t) * v(t) * v(t) \) when \(v(t) = \Pi(\frac{t}{2}) \). You may use the symmetry property stated in Prob. 2.4–11.

2.4–14 Use Eq. (3) to prove Eq. (2b).

2.4–15* Find and sketch \(y(t) = v(t) * w(t) \) when \(v(t) = \text{sinc} 4t \) and \(w(t) = 2 \text{sinc} \frac{t}{2} \).

2.5–1 Consider the signal \(z(t) \) and its transform \(Z(f) \) from Example 2.3–2. Find \(Z(t) \) and \(Z(f) \) as \(\tau \to 0 \).

2.5–2 Let \(v(t) \) be a periodic signal whose Fourier series coefficients are denoted by \(c_v(nf_0) \). Use Eq. (14) and an appropriate transform theorem to express \(c_w(nf_0) \) in terms of \(c_v(nf_0) \) when \(w(t) = v(t - T) \).

2.5–3 Do Prob. 2.5–2 with \(w(t) = d\nu(t)/dt \).

2.5–4† Do Prob. 2.5–2 with \(w(t) = \nu(t) \cos m\omega_0 t \).

2.5–5* Let \(v(t) = A \) for \(0 < t < 2\pi \) and \(v(t) = 0 \) otherwise. Use Eq. (18) to find \(V(f) \). Check your result by writing \(v(t) \) in terms of the rectangle function.

2.5–6 Let \(v(t) = A \) for \(|t| > \tau \) and \(v(t) = 0 \) otherwise. Use Eq. (18) to find \(V(f) \). Check your result by writing \(v(t) \) in terms of the rectangle function.

2.5–7 Let \(v(t) = A \) for \(t < -T \), and \(v(t) = -A \) for \(t > T \), and \(v(t) = 0 \) otherwise. Use Eq. (18) to find \(V(f) \). Check your result by letting \(T \to 0 \).

2.5–8 Let

\[
w(t) = \int_{-\infty}^{t} v(\lambda) \, d\lambda
\]

with \(v(t) = (1/\epsilon)\Pi(t/\epsilon) \). Sketch \(w(t) \) and use Eq. (20) to find \(W(f) \). Then let \(\epsilon \to 0 \) and compare your results with Eq. (18).

2.5–9 Do Prob. 2.5–8 with \(v(t) = (1/\epsilon)e^{-\epsilon t} u(t) \).

2.5–10 Obtain the transform of the signal in Prob. 2.3–1 by expressing \(z(t) \) as the convolution of \(v(t) \) with impulses.

2.5–11* Do Prob. 2.5–10 for the signal in Prob. 2.3–2.

2.5–12 Do Prob. 2.5–10 for the signal in Prob. 2.3–3.
2.5–13* Find and sketch the signal \(v(t) = \sum_{n=0}^{8} \sin(2\pi t)\delta(t - 0.5n)\) using Eq. (9a).

2.5–14 Find and sketch the signal \(v(t) = \sum_{n=-10}^{10} \cos(2\pi t)\delta(t - 0.1n)\) using Eq. (9a).

2.6–1 Show that the DFT of a rectangular pulse is proportional to the terms of the Fourier coefficients of its periodic version.

2.6–2* A noisy sampled signal is processed using an averaging filter such that the filter’s output consists of the average of the present and past three samples. What is \(H(n)\) for \(N = 8\)?

2.6–3 Repeat Prob. 2.6–2 except that the filter’s output is the weighted average of the present and past three samples with most significance given to the present input. The weights are 8/16, 4/16, 3/16, 1/16.

2.6–4 Given an 8-point DFT where \(X_a(n) = (6,0,0,4,0,4,0,0)\), \(X_i(n) = (0,0,-1,0,0,1,0,0)\), and \(f_s = 160\) Hz, (a) calculate \(x(n)\), (b) calculate the equivalent \(x(t)\), (c) what is the analog frequency resolution, (d) what is the DC value of its equivalent analog signal?

2.6–5 Calculate the 4-point DFT for \(x(k) = 3,1,1,0\).

2.6–6 What are the minimum values of \(f_s\) and \(N\) to achieve a resolution of 0.01 MHz for a signal \(x(t) \leftrightarrow X(f)\) and where \(W = 20\) MHz?

2.6–7 Given \(x_1(k) = (4,2,2,5)\) and \(x_2(k) = (1,1,3,5,8,0,1)\), what is the value of \(N\) required so that the circular and linear convolutions are identical?

2.6–8 If your processor can do a multiply in 10 ns, how long will it take to calculate a \(N = 256\) point DFT if you use the standard algorithm? How about the FFT?

2.6–9 Do Prob. 2.6–8 for \(N = 4096\).
Signal Transmission and Filtering

CHAPTER OUTLINE

3.1 Response of LTI Systems
 - Impulse Response and the Superposition Integral
 - Transfer Functions and Frequency Response
 - Block-Diagram Analysis

3.2 Signal Distortion in Transmission
 - Distortionless Transmission
 - Linear Distortion
 - Equalization
 - Nonlinear Distortion and Companding

3.3 Transmission Loss and Decibels
 - Power Gain
 - Transmission Loss and Repeaters
 - Fiber Optics
 - Radio Transmission

3.4 Filters and Filtering
 - Ideal Filters
 - Bandlimiting and Timelimiting
 - Real Filters
 - Pulse Response and Risetime

3.5 Quadrature Filters and Hilbert Transforms

3.6 Correlation and Spectral Density
 - Correlation of Power Signals
 - Correlation of Energy Signals
 - Spectral Density Functions
Signal transmission is the process whereby an electrical waveform gets from one location to another, ideally arriving without distortion. In contrast, signal filtering is an operation that purposefully distorts a waveform by altering its spectral content. Nonetheless, most transmission systems and filters have in common the properties of linearity and time invariance. These properties allow us to model both transmission and filtering in the time domain in terms of the impulse response, or in the frequency domain in terms of the frequency response.

This chapter begins with a general consideration of system response in both domains. Then we’ll apply our results to the analysis of signal transmission and distortion for a variety of media and systems such as fiber optics and satellites. We’ll examine the use of various types of filters and filtering in communication systems. Some related topics—notably transmission loss, Hilbert transforms, and correlation—are also included as starting points for subsequent development.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. State and apply the input–output relations for an LTI system in terms of its impulse response \(h(t) \), step response \(g(t) \), or transfer function \(H(f) \) (Sect. 3.1).
2. Use frequency-domain analysis to obtain an exact or approximate expression for the output of a system (Sect. 3.1).
3. Find \(H(f) \) from the block diagram of a simple system (Sect. 3.1).
4. Distinguish between amplitude distortion, delay distortion, linear distortion, and nonlinear distortion (Sect. 3.2).
5. Identify the frequency ranges that yield distortionless transmission for a given channel, and find the equalization needed for distortionless transmission over a specified range (Sect. 3.2).
6. Use dB calculations to find the signal power in a cable transmission system with amplifiers (Sect. 3.3).
7. Discuss the characteristics of and requirements for transmission over fiber optic and satellite systems (Sect. 3.3).
8. Identify the characteristics and sketch \(H(f) \) and \(h(t) \) for an ideal LPF, BPF, or HPF (Sect. 3.4).
9. Find the 3 dB bandwidth of a real LPF, given \(H(f) \) (Sect. 3.4).
10. State and apply the bandwidth requirements for pulse transmission (Sect. 3.4).
11. State and apply the properties of the Hilbert transform (Sect. 3.5).
12. Define the crosscorrelation and auto-correlation functions for power or energy signals, and state their properties (Sect. 3.6).
13. State the Wiener-Kinchine theorem and the properties of spectral density functions (Sect. 3.6).
14. Given \(H(f) \) and the input correlation or spectral density function, find the output correlation or spectral density (Sect. 3.6).

3.1 RESPONSE OF LTI SYSTEMS

Figure 3.1–1 depicts a system inside a “black box” with an external input signal \(x(t) \) and an output signal \(y(t) \). In the context of electrical communication, the system usually would be a two-port network driven by an applied voltage or current at the input port, producing another voltage or current at the output port. Energy storage elements and other internal effects may cause the output waveform to look quite different from the input. But regardless of what’s in the box, the system is characterized by an **excitation-and-response** relationship between input and output.
Here we’re concerned with the special but important class of **linear time-invariant** systems—or LTI systems for short. We’ll develop the input–output relationship in the time domain using the superposition integral and the system’s impulse response. Then we’ll turn to frequency-domain analysis expressed in terms of the system’s transfer function.

Impulse Response and the Superposition Integral

Let Fig. 3.1–1 be an LTI system having no internal stored energy at the time the input $x(t)$ is applied. The output $y(t)$ is then the **forced response** due entirely to $x(t)$, as represented by

$$y(t) = F[x(t)]$$ \hspace{1cm} (1)

where $F[x(t)]$ stands for the functional relationship between input and output. The linear property means that Eq. (1) obeys the **principle of superposition**. Thus, if

$$x(t) = \sum_k a_k x_k(t)$$ \hspace{1cm} (2a)

where a_k are constants, then

$$y(t) = \sum_k a_k F[x_k(t)]$$ \hspace{1cm} (2b)

The **time-invariance** property means that the system’s characteristics remain **fixed with time**. Thus, a time-shifted input $x(t - t_d)$ produces

$$F[x(t - t_d)] = y(t - t_d)$$ \hspace{1cm} (3)

so the output is time-shifted but otherwise unchanged.

Most LTI systems consist entirely of **lumped-parameter** elements (such as resistors, capacitors, and inductors), as distinguished from elements with spatially distributed phenomena (such as transmission lines). Direct analysis of a lumped-parameter system starting with the element equations leads to the input–output relation as a linear differential equation in the form

$$a_n \frac{d^n y(t)}{dt^n} + \cdots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m x(t)}{dt^m} + \cdots + b_1 \frac{dx(t)}{dt} + b_0 x(t)$$ \hspace{1cm} (4)
where the \(a \)'s and \(b \)'s are constant coefficients involving the element values. The number of independent energy-storage elements determines the value of \(n \), known as the order of the system. Unfortunately, Eq. (4) doesn’t provide us with a direct expression for \(y(t) \).

To obtain an explicit input–output equation, we must first define the system’s impulse response function

\[
 h(t) = F[\delta(t)]
\]

which equals the forced response when \(x(t) = \delta(t) \). Now any continuous input signal can be written as the convolution \(x(t) = x(t) \ast \delta(t) \), so

\[
 y(t) = F\left[\int_{-\infty}^{\infty} x(\lambda) \delta(t - \lambda) \, d\lambda \right]
 = \int_{-\infty}^{\infty} x(\lambda)F[\delta(t - \lambda)] \, d\lambda
\]

in which the interchange of operations is allowed by virtue of the system’s linearity. Now, from the time-invariance property, \(F[\delta(t - \lambda)] = h(t - \lambda) \) and hence

\[
 y(t) = \int_{-\infty}^{\infty} x(\lambda)h(t - \lambda) \, d\lambda \tag{6a}
 = \int_{-\infty}^{\infty} h(\lambda)x(t - \lambda) \, d\lambda \tag{6b}
\]

where we have drawn upon the commutativity of convolution.

Either form of Eq. (6) is called the superposition integral. It expresses the forced response as a convolution of the input \(x(t) \) with the impulse response \(h(t) \). System analysis in the time domain therefore requires knowledge of the impulse response along with the ability to carry out the convolution.

Various techniques exist for determining \(h(t) \) from a differential equation or some other system model. However, you may be more comfortable taking \(x(t) = u(t) \) and calculating the system’s step response

\[
 g(t) = F[u(t)] \tag{7a}
\]

from which

\[
 h(t) = \frac{dg(t)}{dt} \tag{7b}
\]

This derivative relation between the impulse and step response follows from the general convolution property

\[
 \frac{d}{dt} [u(t) \ast w(t)] = u(t) \ast \left[\frac{d}{dt} w(t) \right]
\]

Thus, since \(g(t) = h(t) \ast u(t) \) by definition, \(dg(t)/dt = h(t) \ast [du(t)/dt] = h(t) \ast \delta(t) = h(t) \).
Time Response of a First-Order System

The simple RC circuit in Fig. 3.1–2 has been arranged as a two-port network with input voltage \(x(t) \) and output voltage \(y(t) \). The reference voltage polarities are indicated by the +/- notation where the assumed higher potential is indicated by the + sign. This circuit is a first-order system governed by the differential equation

\[
RC \frac{dy(t)}{dt} + y(t) = x(t)
\]

Similar expressions describe certain transmission lines and cables, so we’re particularly interested in the system response.

From either the differential equation or the circuit diagram, the step response is readily found to be

\[
g(t) = (1 - e^{-t/RC})u(t) \tag{8a}
\]

Interpreted physically, the capacitor starts at zero initial voltage and charges toward \(y(\infty) = 1 \) with time constant \(RC \) when \(x(t) = u(t) \). Figure 3.1–3a plots this behavior, while Fig. 3.1–3b shows the corresponding impulse response

\[
h(t) = \frac{1}{RC} e^{-t/RC} u(t) \tag{8b}
\]

obtained by differentiating \(g(t) \). Note that \(g(t) \) and \(h(t) \) are causal waveforms since the input equals zero for \(t < 0 \).

The response to an arbitrary input \(x(t) \) can now be found by putting Eq. (8b) in the superposition integral. For instance, take the case of a rectangular pulse applied at \(t = 0 \), so \(x(t) = A \) for \(0 < t < \tau \). The convolution \(y(t) = h(t) \ast x(t) \) divides into three parts, like the example back in Fig. 2.4–1 with the result that

\[
y(t) = \begin{cases}
0 & t < 0 \\
A(1 - e^{-t/RC}) & 0 < t < \tau \\
A(1 - e^{-\tau/RC}) e^{-(t-\tau)/RC} & t > \tau
\end{cases} \tag{9}
\]

as sketched in Fig. 3.1–4 for three values of \(\tau/RC \).

\[\text{Figure 3.1–2} \quad \text{RC lowpass filter.}\]
Let the resistor and the capacitor be interchanged in Fig. 3.1–2. Find the step and impulse response.

EXERCISE 3.1–1

Let the resistor and the capacitor be interchanged in Fig. 3.1–2. Find the step and impulse response.

Transfer Functions and Frequency Response

Time-domain analysis becomes increasingly difficult for higher-order systems, and the mathematical complications tend to obscure significant points. We’ll gain a
Response of LTI Systems

different and often clearer view of system response by going to the frequency domain. As a first step in this direction, we define the system \textbf{transfer function} to be the Fourier transform of the impulse response, namely,

\[H(f) \overset{\triangle}{=} \mathcal{F}[h(t)] = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft} \, dt \quad (10) \]

This definition requires that \(H(f) \) exists, at least in a limiting sense. In the case of an \textbf{unstable} system, \(h(t) \) grows with time and \(H(f) \) does not exist.

When \(h(t) \) is a \textbf{real} time function, \(H(f) \) has the hermitian symmetry

\[H(-f) = H^*(f) \quad (11a) \]

so that

\[|H(-f)| = |H(f)| \quad \text{arg} \, H(-f) = -\text{arg} \, H(f) \quad (11b) \]

We’ll assume this property holds unless otherwise stated.

The frequency-domain interpretation of the transfer function comes from \(y(t) = h * x(t) \) with a \textbf{phasor} input, say

\[x(t) = A_x e^{j\phi_x} e^{j2\pi f_0 t}, \quad -\infty < t < \infty \quad (12a) \]

The stipulation that \(x(t) \) persists for all time means that we’re dealing with steady-state conditions, like the familiar case of ac steady-state circuit analysis. The steady-state forced response is

\[y(t) = \int_{-\infty}^{\infty} h(\lambda)A_x e^{j\phi_x} e^{j2\pi f_0 (t-\lambda)} \, d\lambda \]

\[= \left[\int_{-\infty}^{\infty} h(\lambda)e^{-j2\pi f_0 \lambda} \, d\lambda \right] A_x e^{j\phi_x} e^{j2\pi f_0 t} \]

\[= H(f_0)A_x e^{j\phi_x} e^{j2\pi f_0 t} \]

where, from Eq. (10), \(H(f_0) \) equals \(H(f) \) with \(f = f_0 \). Converting \(H(f_0) \) to polar form then yields

\[y(t) = A_y e^{j\phi_y} e^{j2\pi f_0 t}, \quad -\infty < t < \infty \quad (12b) \]

in which we have identified the output phasor’s amplitude and angle

\[A_y = |H(f_0)|A_x \quad \phi_y = \text{arg} \, H(f_0) + \phi_x \quad (13) \]

Using conjugate phasors and superposition, you can similarly show that if

\[x(t) = A_x \cos (2\pi f_0 t + \phi_x) \]

then

\[y(t) = A_y \cos (2\pi f_0 t + \phi_y) \]

with \(A_y \) and \(\phi_y \) as in Eq. (13).
CHAPTER 3 • Signal Transmission and Filtering

Since \(A_y/A_x = |H(f_0)| \) at any frequency \(f_0 \), we conclude that \(|H(f)| \) represents the system’s amplitude ratio as a function of frequency (sometimes called the amplitude response or gain). By the same token, \(\arg H(f) \) represents the phase shift, since \(\phi_y - \phi_x = \arg H(f_0) \). Plots of \(|H(f)| \) and \(\arg H(f) \) versus frequency give us the frequency-domain representation of the system or, equivalently, the system’s frequency response. Henceforth, we’ll refer to \(H(f) \) as either the transfer function or frequency-response function.

Now let \(x(t) \) be any signal with spectrum \(X(f) \). Calling upon the convolution theorem, we take the transform of to obtain

\[
Y(f) = H(f)X(f)
\]

(14)

This elegantly simple result constitutes the basis of frequency-domain system analysis. It says that

The output spectrum \(Y(f) \) equals the input spectrum \(X(f) \) multiplied by the transfer function \(H(f) \).

The corresponding amplitude and phase spectra are

\[
|Y(f)| = |H(f)| |X(f)|
\]

\[
\arg Y(f) = \arg H(f) + \arg X(f)
\]

which compare with the single-frequency expressions in Eq. (13). If \(x(t) \) is an energy signal, then \(y(t) \) will be an energy signal whose spectral density and total energy are given by

\[
|Y(f)|^2 = |H(f)|^2|X(f)|^2
\]

(15a)

\[
E_y = \int_{-\infty}^{\infty} |H(f)|^2|X(f)|^2 \, df
\]

(15b)

as follows from Rayleigh’s energy theorem.

Equation (14) sheds new light on the meaning of the system transfer function and the transform pair \(h(t) \leftrightarrow H(f) \). For if we let \(x(t) \) be a unit impulse, then \(X(f) = 1 \) and \(Y(f) = H(f) \) — in agreement with the definition \(y(t) = h(t) \) when \(x(t) = \delta(t) \). From the frequency-domain viewpoint, the “flat” input spectrum \(X(f) = 1 \) contains all frequencies in equal proportion and, consequently, the output spectrum takes on the shape of the transfer function \(H(f) \).

Figure 3.1–5 summarizes our input–output relations in both domains. Clearly, when \(H(f) \) and \(X(f) \) are given, the output spectrum \(Y(f) \) is much easier to find than the output signal \(y(t) \). In principle, we could compute \(y(t) \) from the inverse transform

\[
y(t) = \mathcal{F}^{-1}[H(f)X(f)] = \int_{-\infty}^{\infty} H(f)X(f)e^{2\pi ft} \, df
\]

But this integration does not necessarily offer any advantages over time-domain convolution. Indeed, the power of frequency-domain system analysis largely depends on
staying in that domain and using our knowledge of spectral properties to draw inferences about the output signal.

Finally, we point out two ways of determining $H(f)$ that don’t involve $h(t)$. If you know the differential equation for a lumped-parameter system, you can immediately write down its transfer function as the ratio of polynomials

$$H(f) = \frac{b_m(j2\pi f)^m + \cdots + b_1(j2\pi f) + b_0}{a_n(j2\pi f)^n + \cdots + a_1(j2\pi f) + a_0} \quad (16)$$

whose coefficients are the same as those in Eq. (4). Equation (16) follows from Fourier transformation of Eq. (4).

Alternatively, if you can calculate a system’s **steady-state phasor response**, Eqs. (12) and (13) show that

$$H(f) = \frac{y(t)}{x(t)} \quad \text{when} \quad x(t) = e^{j2\pi ft} \quad (17)$$

This method corresponds to impedance analysis of electrical circuits, but is equally valid for any LTI system. Furthermore, Eq. (17) may be viewed as a special case of the s domain transfer function $H(s)$ used in conjunction with Laplace transforms. Since $s = \sigma + j\omega$, in general, $H(f)$ is obtained from $H(s)$ simply by letting $s = j2\pi f$. These methods assume, of course, that the system is stable.

Frequency Response of a First-Order System

The RC circuit from Example 3.1–1 has been redrawn in Fig. 3.1–6a with the impedances $Z_R = R$ and $Z_C = 1/j\omega C$ replacing the elements. Since $y(t)/x(t) = Z_C/(Z_C + Z_R)$ when $x(t) = e^{j\omega t}$, Eq. (17) gives

$$H(f) = \frac{Y(f)}{X(f)} = \frac{1}{1 + j2\pi fRC}$$

where we have introduced the system parameter

$$B \triangleq \frac{1}{2\pi RC}$$

$$\quad (18a)$$

$$\quad (18b)$$

EXAMPLE 3.1–2
Identical results would have been obtained from Eq. (16), or from \(H(f) = \mathcal{F}[h(t)] \).
(In fact, the system’s impulse response has the same form as the causal exponential pulse discussed in Example 2.2–2.) The amplitude ratio and phase shift are

\[
|H(f)| = \frac{1}{\sqrt{1 + (f/B)^2}} \quad \arg H(f) = -\arctan \frac{f}{B}
\]

as plotted in Fig. 3.1–6b for \(f \geq 0 \). The hermitian symmetry allows us to omit \(f < 0 \) without loss of information.

The amplitude ratio \(|H(f)| \) has special significance relative to any frequency-selective properties of the system. We call this particular system a **lowpass filter** because it has almost no effect on the amplitude of low-frequency components, say \(|f| \ll B \), while it drastically reduces the amplitude of high-frequency components, say \(|f| \gg B \).

The parameter \(B \) serves as a measure of the filter’s **passband** or **bandwidth**.

To illustrate how far you can go with frequency-domain analysis, let the input \(x(t) \) be an arbitrary signal whose spectrum has negligible content for \(|f| > W \). There are three possible cases to consider, depending on the relative values of \(B \) and \(W \):

1. If \(W \ll B \), as shown in Fig. 3.1–7a, then \(|H(f)| \approx 1 \) and \(\arg H(f) \approx 0 \) over the signal’s frequency range \(|f| < W \). Thus, \(Y(f) = H(f)X(f) \approx X(f) \) and \(y(t) \approx x(t) \) so we have **undistorted transmission** through the filter.

2. If \(W \approx B \), as shown in Fig. 3.1–7b, then \(Y(f) \) depends on both \(H(f) \) and \(X(f) \). We can say that the output is **distorted**, since \(y(t) \) will differ significantly from \(x(t) \), but time-domain calculations would be required to find the actual waveform.

\[\text{Figure 3.1–6} \quad \text{RC lowpass filter. (a) circuit; (b) transfer function.}\]
3. If \(W \gg B \), as shown in Fig. 3.1–7c, the input spectrum has a nearly constant value \(X(0) \) for \(|f| < B \) so \(Y(f) \approx X(0)H(f) \). Thus, \(y(t) \approx X(0)h(t) \), and the output signal now looks like the filter’s impulse response. Under this condition, we can reasonably model the input signal as an impulse.

Our previous time-domain analysis with a rectangular input pulse confirms these conclusions since the nominal spectral width of the pulse is \(W = 1/\tau \). The case \(W \ll B \) thus corresponds to \(1/\tau \ll 1/2\pi RC \) or \(\tau/RC \gg 1 \), and we see in Fig. 3.1–4a that \(y(t) = x(t) \). Conversely, \(W \gg B \) corresponds to \(\tau/RC \ll 1 \) as in Fig. 3.1–4c where \(y(t) \) looks more like \(h(t) \).

Find \(H(f) \) when \(Z_L = j\omega L \) replaces \(Z_C \) in Fig. 3.1–6a. Express your result in terms of the system parameter \(f_c = R/2\pi L \), and justify the name “highpass filter” by sketching \(|H(f)| \) versus \(f \).

EXERCISE 3.1–2
Block-Diagram Analysis

More often than not, a communication system comprises many interconnected building blocks or subsystems. Some blocks might be two-port networks with known transfer functions, while other blocks might be given in terms of their time-domain operations. Any LTI operation, of course, has an equivalent transfer function. For reference purposes, Table 3.1–1 lists the transfer functions obtained by applying transform theorems to four primitive time-domain operations.

<table>
<thead>
<tr>
<th>Time-Domain Operation</th>
<th>Transfer Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar multiplication</td>
<td>[y(t) = \pm Kx(t)]</td>
</tr>
<tr>
<td>Differentiation</td>
<td>[y(t) = \frac{dx(t)}{dt}]</td>
</tr>
<tr>
<td>Integration</td>
<td>[y(t) = \int_{-\infty}^{t} x(\lambda) , d\lambda]</td>
</tr>
<tr>
<td>Time delay</td>
<td>[y(t) = x(t - t_0)]</td>
</tr>
</tbody>
</table>

When the subsystems in question are described by individual transfer functions, it is possible and desirable to lump them together and speak of the overall system transfer function. The corresponding relations are given below for two blocks connected in parallel, cascade, and feedback. More complicated configurations can be analyzed by successive application of these basic rules. One essential assumption must be made, however, that any interaction or loading effects have been accounted for in the individual transfer functions so that they represent the actual response of the subsystems in the context of the overall system. (A simple op-amp voltage follower might be used to provide isolation between blocks and prevent loading.)

Figure 3.1–8a diagrams two blocks in parallel: both units have the same input and their outputs are summed to get the system’s output. From superposition it follows that \[Y(f) = [H_1(f) + H_2(f)]X(f) \] so the overall transfer function is

\[H(f) = H_1(f) + H_2(f) \quad \text{Parallel connection} \quad (19a) \]

In the cascade connection, Fig. 3.1–8b, the output of the first unit is the input to the second, so \[Y(f) = H_2(f)[H_1(f)X(f)] \] and

\[H(f) = H_1(f)H_2(f) \quad \text{Cascade connection} \quad (19b) \]

The feedback connection, Fig. 3.1–8c, differs from the other two in that the output is sent back through \(H_2(f) \) and subtracted from the input. Thus,

\[Y(f) = H_1(f)[X(f) - H_2(f)Y(f)] \]

and rearranging yields \[Y(f) = \{H_1(f)/[1 + H_1(f)H_2(f)]\}X(f) \] so
3.1 Response of LTI Systems

Figure 3.1–8 (a) Parallel connection; (b) cascade connection; (c) feedback connection.

This case is more properly termed the negative feedback connection as distinguished from positive feedback, where the returned signal is added to the input instead of subtracted.

Zero-Order Hold

The zero-order hold system in Fig. 3.1–9a has several applications in electrical communication. Here we take it as an instructive exercise of the parallel and cascade relations. But first we need the individual transfer functions, determined as follows: the upper branch of the parallel section is a straight-through path so, trivially, \(H_1(f) = 1 \); the lower branch produces pure time delay of \(T \) seconds followed by sign inversion, and lumping them together gives \(H_2(f) = e^{-2\pi fT} \); the integrator in the final block has \(H_3(f) = 1/2\pi f \). Figure 3.1–9b is the equivalent block diagram in terms of these transfer functions.

Having gotten this far, the rest of the work is easy. We combine the parallel branches in \(H_{12}(f) = H_1(f) + H_2(f) \) and use the cascade rule to obtain

\[
H(f) = \frac{H_1(f)}{1 + H_1(f)H_2(f)} \quad \text{Feedback connection (19c)}
\]
Hence we have the unusual result that the amplitude ratio of this system is a \(\text{sinc} \) function in frequency!

To confirm this result by another route, let’s calculate the impulse response \(h(t) \) drawing upon the definition that \(y(t) = h(t) \) when \(x(t) = \delta(t) \). Inspection of Fig. 3.1–9a shows that the input to the integrator then is \(x(t) - x(t - T) = \delta(t) - \delta(t - T) \), so

\[
\begin{align*}
 h(t) &= \int_{-\infty}^{t} [\delta(\lambda) - \delta(\lambda - T)] \, d\lambda = u(t) - u(t - T) \\
 &= T \text{sinc} f T e^{-j2\pi f T}
\end{align*}
\]

which represents a rectangular pulse starting at \(t = 0 \). Rewriting the impulse response as \(h(t) = \Pi((t - T/2)/T) \) helps verify the transform relation \(h(t) \leftrightarrow H(f) \).

EXERCISE 3.1–3 Let \(x(t) = A \Pi(t/\tau) \) be applied to the zero-order hold. Use frequency-domain analysis to find \(y(t) \) when \(\tau \ll T \), \(\tau = T \), and \(\tau \gg T \).

If we have a signal consisting of discrete sample points, we can use a zero-order hold to interpolate between the points as, we will see in Fig. 6.1–8a. The “zero” denoting that a 0th order function is used to connect the points. Similarly, as shown in Fig. 6.1–8b, we can employ a first-order hold, or first-order function, to do a linear interpolation.
3.2 SIGNAL DISTORTION IN TRANSMISSION

A signal transmission system is the electrical channel between an information source and destination. These systems range in complexity from a simple pair of wires to a sophisticated laser-optics link. But all transmission systems have two physical attributes of particular concern in communication: internal power dissipation that reduces the size of the output signal, and energy storage that alters the shape of the output.

Our purpose here is to formulate the conditions for distortionless signal transmission, assuming an LTI system so we can work with its transfer function. Then we'll define various types of distortion and address possible techniques for minimizing their effects.

Distortionless Transmission

Distortionless transmission means that the output signal has the same “shape” as the input. More precisely, given an input signal \(x(t) \), we say that

The output is undistorted if it differs from the input only by a multiplying constant and a finite time delay.

Analytically, we have distortionless transmission if

\[
y(t) = Kx(t - t_d)
\]

where \(K \) and \(t_d \) are constants.

The properties of a distortionless system are easily found by examining the output spectrum

\[
Y(f) = \mathcal{F}[y(t)] = Ke^{-j\omega t_d}X(f)
\]

Now by definition of transfer function, \(Y(f) = H(f)X(f) \), so

\[
H(f) = Ke^{-j\omega t_d}
\]

In words, a system giving distortionless transmission must have constant amplitude response and negative linear phase shift, so

\[
|H(f)| = |K| \quad \arg H(f) = -2\pi t_d f \pm \pi 180^\circ
\]

Note that \(\arg H(f) \) must pass through the origin or intersect at an integer multiple of \(\pm 180^\circ \). We have added the term \(\pm \pi 180^\circ \) to the phase to account for \(K \) being positive or negative. In the case of zero time delay, the phase is constant at 0 or \(\pm 180^\circ \).

An important and rather obvious qualification to Eq. (2) should be stated immediately. The conditions on \(H(f) \) are required only over those frequencies where the input signal has significant spectral content. To underscore this point, Fig. 3.2–1 shows the energy spectral density of an average voice signal obtained from laboratory measurements. Since the spectral density is quite small for \(f < 200 \) Hz and
EXAMPLE 3.2–1

Suppose a transmission system has the frequency response plotted in Fig. 3.2–2. This system satisfies Eq. (2) for $20 \leq |f| \leq 30$ kHz. Otherwise, there’s amplitude distortion for $|f| < 20$ kHz and $|f| > 50$ kHz, and delay distortion for $|f| > 30$ kHz.

Amplitude and Phase Distortion

Figure 3.2–1 Energy spectral density of an average voice signal.

$f > 3200$ Hz, we conclude that a system satisfying Eq. (2) over $200 \leq |f| \leq 3200$ Hz would yield nearly distortion-free voice transmission. Similarly, since the human ear only processes sounds between about 20 Hz and 20,000 Hz, an audio system that is distortion free in this range is sufficient.

However, the stringent demands of distortionless transmission can only be satisfied approximately in practice, so transmission systems always produce some amount of signal distortion. For the purpose of studying distortion effects on various signals, we’ll define three major types of distortion:

1. Amplitude distortion, which occurs when
 \[|H(f)| \neq |K| \]

2. Delay distortion, which occurs when
 \[\arg H(f) \neq -2\pi t_i f \pm 180^\circ \]

3. Nonlinear distortion, which occurs when the system includes nonlinear elements

The first two types can be grouped under the general designation of linear distortion, described in terms of the transfer function of a linear system. For the third type, the nonlinearity precludes the existence of a conventional (purely linear) transfer function.
Linear Distortion

Linear distortion includes any amplitude or delay distortion associated with a linear transmission system. Amplitude distortion is easily described in the frequency domain; it means simply that the output frequency components are not in correct proportion. Since this is caused by \(|H(f)|\) not being constant with frequency, amplitude distortion is sometimes called \textit{frequency distortion}.

The most common forms of amplitude distortion are excess attenuation or enhancement of extreme high or low frequencies in the signal spectrum. Less common, but equally bothersome, is disproportionate response to a band of frequencies within the spectrum. While the frequency-domain description is easy, the effects in the time domain are far less obvious, except for very simple signals. For illustration, a suitably simple test signal is

\[
x(t) = \cos \omega_0 t - \frac{1}{3} \cos 3\omega_0 t + \frac{1}{5} \cos 5\omega_0 t,
\]

a rough approximation to a square wave sketched in Fig. 3.2–3. If the low-frequency or high-frequency component is attenuated by one-half, the resulting outputs are as shown in Fig. 3.2–4. As expected, loss of the high-frequency term reduces the “sharpness” of the waveform.
Beyond qualitative observations, there's little more we can say about amplitude distortion without experimental study of specific signal types. Results of such studies are usually couched in terms of required “flat” frequency response—meaning the frequency range over which $|H(f)|$ must be constant to within a certain tolerance so that the amplitude distortion is sufficiently small.

We now turn our attention to phase shift and time delay. If the phase shift is not linear, the various frequency components suffer different amounts of time delay, and the resulting distortion is termed phase or delay distortion. For an arbitrary phase shift, the time delay is a function of frequency and can be found by writing the argument of $H(f)$ with all angles expressed in radians.

$$t_d(f) = -\frac{\arg H(f)}{2\pi f}$$

which is independent of frequency only if $\arg H(f)$ is linear with frequency.

A common area of confusion is constant time delay versus constant phase shift. The former is desirable and is required for distortionless transmission. The latter, in general, causes distortion. Suppose a system has the constant phase shift θ not equal to 0° or $\pm 180^\circ$. Then each signal frequency component will be delayed by $\theta/2\pi$ cycles of its own frequency; this is the meaning of constant phase shift. But the time delays will be different, the frequency components will be scrambled in time, and distortion will result.

That constant phase shift does give distortion is simply illustrated by returning to the test signal of Fig. 3.2–3 and shifting each component by one-fourth cycle, $\theta = -90^\circ$. Whereas the input was roughly a square wave, the output will look like the triangular wave in Fig. 3.2–5. With an arbitrary nonlinear phase shift, the deterioration of waveshape can be even more severe.

You should also note from Fig. 3.2–5 that the peak excursions of the phase-shifted signal are substantially greater (by about 50 percent) than those of the input test signal. This is not due to amplitude response, since the output amplitudes of the three frequency components are, in fact, unchanged; rather, it is because the components of the distorted signal all attain maximum or minimum values at the same time, which was not true of the input. Conversely, had we started with Fig. 3.2–5 as the test signal, a
constant phase shift of $+90^\circ$ would yield Fig. 3.2–3 for the output waveform. Thus we see that delay distortion alone can result in an increase or decrease of peak values as well as other waveshape alterations.

Clearly, delay distortion can be critical in pulse transmission, and much labor is spent equalizing transmission delay for digital data systems and the like. On the other hand, an untrained human ear is curiously insensitive to delay distortion; the waveforms of Figs. 3.2–3 and 3.2–5 would sound just about the same when driving a loudspeaker, the exception being a mastering engineer or musician. Thus, delay distortion is seldom of concern in voice and music transmission.

Let’s take a closer look at the impact of phase delay on a modulated signal. The transfer function of a channel with a flat or constant frequency response and linear phase shift can be expressed as

$$H(f) = A e^{(-2\pi ft_{q} + \phi_{0})} = (A e^{j\phi_{0}}) e^{-j2\pi f_{0}}$$ \hspace{1cm} (4)

where $\arg H(f) = -2\pi ft_{q} + \phi_{0}$ leads to $t_{d}(f) = t_{q} - \phi_{0}/2f_{0}$ from Eq. (3). If the input to this bandpass channel is

$$x(t) = x_{1}(t) \cos \omega_{c}t - x_{2}(t) \sin \omega_{c}t$$ \hspace{1cm} (5)

then by the time-delay property of Fourier transforms, the output will be delayed by t_{q}. Since $e^{j\phi_{0}}$ can be incorporated into the sine and cosine terms, the output of the channel is

$$y(t) = Ax_{1}(t - t_{q}) \cos [\omega_{c}(t - t_{q}) + \phi_{0}] - Ax_{2}(t - t_{q}) \sin [\omega_{c}(t - t_{q}) + \phi_{0}]$$

We observe that $\arg H(f_{c}) = -\omega_{c}t_{q} + \phi_{0} = -\omega_{c}t_{d}$ so that

$$y(t) = Ax_{1}(t - t_{q}) \cos [\omega_{c}(t - t_{q})] - Ax_{2}(t - t_{q}) \sin [\omega_{c}(t - t_{q})]$$ \hspace{1cm} (6)

From Eq. (6) we see that the carrier has been delayed by t_{q} and the signals that modulate the carrier, x_{1} and x_{2}, are delayed by t_{g}. The time delay t_{d} corresponding to the phase shift in the carrier is called the phase delay of the channel. This delay is also sometimes referred to as the carrier delay. The delay between the envelope of the input signal and that of the received signal, t_{g}, is called the envelope or group delay of the channel. In general, $t_{d} \neq t_{g}$.
This leads to a set of conditions under which a linear bandpass channel is distortionless. As in the general case of distortionless transmission described earlier, the amplitude response must be constant. For the channel in Eq. (4) this implies $|H(f)| = |A|$. In order to recover the original signals x_1 and x_2, the group delay must be constant. Therefore, from Eq. (4) this implies that t_g can be found directly from the derivative of $\arg H(f) = \theta(f)$ as

$$t_g = -\frac{1}{2\pi} \frac{d\theta(f)}{df} \quad (7)$$

Note that this condition on $\arg H(f)$ is less restrictive than in the general case presented earlier. If $\phi_0 = 0$ then the general conditions of distortionless transmission are met and $t_d = t_g$.

While Eq. (4) does describe some channels, many if not most channels are frequency selective, that is, $A \rightarrow A(f)$ and $\arg H(f)$ is not a linear function of frequency. The former is one reason why frequency diversity is employed in wireless systems to enhance reliability.

EXERCISE 3.2–1

Use Eq. (3) to plot $t_g(f)$ from $\arg H(f)$ given in Fig. 3.2–2.

EXERCISE 3.2–2

Using the relations in Eqs. (4) and (5), derive Eq. (6)

Equalization

Linear distortion—both amplitude and delay—is theoretically curable through the use of equalization networks. Figure 3.2–6 shows an equalizer $H_{eq}(f)$ in cascade with a distorting transmission channel $H_C(f)$. Since the overall transfer function is $H(f) = H_C(f)H_{eq}(f)$ the final output will be distortionless if $H_C(f)H_{eq}(f) = Ke^{-j\omega t_d}$, where K and t_d are more or less arbitrary constants. Therefore, we require that

$$H_{eq}(f) = \frac{Ke^{-j\omega t_d}}{H_C(f)} \quad (8)$$

wherever $X(f) \neq 0$.

Rare is the case when an equalizer can be designed to satisfy Eq. (8) exactly—which is why we say that equalization is a theoretical cure. But excellent approximations often are possible so that linear distortion can be reduced to a tolerable level. Probably the oldest equalization technique involves the use of loading coils on twisted-pair telephone lines. These coils are lumped inductors placed in shunt across the line every kilometer or so, giving the improved amplitude ratio typically illustrated in Fig. 3.2–7. Other lumped-element circuits have been designed for specific equalization tasks.
More recently, the tapped-delay-line equalizer, or transversal filter, has emerged as a convenient and flexible device. To illustrate the principle, Fig. 3.2–8 shows a delay line with total time delay 2Δ having taps at each end and the middle. Variable Δ is the symbol’s time duration. The tap outputs are passed through adjustable gains, c_{-1}, c_0, and c_1, and summed to form the final output. Thus

$$y(t) = c_{-1}x(t) + c_0 x(t - \Delta) + c_1 x(t - 2\Delta)$$ \hspace{1cm} (9a)

and

$$H_{eq}(f) = c_{-1} + c_0 e^{-j\omega\Delta} + c_1 e^{-j2\omega\Delta}$$

$$= (c_{-1}e^{j\omega\Delta} + c_0 + c_1 e^{j\omega2\Delta})e^{-j\omega\Delta}$$ \hspace{1cm} (9b)

Generalizing Eq. (9b) to the case of a $2M \Delta$ delay line with $2M + 1$ taps yields

$$H_{eq}(f) = \left(\sum_{m=-M}^{M} c_m e^{-j\omega m\Delta} \right)e^{-j\omega M\Delta}$$ \hspace{1cm} (10)

which has the form of an exponential Fourier series with frequency periodicity $1/\Delta$. Therefore, given a channel $H_{\zeta}(f)$ to be equalized over $|f| < W$, you can approximate the right-hand side of Eq. (8) by a Fourier series with frequency periodicity $1/2\Delta \geq W$ (thereby determining Δ), estimate the number of significant terms (which determines M), and match the tap gains to the series coefficients.

The natural extension of the tapped delay line is the digital filter, the difference being the input to the digital filter is a sequence of symbols, whereas the transversal filter has a continuous time input.

In many applications, the tap gains must be readjusted from time to time to compensate for changing channel characteristics. Adjustable equalization is especially important in switched communication networks, such as a telephone system, since the
route between source and destination cannot be determined in advance. Sophisticated adaptive equalizers have therefore been designed with provision for automatic readjustment.

Adaptive equalization is usually implemented with digital circuitry and microprocessor control, in which case the delay line may be replaced by a shift register or charge-coupled device (CCD). For fixed (nonadjustable) equalizers, the transversal filter can be fabricated in an integrated circuit using a surface-acoustic-wave (SAW) device.

You recall that Sect. 1.3 stated that multipath can cause a loss of signal strength in the channel output. Suppose the two signals of our channel, \(K_1 x(t - t_1) \) and \(K_2 x(t - t_2) \) are as shown in Fig. 3.2–9. It is readily observed that the destructive interference between these two signals results in a reduced amplitude channel output as given by \(y(t) = K_1 x(t - t_1) + K_2 x(t - t_2) \).

A wireless channel, carrying digital symbols, with multipath can also introduce delay spread, causing the smearing of received symbols or pulses. An example of what this might look like is shown in the pulses of Fig. 1.1–3. If the delay spread is of sufficient degree, successive symbols would overlap, causing intersymbol interference (ISI). Delay spread is defined as the standard deviation of the multipath channel’s impulse response duration \(h_C(t) \) and is the arrival time difference between the first and last reflections (Andrews, Ghosh, & Muhamed, 2007; Nekoogar, 2006). Recall from Sect. 3.1...
that the narrower a system’s impulse response, the less the input shape is affected; thus, we want a low ratio of delay spread to symbol duration. A general rule of thumb is that a delay spread of less than 5 or 10 times the symbol width will not be a significant factor for ISI. The effects of delay spread can be mitigated by reducing the symbol rate and/or including sufficient guard times between symbols.

Multipath Distortion

Radio systems sometimes suffer from multipath distortion caused by two (or more) propagation paths between transmitter and receiver. This can be seen in Chapter 1, Fig. 1.3–3. Reflections due to mismatched impedance on a cable system produce the same effect. As a simple example, suppose the channel output is

\[y(t) = K_1 x(t - t_1) + K_2 x(t - t_2) \]

whose second term corresponds to an echo of the first if \(t_2 > t_1 \). Then

\[H_C(f) = K_1 e^{-j\omega t_1} + K_2 e^{-j\omega t_2} = K_1 e^{-j\omega t_1}(1 + ke^{-j\omega t_0}) \]

where \(k = K_2/K_1 \) and \(t_0 = t_2 - t_1 \).

If we take \(K = K_1 \) and \(t_0 = t_1 \) for simplicity in Eq. (8), the required equalizer characteristic becomes

\[H_{eq}(f) = \frac{1}{1 + ke^{-j\omega t_0}} = 1 - ke^{-j\omega t_0} + k^2e^{-j2\omega t_0} + \ldots \]

The binomial expansion has been used here because, in this case, it leads to the form of Eq. (10) without any Fourier-series calculations. Assuming a small echo, so that \(k^2 \ll 1 \), we drop the higher-power terms and rewrite \(H_{eq}(f) \) as

\[H_{eq}(f) \approx (e^{j\omega t_0} - k + k^2e^{-j\omega t_0})e^{-j\omega t_0} \]

Comparison with Eqs. (9b) or (10) now reveals that a three-tap transversal filter will do the job if \(c_{-1} = 1, c_0 = -k, c_1 = k^2 \), and \(\Delta = t_0 \).

EXERCISE 3.2–3

Sketch \(|H_{eq}(f)| \) and \(\arg H_{eq}(f) \) needed to equalize the frequency response in Fig. 3.2–2 over \(5 \leq |f| \leq 50 \text{ kHz} \). Take \(K = 1/4 \) and \(t_d = 1/120 \text{ ms} \) in Eq. (8).

Nonlinear Distortion and Companding

A system having nonlinear elements cannot be described by a classical transfer function. Instead, the instantaneous values of input and output are related by a curve or function \(y(t) = T[x(t)] \), commonly called the **transfer characteristic**. Figure 3.2–10 is a representative transfer characteristic; the flattening out of the output for large input excursions is the familiar saturation-and-cutoff effect of transistor amplifiers.
We'll consider only memoryless devices, for which the transfer characteristic is a complete description. It should be noted that the transfer function is a purely linear concept and is only relevant in linear or linearized systems.

Under small-signal input conditions, it may be possible to linearize the transfer characteristic in a piecewise fashion, as shown by the thin lines in the figure. The more general approach is a polynomial approximation to the curve, of the form

\[y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t) + \cdots \] (12a)

and the higher powers of \(x(t) \) in this equation give rise to the nonlinear distortion.

Even though we have no transfer function, the output spectrum can be found, at least in a formal way, by transforming Eq. (12a). Specifically, invoking the convolution theorem,

\[Y(f) = a_1 X(f) + a_2 X \ast X(f) + a_3 X \ast X \ast X(f) + \cdots \] (12b)

Now if \(x(t) \) is bandlimited in \(W \), the output of a linear network will contain no frequencies beyond \(|f| < W \). But in the nonlinear case, we see that the output includes \(X \ast X(f) \), which is bandlimited in \(2W \), \(X \ast X \ast X(f) \), which is bandlimited in \(3W \), and so on. The nonlinearities have therefore created output frequency components that were not present in the input. Furthermore, since \(X \ast X(f) \) may contain components for \(|f| > W \), this portion of the spectrum overlaps that of \(X(f) \). Using filtering techniques, the added components at \(|f| > W \) can be removed, but there is no convenient way to get rid of the added components at \(|f| < W \). These, in fact, constitute the nonlinear distortion.

A quantitative measure of nonlinear distortion is provided by taking a simple cosine wave, \(x(t) = \cos \omega_0 t \), as the input. Inserting in Eq. (12a) and expanding yields

\[
y(t) = \left(\frac{a_2}{2} + \frac{3a_4}{8} + \cdots \right) + \left(a_1 + \frac{3a_3}{4} + \cdots \right) \cos \omega_0 t + \left(\frac{a_2}{2} + \frac{a_4}{4} + \cdots \right) \cos 2\omega_0 t + \cdots
\]
Therefore, the nonlinear distortion appears as **harmonics** of the input wave. The amount of second-harmonic distortion is the ratio of the amplitude of this term to that of the fundamental, or in percent:

\[
\text{Second-harmonic distortion} = \frac{|a_2/2 + a_4/4 + \cdots|}{a_1 + 3a_3/4 + \cdots} \times 100\%
\]

Higher-order harmonics are treated similarly. However, their effect is usually much less, and many can be removed entirely by filtering.

If the input is a sum of two cosine waves, say \(\cos \omega_1 t + \cos \omega_2 t \), the output will include all the harmonics of \(f_1 \) and \(f_2 \), plus crossproduct terms which yield \(f_2 - f_1, f_2 + f_1, f_2 - 2f_1 \), etc. These sum and difference frequencies are designated as **intermodulation distortion**. Generalizing the intermodulation effect, if \(x(t) = x_1(t) + x_2(t) \), then \(y(t) \) contains the cross-product \(x_1(t)x_2(t) \) (and higher-order products, which we ignore here). In the frequency domain \(x_1(t)x_2(t) \) becomes \(X_1 * X_2(f) \); and even though \(X_1(f) \) and \(X_2(f) \) may be separated in frequency, \(X_1 * X_2(f) \) can overlap both of them, producing one form of **crosstalk**. Note that nonlinearity is not required for other forms of crosstalk (e.g., signals traveling over adjacent cables can have crosstalk). This aspect of nonlinear distortion is of particular concern in telephone transmission systems. On the other hand the cross-product term is the desired result when nonlinear devices are used for modulation purposes.

It is important to note the difference between crosstalk and other types of interference. Crosstalk occurs when one signal crosses over to the frequency band of another signal due to nonlinear distortion in the channel. Picking up a conversation on a cordless phone or baby monitor occurs because the frequency spectrum allocated to such devices is too crowded to accommodate all of the users on separate frequency carriers. Therefore some “sharing” may occur from time to time. While crosstalk resulting from nonlinear distortion is now rare in telephone transmission due to advances in technology, it was a major problem at one time.

The cross-product term is the desired result when nonlinear devices are used for modulation purposes. In Sect. 4.3 we will examine how nonlinear devices can be used to achieve amplitude modulation. In Chap. 5, carefully controlled nonlinear distortion again appears in both modulation and detection of FM signals.

Although nonlinear distortion has no perfect cure, it can be minimized by careful design. The basic idea is to make sure that the signal does not exceed the linear operating range of the channel’s transfer characteristic. Ironically, one strategy along this line utilizes two nonlinear signal processors, a compressor at the input and an expander at the output, as shown in Fig. 3.2–11.

A compressor has greater amplification at low signal levels than at high signal levels, similar to Fig. 3.2–10, and thereby compresses the range of the input signal. If the compressed signal falls within the linear range of the channel, the signal at the channel output is proportional to \(T_{\text{comp}}[x(t)] \) which is distorted by the compressor but not the channel. Ideally, then, the expander has a characteristic that perfectly complements the compressor so the expanded output is proportional to \(T_{\text{exp}}[T_{\text{comp}}[x(t)]] = x(t) \), as desired.

The joint use of compressing and expanding is called **companding** (surprise?) and is of particular value in telephone systems. Besides reducing nonlinear
distortion, companding tends to compensate for the signal-level difference between loud and soft talkers. Indeed, the latter is the key advantage of companding compared to the simpler technique of linearly attenuating the signal at the input (to keep it in the linear range of the channel) and linearly amplifying it at the output. Boyd, Tang, and Leon (1983) and Wiener and Spina (1980) analyze nonlinear systems using pseudolinear techniques to facilitate harmonic analysis.

3.3 TRANSMISSION LOSS AND DECIBELS

In addition to any signal distortion, a transmission system also reduces the power level or “strength” of the output signal. This signal-strength reduction is expressed in terms of transmission power loss. Although transmission loss can be compensated by power amplification, the ever-present electrical noise may prevent successful signal recovery in the face of a large transmission loss.

This section describes transmission loss encountered on cable and radio communication systems. We’ll start with a brief review of the more familiar concept of power gain, and we’ll introduce decibels as a handy measure of power ratios used by communication engineers.

Power Gain

Let Fig. 3.3–1 represent an LTI system whose input signal has average power P_{in}. If the system is distortionless, the average signal power at the output will be proportional to P_{in}. Thus, the system’s **power gain** is

$$g \triangleq \frac{P_{out}}{P_{in}}$$ \hspace{1cm} (1)

a constant parameter not to be confused with our step-response notation $g(t)$. Systems that include amplification may have very large values of g, so we’ll find it convenient to express power gain in **decibels** (dB) defined as

$$g_{dB} \triangleq 10 \log_{10} g$$ \hspace{1cm} (2)

The “B” in dB is capitalized in honor of Alexander Graham Bell who first used logarithmic power measurements.

Since the decibel is a logarithmic unit, it converts powers of 10 to products of 10. For instance, $g = 10^m$ becomes $g_{dB} = m \times 10$ dB. Power gain is always positive, of course, but negative dB values occur when $g \leq 1.0 = 10^0$ and hence $g_{dB} \leq 0$ dB. Note carefully that 0 dB corresponds to unity gain ($g = 1$). Given a value in dB, the ratio value is

$$g = 10^{(g_{dB}/10)}$$ \hspace{1cm} (3)
obtained by inversion of Eq. (2).

While decibels always represent power ratios, signal power itself may be expressed in dB if you divide P by one watt or one milliwatt, as follows:

$$P_{\text{dBW}} = 10 \log_{10} \frac{P}{1 \text{W}}$$

$$P_{\text{dBm}} = 10 \log_{10} \frac{P}{1 \text{mW}}$$

(4)

Rewriting Eq. (1) as $(P_{\text{out}}/1 \text{ mW}) = g(P_{\text{in}}/1 \text{ mW})$ and taking the logarithm of both sides then yields the dB equation

$$P_{\text{out,db}} = g_{\text{db}} + P_{\text{in,db}}$$

Such manipulations have particular advantages for the more complicated relations encountered subsequently, where multiplication and division become addition and subtraction of known dB quantities. Communication engineers usually work with dBm because the signal powers are quite small at the output of a transmission system.

Now consider a system described by its transfer function $H(f)$. A sinusoidal input with amplitude A_x produces the output amplitude $A_y = |H(f)|A_x$, and the normalized signal powers are $P_x = A_x^2/2$ and $P_y = A_y^2/2 = |H(f)|^2P_x$. These normalized powers do not necessarily equal the actual powers in Eq. (1). However, when the system has the same impedance level at input and output, the ratio P_y/P_x does equal $P_{\text{out}}/P_{\text{in}}$. Therefore, if $H(f) = K e^{j\omega t}$, then

$$g = |H(f)|^2 = K^2$$

(5)

In this case, the power gain also applies to energy signals in the sense that $E_y = gE_x$.

When the system has unequal input and output impedances, the power (and energy) gain is proportional to K^2.

If the system is frequency-selective, Eq. (5) does not hold but $|H(f)|^2$ still tells us how the gain varies as a function of frequency. For a useful measure of frequency dependence in terms of signal power we take

$$|H(f)|_{\text{dB}} \triangleq 10 \log_{10} |H(f)|^2$$

(6)

which represents the relative gain in dB.

(a) Verify that $P_{\text{dBm}} = P_{\text{dBW}} + 30 \text{ dB}$. (b) Show that if $|H(f)|_{\text{dB}} = -3 \text{ dB}$ then $|H(f)| = 1/\sqrt{2}$ and $|H(f)|^2 = \frac{1}{2}$. The significance of this result is discussed in the section on real filters.

EXERCISE 3.3–1
Transmission Loss and Repeaters

Any passive transmission medium has power loss rather than gain, since $P_{out} < P_{in}$. We therefore prefer to work with the transmission **loss**, or **attenuation**

$$ L \triangleq 1/g = \frac{P_{in}}{P_{out}} $$

$$ L_{dB} = -g_{dB} = 10 \log_{10} \frac{P_{in}}{P_{out}} $$

Hence, $P_{out} = P_{in}/L$ and $P_{out_{dB}} = P_{in_{dB}} - L_{dB}$.

In the case of transmission lines, coaxial and fiber-optic cables, and waveguides, the output power decreases exponentially with distance. We’ll write this relation in the form

$$ P_{out} = 10^{-g_{dB}/10} P_{in} $$

where g is the path length between source and destination and α is the **attenuation coefficient** in dB per unit length. Equation (7) then becomes

$$ L = 10^{\alpha/10} \quad L_{dB} = \alpha \ell $$

showing that the dB loss is proportional to the length. Table 3.3–1 lists some typical values of α for various transmission media and signal frequencies.

Attenuation values in dB somewhat obscure the dramatic decrease of signal power with distance. To bring out the implications of Eq. (8) more clearly, suppose you transmit a signal on a 30 km length of cable having $\alpha = 3$ dB/km. Then $L_{dB} = 3 \times 30 = 90$ dB, $L = 10^9$, and $P_{out} = 10^{-9} P_{in}$. Doubling the path length doubles the attenuation to 180 dB, so that $L = 10^{18}$ and $P_{out} = 10^{-18} P_{in}$. This loss is so great that you’d need an input power of one megawatt (10^6 W) to get an output power of one picowatt (10^{-12} W)!

Table 3.3–1 Typical values of transmission loss

<table>
<thead>
<tr>
<th>Transmission Medium</th>
<th>Frequency</th>
<th>Loss dB/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-wire pair (0.3 cm diameter)</td>
<td>1 kHz</td>
<td>0.05</td>
</tr>
<tr>
<td>Twisted-wire pair (16 gauge)</td>
<td>10 kHz</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>100 kHz</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>300 kHz</td>
<td>6</td>
</tr>
<tr>
<td>Coaxial cable (1 cm diameter)</td>
<td>100 kHz</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 MHz</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3 MHz</td>
<td>4</td>
</tr>
<tr>
<td>Coaxial cable (15 cm diameter)</td>
<td>100 MHz</td>
<td>1.5</td>
</tr>
<tr>
<td>Rectangular waveguide (5 × 2.5 cm)</td>
<td>10 GHz</td>
<td>5</td>
</tr>
<tr>
<td>Helical waveguide (5 cm diameter)</td>
<td>100 GHz</td>
<td>1.5</td>
</tr>
<tr>
<td>Fiber-optic cable</td>
<td>3.6×10^{14} Hz</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.4×10^{14} Hz</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>1.8×10^{14} Hz</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Large attenuation certainly calls for amplification to boost the output signal. As an example, Fig. 3.3–2 represents a cable transmission system with an output amplifier and a repeater amplifier inserted near the middle of the path. (Any preamplification at the input would be absorbed in the value of P_{in}.) Since power gains multiply in a cascade connection like this,

$$P_{\text{out}} = (g_1 g_2 g_3 g_4) P_{\text{in}} = \frac{g_2 g_4}{L_1 L_3} P_{\text{in}} \quad (9a)$$

which becomes the dB equation

$$P_{\text{out}} = (g_2 + g_4) - (L_1 + L_3) + P_{\text{in}} \quad (9b)$$

We’ve dropped the dB subscripts here for simplicity, but the addition and subtraction in Eq. (9b) unambiguously identifies it as a dB equation. Of course, the units of P_{out} (dBW or dBm) will be the same as those of P_{in}.

The repeater in Fig. 3.3–2 has been placed near the middle of the path to prevent the signal power from dropping down into the noise level of the amplifier. Long-haul cable systems have repeaters spaced every few kilometers for this reason, and a transcontinental telephone link might include more than 2000 repeaters. The signal-power analysis of such systems follows the same lines as Eq. (9). The noise analysis is presented in the Appendix.

Fiber Optics

Optical communication systems have become increasingly popular over the last two decades with advances in laser and fiber-optic technologies. Because optical systems use carrier frequencies in the range of 2×10^{14} Hz, the transmitted signals can have much larger bandwidth than is possible with metal cables such as twisted-wire pair and coaxial cable. We will see in the next chapter that the theoretical maximum bandwidth for that carrier frequency is on the order of 2×10^{13} Hz! While we may never need that much bandwidth, it is nice to have extra if we need it. We can get additional capacity on the channel if we incorporate additional light wavelengths. Section 12.5 is a brief description of SONET, a fiber-optic standard for carrying multiple broadband signals.

In the 1960s fiber-optic cables were extremely lossy, with losses around 1000 dB/km, and were impractical for commercial use. Today these losses are on the order of 0.2 to 2 dB/km depending on the type of fiber used and the wavelength of the signal. This is lower than most twisted-wire pair and coaxial cable systems. There are many

![Figure 3.3–2](image-url) Cable transmission system with a repeater amplifier.
advantages to using fiber-optic channels in addition to large bandwidth and low loss. The dielectric waveguide property of the optical fiber makes it less susceptible to interference from external sources. Since the transmitted signal is light rather than current, there is no external electromagnetic field to generate crosstalk and no radiated RF energy to interfere with other communication systems. In addition, since moving photons do not interact, there is no noise generated inside the optical fiber. Fiber-optic channels are safer to install and maintain since there is no large current or voltage to worry about. Furthermore, since it is virtually impossible to tap into a fiber-optic channel without the user detecting it, they are secure enough for military applications. They are rugged and flexible, and operate over a larger temperature variation than metal cable. The small size (about the diameter of a human hair) and weight mean they take up less storage space and are cheaper to transport. Finally, they are fabricated from quartz or plastic, which are plentiful. While the up-front installation costs are higher, it is predicted that the long-term costs will ultimately be lower than with metal-based cables.

Most fiber-optic communication systems are digital because system limitations on attaining high-quality analog modulation at low cost make it impractical. The system is a hybrid of electrical and optical components, since the signal sources and final receivers are still made up of electronics. Optical transmitters use either LEDs or solid-state lasers to generate light pulses. The choice between these two is driven by design constraints. LEDs, which produce noncoherent (multiple wavelengths) light, are rugged, inexpensive, and have low power output (~ 0.5 mW). Lasers are much higher in cost and have a shorter lifetime; however they produce coherent (single wavelength) light and have a power output of around 5 mW. The receivers are usually PIN diodes or avalanche photodiodes (APD), depending on the wavelength of the transmitted signal. An envelope detector is typically used because it does not require a coherent light source (see Sect. 4.5). In the remainder of this discussion we will concentrate our attention on the fiber-optic channel itself.

Fiber-optic cables have a core made of silica glass surrounded by a cladding layer also made of silica glass. The difference between these two layers is due to either differences in the level of doping or their respective processing temperatures. The cladding can also be made of plastic. There is an outer, thin protective jacket made of plastic in most cases. In the core the signal traverses the fiber. The cladding reduces losses by keeping the signal power within the core. There are three main types of fiber-optic cable: single-mode fibers, multimode step-index fibers, and multimode graded-index fibers. Figure 3.3–3a shows three light rays traversing a single-mode fiber. Because the diameter of the core is sufficiently small ($\sim 8 \mu m$), there is only a single path for each of the rays to follow as they propagate down the length of the fiber. The difference in the index of refraction between the core and cladding layers causes the light to be reflected back into the channel, and thus the rays follow a straight path through the fiber. Consequently, each ray of light travels the same distance in a given period of time, and a pulse input would have essentially the same shape at the output. Therefore single-mode fibers have the capacity for large transmission bandwidths, which makes them very popular for commercial applications. However, the small core diameter makes it difficult to align cable section boundaries and to couple the source to the fiber, and thus losses can occur.
Multimode fibers allow multiple paths through the cable. Because they have a larger core diameter ($\sim 50 \, \mu m$) it is easier to splice and couple the fiber segments, resulting in less loss. In addition, more light rays at differing angles can enter the channel. In a multimode step-index fiber there is a step change between the index of refraction of the core and cladding, as there is with single-mode fibers. Figure 3.3–3 shows three rays entering a multimode step-index fiber at various angles. It is clear that the paths of the rays will be quite different. Ray 1 travels straight through as in the case of the single-mode fiber. Ray 2 is reflected off of the core-cladding boundary a few times and thus takes a longer path through the cable. Ray 3, with multiple reflections, has a much longer path. As Fig. 3.3–3b shows, the angle of incidence impacts the time to reach the receiver. We can define two terms to describe this channel delay. The average time difference between the arrivals of the various rays is termed mean-time delay, and the standard deviation is called the delay spread. The impact on a narrow pulse would be to broaden the pulse width as the signal propagates down the channel. If the broadening exceeds the gap between the
pulses, overlap may result and the pulses will not be distinguishable at the output. Therefore the maximum bandwidth of the transmitted signal in a multimode step-index channel is much lower than in the single mode case.

Multimode graded-index fibers give us the best of both worlds in performance. The large central core has an index of refraction that is not uniform. The refractive index is greatest at the center and tapers gradually toward the outer edge. As shown in Fig. 3.3–3c, the rays again propagate along multiple paths; however, because they are constantly refracted there is a continuous bending of the light rays. The velocity of the wave is inversely proportional to the refractive index so that those waves farthest from the center propagate fastest. The refractive index profile can be designed so that all of the waves have approximately the same delay when they reach the output. Therefore the lower dispersion permits higher transmission bandwidth. While the bandwidth of a multimode graded-index fiber is lower than that of a single-mode fiber, the benefits of the larger core diameter are sufficient to make it suitable for long-distance communication applications.

With all of the fiber types there are several places where losses occur, including where the fiber meets the transmitter or receiver, where the fiber sections connect to each other, and within the fiber itself. Attenuation within the fiber results primarily from absorption losses due to impurities in the silica glass, and scattering losses due to imperfections in the waveguide. Losses increase exponentially with distance traversed and also vary with wavelength. There are three wavelength regions where there are relative minima in the attenuation curve, and they are given in Table 3.3–1. The smallest amount of loss occurs around 1300 and 1500 nm, so those frequencies are used most often for long-distance communication systems.

Current commercial applications require repeaters approximately every 40 km. However, each year brings technology advances, so this spacing continues to increase. Conventional repeater amplifiers convert the light wave to an electrical signal, amplify it, and convert it back to an optical signal for retransmission. However, direct light-wave amplifiers are being developed and may be available soon.

Fiber-optic communication systems are quickly becoming the standard for long-distance telecommunications. Homes and businesses are increasingly wired internally and externally with optical fibers. Long-distance telephone companies advertise the clear, quiet channels with claims that listeners can hear a pin drop. Underwater fiber cables now cover more than two-thirds of the world’s circumference and can handle over 100,000 telephone conversations at one time. Compare that to the first transoceanic cable that was a technological breakthrough in 1956 and carried just 36 voice channels! While current systems can handle 90 Mbits/sec to 2.5 Gbits/sec, there have been experimental results as high as 1000 Gbits/sec. At current transmission rates of 64 kbits/sec, this represents 15 million telephone conversations over a single optical fiber. As capacity continues to expand, we will no doubt find new ways to fill it.

Radio Transmission

Signal transmission by radiowave propagation can reduce the required number of repeaters and has the additional advantage of eliminating long cables. Although radio involves modulation processes described in later chapters, it seems appropriate here to
3.3 Transmission Loss and Decibels

examine the transmission loss for **line-of-sight propagation** illustrated in Fig. 3.3–4, where the radio wave travels a direct path from transmitting to receiving antenna. This propagation mode is commonly employed for long-distance communication at frequencies above about 100 MHz.

The **free-space loss** on a line-of-sight path is due to spherical dispersion of the energy in the radio wave. This loss is given by

\[L = \left(\frac{4\pi \ell}{\lambda} \right)^2 = \left(\frac{4\pi f \ell}{c} \right)^2 \] \hspace{1cm} (10a)

in which \(\lambda \) is the wavelength, \(f \) the signal frequency, and \(c \) the speed of light. If we express \(\ell \) in kilometers and \(f \) in gigahertz \((10^9 \text{ Hz}) \), Eq. (10a) becomes

\[L_{\text{dB}} = 92.4 + 20 \log_{10} f_{\text{GHz}} + 20 \log_{10} \ell_{\text{km}} \] \hspace{1cm} (10b)

We see that \(L_{\text{dB}} \) increases as the logarithm of \(\ell \), rather than in direct proportion to path length. Thus, for instance, doubling the path length increases the loss by only 6 dB. In the case of terrestrial propagation, signals can also be attenuated due to absorption and/or scattering by the medium (i.e., air and moisture). Severe weather conditions can increase the losses. For example, satellite television signals are sometimes not received during inclement weather. On the other hand, the nonhomogenousness of the medium makes it possible for radar to detect air turbulence or various other weather conditions.

Furthermore, directional antennas have a focusing effect that acts like amplification in the sense that

\[P_{\text{out}} = \frac{g_T g_R}{L} P_{\text{in}} \] \hspace{1cm} (11)

where \(g_T \) and \(g_R \) represent the antenna gains at the transmitter and receiver. The maximum transmitting or receiving gain of an antenna with effective **aperture area** \(A_e \) is

\[g = \frac{4\pi A_e}{\lambda^2} = \frac{4\pi A_e f^2}{c^2} \] \hspace{1cm} (12)

where \(c = 3 \times 10^5 \text{ km/s} \). The value of \(A_e \) for a horn or dish antenna approximately equals its physical area, and large parabolic dishes may provide gains in excess of 60 dB. The transmitter power and antenna gain can be combined to give us the **effective isotropic radiated power** (EIRP), or \(\text{EIRP} = s r g_r \).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig3.3-4.png}
\caption{Line-of-sight radio transmission.}
\end{figure}
Commercial radio stations often use compression to produce a transmitted signal that has higher power but doesn’t exceed the system’s linear operating region. As mentioned in Sect. 3.2, compression provides greater amplification of low-level signals, and can raise them above the background noise level. However, since your home radio does not have a built-in expander to complete the companding process, some audible distortion may be present. To partially cope with this, music production companies often preprocess the materials sent to radio stations to ensure the integrity of the desired sound.

Satellites employ line-of-sight radio transmission over very long distances. They have a broad coverage area and can reach areas that are not covered by cable or fiber, including mobile platforms such as ships and planes. Even though fiber-optic systems are carrying an increasing amount of transoceanic telephone traffic (and may make satellites obsolete for many applications), satellite relays still handle the bulk of very long distance telecommunications. Satellite relays also make it possible to transmit TV signals across the ocean. They have a wide bandwidth of about 500 MHz that can be subdivided for use by individual transponders. Most satellites are in geostationary orbit. This means that they are synchronous with Earth’s rotation and are located directly above the equator, and thus they appear stationary in the sky. The main advantage is that antennas on Earth pointing at the satellite can be fixed.

A typical C-band satellite has an uplink frequency of 6 GHz, a downlink frequency of 4 GHz, and 12 transponders each having a bandwidth of 36 MHz. The advantages in using this frequency range are that it allows use of relatively inexpensive microwave equipment, has low attenuation due to rainfall (the primary atmospheric cause of signal loss), and has a low sky background noise. However, there can be severe interference from terrestrial microwave systems, so many satellites now use the Ku-band. The Ku-band frequencies are 14 GHz for uplink and 12 GHz for downlink. This allows smaller and less expensive antennas. C-band satellites are most commonly used for commercial cable TV systems, whereas Ku-band is used for videoconferencing. A newer service that allows direct broadcast satellites (DBS) for home television service uses 17 GHz for uplink and 12 GHz for downlink.

By their nature, satellites require multiple users to access them from different locations at the same time. A variety of multiple access techniques have been developed, and will be discussed further in a later chapter. Personal communication devices such as cellular phones rely on multiple access techniques such as time division multiple access (TDMA) and code division multiple access (CDMA). Propagation delay can be a problem over long distances for voice communication, and may require echo cancellation in the channel.

Current technology allows portable satellite uplink systems to travel to where news or an event is happening. In fact, all equipment can fit in a van or in several large trunks that can be shipped on an airplane. See Ippolito (2008) and Tomasi (1998) for more information on satellite communications (1998, Chap. 18).

EXAMPLE 3.3–1
Satellite Relay System

Figure 3.3–5 shows a simplified transoceanic television system with a satellite relay serving as a repeater. The satellite is in geostationary orbit and is about 22,300 miles
Transmission Loss and Decibels

(36,000 km) above the equator. The uplink frequency is 6 GHz, and the downlink frequency is 4 GHz. Equation (10b) gives an uplink path loss

\[L_u = 92.4 + 20 \log_{10} 6 + 20 \log_{10} 3.6 \times 10^4 = 199.1 \text{ dB} \]

and a downlink loss

\[L_d = 92.4 + 20 \log_{10} 4 + 20 \log_{10} 3.6 \times 10^4 = 195.6 \text{ dB} \]

since the distance from the transmitter and receiver towers to the satellite is approximately the same as the distance from Earth to the satellite. The antenna gains in dB are given on the drawing with subscripts identifying the various functions—for example, \(g_{ru} \) stands for the receiving antenna gain on the uplink from ground to satellite. The satellite has a repeater amplifier that produces a typical output of 18 dBW. If the transmitter input power is 35 dBW, the power received at the satellite is 35 dBW + 55 dB - 199.1 dB + 20 dB = -89.1 dBW. The power output at the receiver is 18 dBW + 16 dB - 195.6 dB + 51 dB = -110.6 dBW. Inverting Eq. (4) gives

\[P_{out} = 10^{-110.6/10} \times 1 \text{ W} = 8.7 \times 10^{-12} \text{ W} \]

Such minute power levels are typical for satellite systems.

A 40 km cable system has \(P_{in} = 2 \text{ W} \) and a repeater with 64 dB gain is inserted 24 km from the input. The cable sections have \(\alpha = 2.5 \text{ dB/km} \). Use dB equations to find the signal power at: (a) the repeater’s input; (b) the final output.
CHAPTER 3 • Signal Transmission and Filtering

EXAMPLE 3.3–2 Doppler Shift

You may notice that a passing automobile’s horn will appear to change pitch as it passes by, particularly when traveling at high speed. This change in frequency is Doppler shift and can also occur with radio frequencies. If a radiator is approaching the receiver, the maximum Doppler shift is given by

\[\Delta f = f_c \frac{v}{c} \]

where \(\Delta f \), \(f_c \), \(v \), \(c \) are the Doppler shift, nominal radiated frequency, the object’s velocity and speed of light, respectively. If the object were moving away from the receiver, then the sign in Eq. (12) would be negative. If the approaching object were elevated, creating an approach angle \(\phi \), then Eq. (12) would become

\[\Delta f = f_c \frac{v}{c} \cos \phi \]

Consider an approaching automobile that is transmitting on a cell-phone frequency of 825 MHz. As the automobile passes by, from the time of initial observation to when it passes directly by the observer, the frequency shift is 40 Hz. How fast was the automobile going?

\[\Delta f = 40 = \frac{825 \times 10^6}{3 \times 10^8} \Rightarrow v = 14.5 \text{ m/s} = 52.4 \text{ km/hour} \]

3.4 FILTERS AND FILTERING

Virtually every communication system includes one or more filters for the purpose of separating an information-bearing signal from unwanted contaminations such as interference, noise, and distortion products. In this section we’ll define ideal filters, describe the differences between real and ideal filters, and examine the effect of filtering on pulsed signals.

Ideal Filters

By definition, an ideal filter has the characteristics of distortionless transmission over one or more specified frequency bands and zero response at all other frequencies. In particular, the transfer function of an ideal bandpass filter (BPF) is

\[H(f) = \begin{cases} Ke^{-j\omega t} & f_\ell \leq |f| \leq f_u \\ 0 & \text{otherwise} \end{cases} \]

as plotted in Fig. 3.4–1. The parameters \(f_\ell \) and \(f_u \) are the lower and upper cutoff frequencies, respectively, since they mark the end points of the passband. The filter’s bandwidth is

\[B = f_u - f_\ell \]

which we measure in terms of the positive-frequency portion of the passband.
In similar fashion, an ideal lowpass filter (LPF) is defined by Eq. (1) with \(f_\ell = 0 \), so \(B = f_u \), while an ideal highpass filter (HPF) has \(f_\ell > 0 \) and \(f_u = \infty \). Ideal band-rejection or notch filters provide distortionless transmission over all frequencies except some stopband, say \(f_s \leq |f| \leq f_u \), where \(H(f) = 0 \).

But all such filters are physically unrealizable in the sense that their characteristics cannot be achieved with a finite number of elements. We’ll skip the general proof of this assertion. Instead, we’ll give an instructive plausibility argument based on the impulse response.

Consider an ideal LPF whose transfer function, shown in Fig. 3.4–2a, can be written as

\[
H(f) = Ke^{-j\pi t \frac{f}{B}}
\]

Its impulse response will be

\[
h(t) = \mathcal{F}^{-1}[H(f)] = 2BK \text{sinc} 2B(t - t_d)
\]

which is sketched in Fig. 3.4–2b. Since \(h(t) \) is the response to \(\delta(t) \) and \(h(t) \) has non-zero values for \(t < 0 \), the output appears before the input is applied. Such a filter is
said to be **anticipatory** or noncausal, and the portion of the output appearing before the input is called a **precursor**. Without doubt, such behavior is physically impossible, and hence the filter must be unrealizable. Like results hold for the ideal BPF and HPF.

Fictitious though they may be, ideal filters have great conceptual value in the study of communication systems. Furthermore, many real filters come quite close to ideal behavior.

EXERCISE 3.4–1

Show that the impulse response of an ideal BPF is

\[h(t) = 2\pi K \text{sinc} B(t - t_d) \cos \omega_c(t - t_d) \]

where \(\omega_c = \pi(f_c + f_w) \).

Bandlimiting and Timelimiting

Earlier we said that a signal \(v(t) \) is **bandlimited** if there exists some constant \(W \) such that

\[V(f) = 0 \quad |f| > W \]

Hence, the spectrum has no content outside \(|f| > W \). Similarly, a **timelimited** signal is defined by the property that, for the constants \(t_1 < t_2 \),

\[v(t) = 0 \quad t < t_1 \text{ and } t > t_2 \]

Hence, the signal “starts” at \(t \geq t_1 \) and “ends” at \(t \leq t_2 \). Let’s further examine these two definitions in the light of real versus ideal filters.

The concepts of ideal filtering and bandlimited signals go hand in hand, since applying a signal to an ideal LPF produces a bandlimited signal at the output. We’ve also seen that the impulse response of an ideal LPF is a sinc pulse lasting for all time. We now assert that any signal emerging from an ideal LPF will exist for all time. Consequently, a strictly bandlimited signal cannot be timelimited. Conversely, by duality, a strictly timelimited signal cannot be bandlimited. Every transform pair we’ve encountered supports these assertions, and a general proof is given in Wozencraft and Jacobs (1965, App. 5B). Thus,

Perfect bandlimiting and timelimiting are mutually incompatible.

This observation raises concerns about the signal and filter models used in the study of communication systems. Since a signal cannot be both bandlimited and timelimited, we should either abandon bandlimited signals (and ideal filters) or else accept signal models that exist for all time. On the one hand, we recognize that any real signal is timelimited, having starting and ending times. On the other hand, the concepts of bandlimited spectra and ideal filters are too useful and appealing to be dismissed entirely.
The resolution of our dilemma is really not so difficult, requiring but a small compromise. Although a strictly timelimited signal is not strictly bandlimited, its spectrum may be negligibly small above some upper frequency limit \(W\). Likewise, a strictly bandlimited signal may be negligibly small outside a certain time interval \(t_1 \leq t \leq t_2\). Therefore, we will often assume that signals are essentially both bandlimited and timelimited for most practical purposes.

Real Filters

The design of realizable filters that approach ideal behavior is an advanced topic outside the scope of this book. But we should at least look at the major differences between real and ideal filters to gain some understanding of the approximations implied by the assumption of an ideal filter. Further information on filter design and implementation can be found in texts such as Van Valkenburg (1982).

To begin our discussion, Fig. 3.4–3 shows the amplitude ratio of a typical real bandpass filter. Compared with the ideal BPF in Fig. 3.4–1, we see a passband where \(|H(f)|\) is relatively large (but not constant) and stopbands where \(|H(f)|\) is quite small (but not zero). The end points of the passband are usually defined by

\[
|H(f)| = \frac{1}{\sqrt{2}} |H(f)|_{\text{max}} = \frac{K}{\sqrt{2}} \quad f = f_\ell, f_u
\]

so that \(|H(f)|^2\) falls no lower than \(K^2/2\) for \(f_\ell \leq |f| \leq f_u\). The bandwidth \(B = f_u - f_\ell\) is then called the half-power or 3 dB bandwidth. Similarly, the end points of the stopbands can be taken where \(|H(f)|\) drops to a suitably small value such as \(K/10\) or \(K/100\).

Between the passband and stopbands are transition regions, shown shaded, where the filter neither “passes” nor “rejects” frequency components. Therefore, effective signal filtering often depends on having a filter with very narrow transition regions. We’ll pursue this aspect by examining one particular class of filters in some detail. Then we’ll describe other popular designs.

The simplest of the standard filter types is the \(n\)th-order **Butterworth** LPF, whose circuit contains \(n\) reactive elements (capacitors and inductors). The transfer function with \(K = 1\) has the form

![Figure 3.4–3](image-url)
Figure 3.4–3 Typical amplitude ratio of a real bandpass filter.
where B equals the 3 dB bandwidth and $P_n(jf/B)$ is a complex polynomial. The family of Butterworth polynomials is defined by the property

$$|P_n(jf/B)|^2 = 1 + (f/B)^{2n}$$

so that

$$|H(f)| = \frac{1}{\sqrt{1 + (f/B)^{2n}}}$$ \hspace{1cm} (4b)

Consequently, the first n derivatives of $|H(f)|$ equal zero at $f = 0$ and we say that $|H(f)|$ is maximally flat. Table 3.4–1 lists the Butterworth polynomials for $n = 1$ through 4, using the normalized variable $p =jf/B$.

A first-order Butterworth filter has the same characteristics as an RC lowpass filter and would be a poor approximation of an ideal LPF. But the approximation improves as you increase n by adding more elements to the circuit. For instance, the impulse response of a third-order filter sketched in Fig. 3.4–4a bears obvious resemblance to that of an ideal LPF—without the precursors, of course. The frequency-response curves of this filter are plotted in Fig. 3.4–4b. Note that the phase shift has a reasonably linear slope over the passband, implying time delay plus some delay distortion. Increasing the Butterworth filter’s order causes increased ringing in the filter’s impulse response.

A clearer picture of the amplitude ratio in the transition region is obtained from a Bode diagram, constructed by plotting $|H(f)|$ in dB versus f on a logarithmic scale.

Figure 3.4–4 Third-order Butterworth LPF: (a) impulse response; (b) transfer function.
3.4 Filters and Filtering

Table 3.4–1 Butterworth polynomials

<table>
<thead>
<tr>
<th>n</th>
<th>(P_n(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1 + p)</td>
</tr>
<tr>
<td>2</td>
<td>(1 + \sqrt{2}p + p^2)</td>
</tr>
<tr>
<td>3</td>
<td>((1 + p)(1 + p + p^2))</td>
</tr>
<tr>
<td>4</td>
<td>((1 + 0.765p + p^2)(1 + 1.848p + p^2))</td>
</tr>
</tbody>
</table>

Figure 3.4–5 shows the Bode diagram for Butterworth lowpass filters with various values of \(n \). If we define the edge of the stopband at \(|H(f)| = -20 \text{ dB} \), the width of the transition region when \(n = 1 \) is \(10B - B = 9B \) but only \(1.25B - B = 0.25B \) when \(n = 10 \). Clearly, \(|H(f)| \) approaches the ideal square characteristic in the limit as \(n \to \infty \). At the same time, however, the slope of the phase shift (not shown) increases with \(n \) and the delay distortion may become intolerably large.

In situations where potential delay distortion is a major concern, a Bessel-Thomson filter would be the preferred choice. This class of filters is characterized by **maximally linear phase shift** for a given value of \(n \), but has a wider transition region. At the other extreme, the class of **equiripple** filters (including Chebyshev and elliptic filters) provides the sharpest transition for a given value of \(n \); but these filters have small amplitude ripples in the passband and significantly nonlinear phase shift. Equiripple filters would be satisfactory in audio applications, for instance, whereas...
pulse applications might call for the superior transient performance of Bessel-Thomson filters. See Williams and Taylor (2006) for more information on filter design.

All three filter classes can be implemented with active devices (such as operational amplifiers) that eliminate the need for bulky inductors. **Switched-capacitor filter** designs go even further and eliminate resistors that would take up too much space in a large-scale integrated circuit. All three classes can also be modified to obtain highpass or bandpass filters. However, some practical implementation problems do arise when you want a bandpass filter with a narrow but reasonably square passband. Special designs that employ electromechanical phenomena have been developed for such applications. For example, Fig. 3.4–6 shows the amplitude ratio of a seventh-order monolithic crystal BPF intended for use in an AM radio.

![Mechanical filter (7th order) and Tuned circuit (2d order)](image)

Figure 3.4–6 Amplitude ratio of a mechanical filter.

EXAMPLE 3.4–1 Second-order LPF

The circuit in Fig. 3.4–7 is one implementation of a second-order Butterworth LPF with

\[
B = \frac{1}{2\pi \sqrt{LC}}
\]

We can obtain an expression for the transfer function as

\[
H(f) = \frac{Z_{RC}}{Z_{RC} + j\omega L}
\]
Thus, from Table 3.4–1 with \(p = \frac{jf}{B} \), we want

\[
H(f) = \left[1 + j \sqrt{\frac{2}{B}} \frac{f}{B} \left(f^2 - (2\pi \sqrt{LC} f)^2 \right) \right]^{-1}
\]

The required relationship between \(R \), \(L \), and \(C \) that satisfies the equation can be found by setting

\[
\frac{2\pi L}{R} = \frac{\sqrt{2}}{B} = \sqrt{\frac{2}{B}} \cdot 2\pi \sqrt{LC}
\]

which yields \(R = \sqrt{\frac{L}{2C}} \).

Show that a Butterworth LPF has \(|H(f)|_{dB} = -20\log_{10}(f/B) \) when \(f > B \). Then find the minimum value of \(n \) needed so that \(|H(f)| \leq 1/10 \) for \(f \geq 2B \).

Signals often become contaminated by interference by some human source. One example is an audio signal that is contaminated by a 60 Hz power source. The obvious solution is a notch or band reject filter that will reject the 60 Hz component but pass everything else. However, there is no such thing as an ideal filter, and practical real notch filters may reject some desirable components in addition to the 60 Hz interference. Let’s consider adaptive cancellation as shown in Fig. 3.4–8. The observed signal consists of the desired signal, \(x(t) \), and a 60 Hz interference, resulting in...
with A_I and ϕ_I being the interfering signal’s amplitude and phase respectively. We then create a 60 Hz reference

$$x_R(t) = A_R \cos(2\pi 60t + \phi_R)$$

with A_R and ϕ_R being the reference signal’s amplitude and phase respectively. We vary A_R and ϕ_R such that when we subtract $x_R(t)$ from the original contaminated signal $y(t)$ the 60 Hz interfering signal is canceled out and we get an estimate of $x(t)$. In other words, varying our reference signal’s amplitude we such that $A_R \equiv A_I$ and $\phi_R \equiv \phi_I$ gives us

$$\hat{x}(t) = y(t) - x_R(t) \equiv x(t)$$

The varying of the amplitude and phase of the reference signal to get an accurate estimate of the desired signal is an iterative process and done as a gradient or some other optimization process. The theory of adaptive cancellation was originally developed by B. Widrow (Widrow and Stearns, 1985) and is also employed for echo cancellation and other interferences. We will use a similar theory in Chapter 15 to deal with multipath interference.

Pulse Response and Risetime

A rectangular pulse, or any other signal with an abrupt transition, contains significant high-frequency components that will be attenuated or eliminated by a lowpass filter. Pulse filtering therefore produces a smoothing or smearing effect that must be studied in the time domain. The study of pulse response undertaken here leads to useful information about pulse transmission systems.

Let’s begin with the unit step input signal $x(t) = u(t)$, which could represent the leading edge of a rectangular pulse. In terms of the filter’s impulse response $h(t)$, the step response will be

$$g(t) \triangleq \int_{-\infty}^{\infty} h(\lambda)u(t - \lambda) \, d\lambda = \int_{-\infty}^{t} h(\lambda) \, d\lambda$$

(5)
since \(u(t - \lambda) = 0 \) for \(\lambda > t \). We saw in Examples 3.1–1 and 3.1–2, for instance, that a first-order lowpass filter has

\[
g(t) = (1 - e^{-2\pi B t}) u(t)
\]

where \(B \) is the 3 dB bandwidth.

Of course a first-order LPF doesn’t severely restrict high-frequency transmission. So let’s go to the extreme case of an ideal LPF, taking unit gain and zero time delay for simplicity. From Eq. (2b) we have \(h(t) = 2B \, \text{sinc} \, 2B t \) and Eq. (5) becomes

\[
g(t) = \int_{-\infty}^{t} 2B \, \text{sinc} \, 2B \lambda \, d\lambda
\]

\[
= \int_{-\infty}^{0} \text{sinc} \, \mu \, d\mu + \int_{0}^{2B t} \text{sinc} \, \mu \, d\mu
\]

where \(\mu = 2B \lambda \). The first integral is known to equal \(1/2 \), but the second requires numerical evaluation. Fortunately, the result can be expressed in terms of the tabulated sine integral function

\[
\text{Si}(\theta) \triangleq \int_{0}^{\theta} \frac{\sin \alpha}{\alpha} \, d\alpha = \pi \int_{0}^{\pi/2} \text{sinc} \, \mu \, d\mu
\]

which is plotted in Fig. 3.4–9 for \(\theta > 0 \) and approaches the value \(\pi/2 \) as \(\theta \rightarrow \infty \). The function is also defined for \(\theta < 0 \) by virtue of the odd-symmetry property \(\text{Si}(-\theta) = -\text{Si}(\theta) \). Using Eq. (6) in the problem at hand we get

\[
g(t) = \frac{1}{2} + \frac{1}{\pi} \text{Si}(2\pi B t)
\]

obtained by setting \(\theta/\pi = 2B t \).

For comparison purposes, Fig. 3.4–10 shows the step response of an ideal LPF along with that of a first-order LPF. The ideal LPF completely removes all high frequencies \(|f| > B \), producing precursors, overshoot, and oscillations in the step response. (This behavior is the same as Gibbs’s phenomenon illustrated in Fig. 2.1–10 and in Example 2.4–2.) None of these effects appears in the response of the first-order LPF, which gradually attenuates but does not eliminate high frequencies. The step response of a more selective filter—a third-order Butterworth LPF, for example—would more nearly resemble a time-delayed version of the ideal LPF response.

Before moving on to pulse response per se, there’s an important conclusion to be drawn from Fig. 3.4–10 regarding **risetime**. Risetime is a measure of the “speed” of a step response, usually defined as the time interval \(t_r \) between \(g(t) = 0.1 \) and \(g(t) = 0.9 \) and known as the 10–90 percent risetime. The risetime of a first-order lowpass filter can be computed from \(g(t) \) as \(t_r = 0.35/B \), while the ideal filter has \(t_r = 0.44/B \). Both values are reasonably close to \(0.5/B \) so we’ll use the approximation

\[
t_r = \frac{1}{2B}
\]
CHAPTER 3 • Signal Transmission and Filtering

for the risetime of an arbitrary lowpass filter with bandwidth B.

Our work with step response pays off immediately in the calculation of pulse response if we take the input signal to be a unit-height rectangular pulse with duration τ starting at $t = 0$. Then we can write

$$x(t) = u(t) - u(t - \tau)$$

and hence

$$y(t) = g(t) - g(t - \tau)$$

which follows from superposition.

Using $g(t)$ from Eq. (7), we obtain the pulse response of an ideal LPF as

$$y(t) = \frac{1}{\pi} \{ \text{Si}(2\pi B t) - \text{Si}[2\pi B(t - \tau)] \}$$ \hspace{1cm} (9)

which is plotted in Fig. 3.4–11 for three values of the product $B \tau$. The response has a more-or-less rectangular shape when $B \tau \geq 2$, whereas it becomes badly smeared and spread out if $B \tau \leq \frac{1}{4}$. The intermediate case $B \tau = \frac{1}{2}$ gives a recognizable but not rectangular output pulse. The same conclusions can be drawn from the pulse response of

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{si.png}
\caption{The sine integral function.}
\label{fig:si}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{step_response.png}
\caption{Step response of ideal and first-order LPFs.}
\label{fig:step_response}
\end{figure}
a first-order lowpass filter previously sketched in Fig. 3.1–3, and similar results would hold for other input pulse shapes and other lowpass filter characteristics.

Now we’re in a position to make some general statements about bandwidth requirements for pulse transmission. Reproducing the actual pulse shape requires a large bandwidth, say

\[B \gg \frac{1}{\tau_{\text{min}}} \]

where \(\tau_{\text{min}} \) represents the smallest output pulse duration. But if we only need to detect that a pulse has been sent, or perhaps measure the pulse amplitude, we can get by with the smaller bandwidth

\[B \geq \frac{1}{2\tau_{\text{min}}} \tag{10} \]

an important and handy rule of thumb.

Equation (10) also gives the condition for distinguishing between, or resolving, output pulses spaced by \(\tau_{\text{min}} \) or more. Figure 3.4–12 shows the resolution condition for an ideal lowpass channel with \(B = \frac{1}{2} \tau \). A smaller bandwidth or smaller spacing would result in considerable overlap, making it difficult to identify separate pulses.

Besides pulse detection and resolution, we’ll occasionally be concerned with pulse position measured relative to some reference time. Such measurements have inherent ambiguity due to the rounded output pulse shape and nonzero risetime of leading and trailing edges. For a specified minimum risetime, Eq. (8) yields the bandwidth requirement

\[B \geq \frac{1}{2\tau_{\text{min}}} \]

Figure 3.4–11 Pulse response of an ideal LPF.

Figure 3.4–12 Pulse resolution of an ideal LPF. \(B = 1/2\tau \).
another handy rule of thumb.

Throughout the foregoing discussion we’ve tacitly assumed that the transmission channel has satisfactory phase-shift characteristics. If not, the resulting delay distortion could render the channel useless for pulse transmission, regardless of the bandwidth. Therefore, our bandwidth requirements in Eqs. (10) and (11) imply the additional stipulation of nearly linear phase shift over \(|f| \leq B \). A phase equalization network may be needed to achieve this condition.

EXERCISE 3.4–3

A certain signal consists of pulses whose durations range from 10 to 25 \(\mu s \); the pulses occur at random times, but a given pulse always starts at least 30 \(\mu s \) after the starting time of the previous pulse. Find the minimum transmission bandwidth required for pulse detection and resolution, and estimate the resulting risetime at the output.

3.5 QUADRATURE FILTERS AND HILBERT TRANSFORMS

The Fourier transform serves most of our needs in the study of filtered signals since, in most cases, we are interested in the separation of signals based on their frequency content. However, there are times when separating signals on the basis of phase is more convenient. For these applications we’ll use the Hilbert transform, which we’ll introduce in conjunction with quadrature filtering. In Chap. 4 we will make use of the Hilbert transform in the study of two important applications: the generation of single-sideband amplitude modulation and the mathematical representation of band-pass signals.

A quadrature filter is an allpass network that merely shifts the phase of positive frequency components by \(-90^\circ\) and negative frequency components by \(+90^\circ\). Since a \(\pm 90^\circ \) phase shift is equivalent to multiplying by \(e^{\pm j90^\circ} = \pm j \), the transfer function can be written in terms of the signum function as

\[
H_Q(f) = -j \text{ sgn } f = \begin{cases}
-j & f > 0 \\
+j & f < 0
\end{cases}
\]

which is plotted in Fig. 3.5–1. The corresponding impulse response is

\[
h_Q(t) = \frac{1}{\pi t} \tag{1b}
\]

We obtain this result by applying duality to \(\mathcal{F}[\text{sgn } t] = 1/|j\pi f| \) which yields \(\mathcal{F}[1/|j\pi t|] = \text{sgn } (-f) = -\text{sgn } f \), so \(\mathcal{F}^{-1}[-j \text{ sgn } f] = j/\pi t = 1/\pi t \).

Now let an arbitrary signal \(x(t) \) be the input to a quadrature filter. The output signal \(y(t) = x(t) * h_Q(t) \) will be defined as the Hilbert transform of \(x(t) \), denoted by \(\hat{x}(t) \). Thus

\[
B \geq \frac{1}{2t_{\text{min}}} \tag{11}
\]
Note that Hilbert transformation is a convolution and does not change the domain, so both \(x(t) \) and \(\hat{x}(t) \) are functions of time. Even so, we can easily write the spectrum of \(\hat{x}(t) \), namely

\[
H_0(f) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(\lambda)}{f - \lambda} d\lambda
\]

since phase shifting produces the output spectrum \(H_0(f)X(f) \).

The catalog of Hilbert transform pairs is quite short compared to our Fourier transform catalog, and the Hilbert transform does not even exist for many common signal models. Mathematically, the trouble comes from potential singularities in Eq. (2) when \(\lambda = f \) and the integrand becomes undefined. Physically, we see from Eq. (1b) that \(h_Q(t) \) is noncausal, which means that the quadrature filter is unrealizable—although its behavior can be approximated over a finite frequency band using a real network.

Although the Hilbert transform operates exclusively in the time domain, it has a number of useful properties. Those applicable to our interests are discussed here. In all cases we will assume that the signal \(x(t) \) is real.

1. A signal \(x(t) \) and its Hilbert transform \(\hat{x}(t) \) have the same amplitude spectrum. In addition, the energy or power in a signal and its Hilbert transform are also equal. These follow directly from Eq. (3) since \(|-j \text{ sgn } f| = 1 \) for all \(f \).

2. If \(\hat{x}(t) \) is the Hilbert transform of \(x(t) \), then \(-x(t) \) is the Hilbert transform of \(\hat{x}(t) \). The details of proving this property are left as an exercise; however, it follows that two successive shifts of 90° result in a total shift of 180°.

3. A signal \(x(t) \) and its Hilbert transform \(\hat{x}(t) \) are orthogonal. As stated in Sect. 2.1, this means

\[
\int_{-\infty}^{\infty} x(t)\hat{x}(t) \, dt = 0 \text{ for energy signals}
\]

and

\[
\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)\hat{x}(t) \, dt = 0 \text{ for power signals}
\]
CHAPTER 3 • Signal Transmission and Filtering

Hilbert Transform of a Cosine Signal
The simplest and most obvious Hilbert transform pair follows directly from the phase-shift property of the quadrature filter. Specifically, if the input is

\[x(t) = A \cos(\omega_0 t + \phi) \]

then

\[\hat{x}(f) = -j \text{sgn } f X(f) = \frac{-jA}{2} \left[\delta(f - f_0)e^{j\phi} + \delta(f + f_0)e^{-j\phi} \right] \text{sgn } f \]

\[= \frac{A}{2} \left[\delta(f - f_0)e^{j\phi} - \delta(f + f_0)e^{-j\phi} \right] \]

and thus \(\hat{x}(t) = A \sin(\omega_0 t + \phi). \)

This transform pair can be used to find the Hilbert transform of any signal that consists of a sum of sinusoids. However, most other Hilbert transforms involve performing the convolution operation in Eq. (2), as illustrated by the following example.

EXAMPLE 3.5–1 Hilbert Transform of a Rectangular Pulse
Consider the delayed rectangular pulse \(x(t) = A[u(t) - u(t - \tau)]. \) The Hilbert transform is

\[\hat{x}(t) = \frac{A}{\pi} \int_{-\tau}^{\tau} \frac{1}{t - \lambda} \, d\lambda \]

whose evaluation requires graphical interpretation. Figure 3.5–2a shows the case \(0 < t < \tau/2 \) and we see that the areas cancel out between \(\lambda = 0 \) and \(\lambda = 2t, \) leaving

\[\hat{x}(t) = \frac{A}{\pi} \int_{2t}^{\tau} \frac{d\lambda}{t - \lambda} = \frac{A}{\pi} \left[\ln(-t) - \ln(t - \tau) \right] \]

\[= \frac{A}{\pi} \ln \left(\frac{-t}{t - \tau} \right) = \frac{A}{\pi} \ln \left(\frac{t}{\tau - t} \right) \]

This result also holds for \(\tau/2 < t < \tau, \) when the areas cancel out between \(\lambda = 2t - \tau \) and \(\lambda = \tau. \) There is no area cancellation for \(t < 0 \) or \(t > \tau, \) and

\[\hat{x}(t) = \frac{A}{\pi} \int_{0}^{\tau} \frac{d\lambda}{t - \lambda} = \frac{A}{\pi} \ln \left(\frac{t}{t - \tau} \right) \]

These separate cases can be combined in one expression

\[\hat{x}(t) = \frac{A}{\pi} \ln \left| \frac{t}{t - \tau} \right| \quad (4) \]

which is plotted in Fig. 3.5–2b along with \(x(t). \)

The infinite spikes in \(\hat{x}(t) \) at \(t = 0 \) and \(t = \tau \) can be viewed as an extreme manifestation of delay distortion. See Fig. 3.2–5 for comparison.
The inverse Hilbert transform recovers $x(t)$ from $\hat{x}(t)$. Use spectral analysis to show that $\hat{x}(t) * (-1/\pi t) = x(t)$.

EXERCISE 3.5–1

3.6 CORRELATION AND SPECTRAL DENSITY

This section introduces **correlation functions** as another approach to signal and system analysis. Correlation focuses on time averages and signal power or energy. Taking the Fourier transform of a correlation function leads to frequency-domain representation in terms of **spectral density functions** equivalent to energy spectral density in the case of an energy signal. In the case of a power signal, the spectral density function tells us the power distribution over frequency.

But the signals themselves need not be Fourier transformable. Hence, spectral density allows us to deal with a broader range of signal models, including the important class of **random** signals. We develop correlation and spectral density here as analytic tools for nonrandom signals. You should then feel more comfortable with them when we get to random signals in Chap. 9.

Correlation of Power Signals

Let $v(t)$ be a power signal, but not necessarily real nor periodic. Our only stipulation is that it must have well-defined **average power**

$$P_v \triangleq \langle |v(t)|^2 \rangle = \langle v(t)v^*(t) \rangle \geq 0$$

The time-averaging operation here is interpreted in the general form

$$\langle z(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} z(t) \, dt$$
where \(z(t) \) is an arbitrary time function. For reference purposes, we note that this operation has the following properties:

\[
\langle z^*(t) \rangle = \langle z(t) \rangle^* \tag{2a}
\]

\[
\langle z(t - t_0) \rangle = \langle z(t) \rangle \quad \text{any } t_0 \tag{2b}
\]

\[
\langle a_1 z_1(t) + a_2 z_2(t) \rangle = a_1 \langle z_1(t) \rangle + a_2 \langle z_2(t) \rangle \tag{2c}
\]

We’ll have frequent use for these properties in conjunction with correlation.

If \(v(t) \) and \(w(t) \) are power signals, the average \(\langle v(t)w^*(t) \rangle \) is called the **scalar product** of \(v(t) \) and \(w(t) \). The scalar product is a number, possibly complex, that serves as a measure of similarity between the two signals. **Schwarz’s inequality** relates the scalar product to the signal powers \(P_v \) and \(P_w \), in that

\[
|\langle v(t)w^*(t) \rangle|^2 \leq P_v P_w \tag{3}
\]

You can easily confirm that the equality holds when \(v(t) = aw(t) \), with \(a \) being an arbitrary constant. Hence, \(|\langle v(t)w^*(t) \rangle| \) is maximum when the signals are proportional. We’ll soon define correlation in terms of the scalar product.

First, however, let’s further interpret \(\langle v(t)w^*(t) \rangle \) and prove Schwarz’s inequality by considering

\[
z(t) = v(t) - aw(t) \tag{4a}
\]

The average power of \(z(t) \) is

\[
P_z = \langle z(t)z^*(t) \rangle = \langle [v(t) - aw(t)]v^*(t) - a^*w^*(t) \rangle \tag{4b}
\]

\[
= \langle v(t)v^*(t) \rangle + a^*\langle w(t)w^*(t) \rangle - a^*\langle v(t)w^*(t) \rangle - a\langle v^*(t)w(t) \rangle
\]

\[
= P_v + a^*P_w - 2 Re [a^*\langle v(t)w^*(t) \rangle]
\]

where Eqs. (2a) and (2c) have been used to expand and combine terms. If \(a = 1 \), then \(z(t) = v(t) - w(t) \) and

\[
P_z = P_v + P_w - 2 Re \langle v(t)w^*(t) \rangle
\]

A large value of the scalar product thus implies similar signals, in the sense that the difference signal \(v(t) - w(t) \) has small average power. Conversely, a small scalar product implies dissimilar signals and \(P_z = P_v + P_w \).

To prove Schwarz’s inequality from Eq. (4b), let \(a = \langle v(t)w^*(t) \rangle/P_w \) so

\[
aa^*P_w = a^*\langle v(t)w^*(t) \rangle = |\langle v(t)w^*(t) \rangle|^2/P_w
\]

Then \(P_z = P_v - |\langle v(t)w^*(t) \rangle|^2/P_w \geq 0 \), which reduces to Eq. (3) and completes the preliminary work.

Now we define the **cross-correlation** of two power signals as

\[
R_{vw}(\tau) \triangleq \langle v(t)w^*(t - \tau) \rangle = \langle v(t + \tau)w^*(t) \rangle \tag{5}
\]

\(^\dagger \) Another definition used by some authors is \(\langle v^*(t)w(t + \tau) \rangle \), equivalent to interchanging the subscripts on \(R_{vw}(\tau) \) in Eq. (5).
This is a scalar product with the second signal delayed by \(\tau \) relative to the first or, equivalently, the first signal advanced by \(\tau \) relative to the second. The relative displacement \(\tau \) is the independent variable in Eq. (5), the variable \(t \) having been washed out in the time average. General properties of \(R_{vw}(\tau) \) are

\[
|R_{vw}(\tau)|^2 \leq P_v P_w \quad (6a)
\]
\[
R_{vw}(\tau) = R_{vw}(-\tau) \quad (6b)
\]

Equation (6a) simply restates Schwarz's inequality, while Eq. (6b) points out that \(R_{vw}(\tau) \neq R_{vw}(\tau) \).

We conclude from our previous observations that \(R_{vw}(\tau) \) measures the similarity between \(v(t) \) and \(w(t - \tau) \) as a function of \(\tau \). Cross-correlation is thus a more sophisticated measure than the ordinary scalar product since it detects time-shifted similarities or differences that would be ignored in \(\langle v(t)w^*(t) \rangle \).

But suppose we correlate a signal with itself, generating the **autocorrelation function**

\[
R_v(\tau) \triangleq R_{vv}(\tau) = \langle v(t)v^*(t - \tau) \rangle = \langle v(t + \tau)v^*(t) \rangle \quad (7)
\]

This autocorrelation tells us something about the time variation of \(v(t) \), at least in an averaged sense. If \(|R_v(\tau)| \) is large, we infer that \(v(t - \tau) \) is very similar to \(v(t) \) for that particular value of \(\tau \); whereas if \(|R_v(\tau)| \) is small, then \(v(t) \) and \(v(t - \tau) \) must look quite different.

Properties of the autocorrelation function include

\[
R_v(0) = P_v \quad (8a)
\]
\[
|R_v(\tau)| \leq R_v(0) \quad (8b)
\]
\[
R_v(-\tau) = R_v^*(\tau) \quad (8c)
\]

Hence, \(R_v(\tau) \) has hermitian symmetry and a maximum value at the origin equal to the signal power. If \(v(t) \) is real, then \(R_v(\tau) \) will be real and even. If \(v(t) \) happens to be periodic, \(R_v(\tau) \) will have the same periodicity.

Lastly, consider the sum or difference signal

\[
z(t) = v(t) \pm w(t) \quad (9a)
\]

Upon forming its autocorrelation, we find that

\[
R_z(\tau) = R_v(\tau) + R_w(\tau) \pm [R_{vw}(\tau) + R_{wv}(\tau)] \quad (9b)
\]

If \(v(t) \) and \(w(t) \) are **uncorrelated** for all \(\tau \), so

\[
R_{vw}(\tau) = R_{wv}(\tau) = 0
\]
then \(R_z(\tau) = R_v(\tau) + R_w(\tau) \) and setting \(\tau = 0 \) yields

\[
P_z = P_v + P_w
\]

Superposition of average power therefore holds for uncorrelated signals.
EXAMPLE 3.6–1 Correlation of Phasors and Sinusoids

The calculation of correlation functions for phasors and sinusoidal signals is expedited by calling upon Eq. (18), Sect. 2.1, written as

$$\langle e^{i\omega_1 t} e^{-i\omega_2 t} \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} e^{i(\omega_1 - \omega_2) t} \, dt$$ \hspace{1cm} (10)

$$= \lim_{T \to \infty} \frac{\sin(\omega_1 - \omega_2) T}{2\pi} = \begin{cases} 0 & \omega_2 \neq \omega_1 \\ 1 & \omega_2 = \omega_1 \end{cases}$$

We'll apply this result to the phasor signals

$$v(t) = C_v e^{i\omega_v t}, \quad w(t) = C_w e^{i\omega_w t}$$ \hspace{1cm} (11a)

where C_v and C_w are complex constants incorporating the amplitude and phase angle. The crosscorrelation is

$$R_{vw}(\tau) = \langle [C_v e^{i\omega_v t}] [C_w e^{i\omega_w (t-\tau)}]^* \rangle$$

$$= C_v^* C_w \delta(\tau) e^{i\omega_w \tau} e^{-i\omega_v \tau}$$

$$= \begin{cases} 0 & \omega_w \neq \omega_v \\ C_v^* C_w \delta(\tau) & \omega_w = \omega_v \end{cases}$$ \hspace{1cm} (11b)

Hence, the phasors are uncorrelated unless they have identical frequencies. The autocorrelation function is

$$R_v(\tau) = |C_v|^2 e^{i\omega_v \tau}$$ \hspace{1cm} (11c)

which drops out of Eq. (11b) when $w(t) = v(t)$.

Now it becomes a simple task to show that the sinusoidal signal

$$z(t) = A \cos(\omega_0 t + \phi)$$ \hspace{1cm} (12a)

has

$$R_z(\tau) = \frac{A^2}{2} \cos(\omega_0 \tau)$$ \hspace{1cm} (12b)

Clearly, $R_z(\tau)$ is real, even, and periodic, and has the maximum value $R_z(0) = A^2/2 = P_z$. This maximum also occurs whenever $\omega_0 \tau$ equals a multiple of 2π radians, so $z(t \pm \tau) = z(t)$. On the other hand, $R_z(\tau) = 0$ when $z(t \pm \tau)$ and $z(t)$ are in phase quadrature.

But notice that the phase angle ϕ does not appear in $R_z(\tau)$, owing to the averaging effect of correlation. This emphasizes the fact that the autocorrelation function does not uniquely define a signal.

EXERCISE 3.6–1 Derive Eq. (12b) by writing $z(t)$ as a sum of conjugate phasors and applying Eqs. (9) and (11).
3.6 Correlation and Spectral Density

Correlation of Energy Signals

Averaging products of energy signals over all time yields zero. But we can meaningfully speak of the total energy

$\mathcal{E}_v \triangleq \int_{-\infty}^{\infty} u(t)v^*(t) \, dt \geq 0$ \hspace{1cm} (13)

Similarly, the correlation functions for energy signals can be defined as

$R_{vw}(\tau) \triangleq \int_{-\infty}^{\infty} v(t)w^*(t - \tau) \, dt$ \hspace{1cm} (14a)

$R_v(\tau) \triangleq R_{vv}(\tau)$ \hspace{1cm} (14b)

Since the integration operation $\int_{-\infty}^{\infty} z(t) \, dt$ has the same mathematical properties as the time-average operation $\langle z(t) \rangle$, all of our previous correlation relations hold for the case of energy signals if we replace average power \mathcal{P}_v with total energy \mathcal{E}_v. Thus, for instance, we have the property

$|R_{vw}(\tau)|^2 \leq \mathcal{E}_v \mathcal{E}_w$ \hspace{1cm} (15)

as the energy-signal version of Eq. (6a).

Closer examination of Eq. (14) reveals that energy-signal correlation is a type of convolution. For with $z(t) = w^*(-t)$ and $t = \lambda$, the right-hand side of Eq. (14a) becomes

$\int_{-\infty}^{\infty} u(\lambda)z(\tau - \lambda) \, d\lambda = u(\tau) * z(\tau)$

and therefore

$R_{vw}(\tau) = u(\tau) * w^*(-\tau)$ \hspace{1cm} (16)

Likewise, $R_v(\tau) = u(\tau) * v^*(-\tau)$.

Some additional relations are obtained in terms of the Fourier transforms $V(f) = \mathcal{F}[v(t)]$, etc. Specifically, from Eqs. (16) and (17), Sect. 2.2,

$R_v(0) = \mathcal{E}_v = \int_{-\infty}^{\infty} |V(f)|^2 \, df$

$R_{vw}(0) = \int_{-\infty}^{\infty} v(t)w^*(t) \, dt = \int_{-\infty}^{\infty} V(f)W^*(f) \, df$

Combining these integrals with $|R_{vw}(0)|^2 \leq \mathcal{E}_v \mathcal{E}_w = R_v(0)R_w(0)$ yields

$\left| \int_{-\infty}^{\infty} V(f)W^*(f) \, df \right|^2 \leq \int_{-\infty}^{\infty} |V(f)|^2 \, df \int_{-\infty}^{\infty} |W(f)|^2 \, df$ \hspace{1cm} (17)

Equation (17) is a frequency-domain statement of Schwarz’s inequality. The equality holds when $V(f)$ and $W(f)$ are proportional.
CHAPTER 3 • Signal Transmission and Filtering

Pattern Recognition

Cross-correlation can be used in pattern recognition tasks. If the cross-correlation of objects A and B is similar to the autocorrelation of A, then B is assumed to match A. Otherwise B does not match A. For example, the autocorrelation of \[x(t) \] can be found from performing the graphical correlation in Eq. (14b) as \[R_x(\tau) = \Lambda(\tau) \]. If we examine the similarity of \[y(t) \] to \[x(t) \] by finding the cross-correlation \[R_{xy}(\tau) = 2\Lambda(\tau) \], we see that \[R_{xy}(\tau) \] is just a scaled version of \[R_x(\tau) \]. Therefore \[y(t) \] matches \[x(t) \]. However, if we take the cross-correlation of \[z(t) \] with \[x(t) \], we obtain \[R_{xz}(\tau) \] and conclude that \[z(t) \] doesn’t match \[x(t) \].

This type of graphical correlation is particularly effective for signals that do not have a closed-form solution. For example, autocorrelation can find the pitch (fundamental frequency) of speech signals. The cross-correlation can determine if two speech samples have the same pitch, and thus may have come from the same individual.

EXERCISE 3.6–2

Let \[v(t) = A[u(t) - u(t - D)] \] and \[w(t) = v(t - t_d) \]. Use Eq. (16) with \[z(t) = w^*(-\tau) \] to sketch \[R_{vw}(\tau) \]. Confirm from your sketch that \[|R_{vw}(\tau)|^2 \leq E_vE_w \] and that \[R_{vw}(\tau) \] is a scaled version of \[R_{xw}(\tau) \] at \[\tau = -t_d \].

We next investigate system analysis in the “\(\tau \) domain,” as represented by Fig. 3.6–1. A signal \(x(t) \) having known autocorrelation \(R_x(\tau) \) is applied to an LTI system with impulse response \(h(t) \), producing the output signal

\[
y(t) = h(t) \ast x(t) = \int_{-\infty}^{\infty} h(\lambda) x(t - \lambda) \, d\lambda
\]

We’ll show that the input-output cross-correlation function is

\[
R_{yx}(\tau) = h(\tau) \ast R_x(\tau) = \int_{-\infty}^{\infty} h(\lambda) R_x(\tau - \lambda) \, d\lambda
\]

and that the output autocorrelation function is

\[
R_y(\tau) = h^*(-\tau) \ast R_{yx}(\tau) = \int_{-\infty}^{\infty} h^*(-\mu)R_{yx}(\tau - \mu) \, d\mu
\]

Substituting Eq. (18) into (19a) then gives

\[
R_y(\tau) = h^*(-\tau) \ast h(\tau) \ast R_x(\tau)
\]

Note that these \(\tau \)-domain relations are convolutions, similar to the time-domain relation.
For derivation purposes, let’s assume that $x(t)$ and $y(t)$ are power signals so we can use the compact time-averaged notation. Obviously, the same results will hold when $x(t)$ and $y(t)$ are both energy signals. The assumption of a stable system ensures that $y(t)$ will be the same type of signal as $x(t)$.

Starting with the cross-correlation $R_{yx}(\tau) = \langle y(t)x^*(t - \tau) \rangle$, we insert the convolution integral $h(t) * x(t)$ for $y(t)$ and interchange the order of operations to get

$$R_{yx}(\tau) = \int_{-\infty}^{\infty} h(\lambda) \langle x(t - \lambda)x^*(t - \tau) \rangle \, d\lambda$$

![Figure 3.6–1](https://via.placeholder.com/150)

Figure 3.6–1 LTI system.

But since $\langle z(t) \rangle = \langle z(t + \lambda) \rangle$ for any λ,

$$\langle x(t - \lambda)x^*(t - \tau) \rangle = \langle x(t + \lambda - \lambda)x^*(t + \lambda - \tau) \rangle$$

$$= \langle x(t)x^*[t - (\tau - \lambda)] \rangle$$

$$= R_x(\tau - \lambda)$$

Hence,

$$R_{yx}(\tau) = \int_{-\infty}^{\infty} h(\lambda) R_x(\tau - \lambda) \, d\lambda$$

Proceeding in the same fashion for $R_y(\tau) = \langle y(t)y^*(t - \tau) \rangle$ we arrive at

$$R_y(\tau) = \int_{-\infty}^{\infty} h^*(\lambda) \langle y(t)x^*(t - \tau - \lambda) \rangle d\lambda$$

in which $\langle y(t)x^*(t - \tau - \lambda) \rangle = R_{yx}(\tau + \lambda)$. Equation (19a) follows from the change of variable $\mu = -\lambda$.

Spectral Density Functions

At last we’re prepared to discuss spectral density functions. Given a power or energy signal $v(t)$, its spectral density function $G_v(f)$ represents the distribution of power or energy in the frequency domain and has two essential properties. First, the area under $G_v(f)$ equals the average power or total energy, so

$$\int_{-\infty}^{\infty} G_v(f) \, df = R_v(0) \quad \text{(20)}$$

Second, if $x(t)$ is the input to an LTI system with $H(f) = \mathcal{F}[h(t)]$, then the input and output spectral density functions are related by
CHAPTER 3 • Signal Transmission and Filtering

\[G_y(f) = |H(f)|^2 G_x(f) \quad (21) \]

since \(|H(f)|^2 \) is the power or energy gain at any \(f \). These two properties are combined in

\[R_y(0) = \int_{-\infty}^{\infty} |H(f)|^2 G_x(f) \, df \quad (22) \]

which expresses the output power or energy \(R_y(0) \) in terms of the input spectral density.

Equation (22) leads to a physical interpretation of spectral density with the help of Fig. 3.6–2. Here, \(G_x(f) \) is arbitrary and \(|H(f)|^2 \) acts like a narrowband filter with unit gain, so

\[G_y(f) = \begin{cases} G_x(f) & f - \frac{\Delta f}{2} < f < f + \frac{\Delta f}{2} \\ 0 & \text{otherwise} \end{cases} \]

If \(\Delta f \) is sufficiently small, the area under \(G_y(f) \) will be \(R_y(0) = G_x(f_c) \Delta f \) and

\[G_x(f_c) = R_y(0)/\Delta f \]

We conclude that at any frequency \(f = f_c \), \(G_y(f) \) equals the signal power or energy per unit frequency. We further conclude that any spectral density function must be real and nonnegative for all values of \(f \).

Figure 3.6–2 Interpretation of spectral density functions.
3.6 Correlation and Spectral Density

But how do you determine $G_v(f)$ from $v(t)$? The Wiener-Kinchine theorem states that you first calculate the autocorrelation function and then take its Fourier transform. Thus,

$$G_v(f) = \mathcal{F}_\mathcal{F}[R_v(\tau)] = \Delta \int_{-\infty}^{\infty} R_v(\tau) e^{-j2\pi f \tau} d\tau \quad (23a)$$

where $\mathcal{F}_\mathcal{F}$ stands for the Fourier transform operation with τ in place of t. The inverse transform is

$$R_v(\tau) = \mathcal{F}_\mathcal{F}^{-1}[G_v(f)] = \Delta \int_{-\infty}^{\infty} G_v(f) e^{j2\pi f \tau} df \quad (23b)$$

so we have the Fourier transform pair

$$R_v(\tau) \leftrightarrow G_v(f)$$

All of our prior transform theorems therefore may be invoked to develop relationships between autocorrelation and spectral density.

If $v(t)$ is an energy signal with $V(f) = \mathcal{F}[v(t)]$, application of Eqs. (16) and (23a) shows that

$$G_v(f) = |V(f)|^2 \quad (24)$$

and we have the energy spectral density. If $v(t)$ is a periodic power signal with the Fourier series expansion

$$v(t) = \sum_{n=-\infty}^{\infty} c(nf_0) e^{j2\pi nf_0 t} \quad (25a)$$

the Wiener-Kinchine theorem gives the power spectral density, or power spectrum, as

$$G_v(f) = \sum_{n=-\infty}^{\infty} |c(nf_0)|^2 \delta(f - nf_0) \quad (25b)$$

This power spectrum consists of impulses representing the average phasor power $|c(nf_0)|^2$ concentrated at each harmonic frequency $f = nf_0$. Substituting Eq. (25b) into Eq. (20) then yields a restatement of Parseval’s power theorem. In the special case of a sinusoidal signal

$$v(t) = A \cos (\omega_0 t + \phi)$$

we use $R_z(\tau)$ from Eq. (12b) to get

$$G_v(f) = \mathcal{F}_\mathcal{F}[(A^2/2) \cos 2\pi f_0 \tau]$$

$$= \frac{A^2}{4} \delta(f - f_0) + \frac{A^2}{4} \delta(f + f_0)$$

which is plotted in Fig. 3.6–3.
All of the foregoing cases lend support to the Wiener-Kinchine theorem but do not constitute a general proof. To prove the theorem, we must confirm that taking satisfies the properties in Eqs. (20) and (21). The former immediately follows from the inverse transform in Eq. (23) with . Now recall the output autocorrelation expression

\[
R_y(\tau) = h^*(\tau) \ast h(\tau) \ast R_x(\tau)
\]

Since

\[
\mathcal{F}_r[h(\tau)] = H(f) \quad \mathcal{F}_r[h^*(-\tau)] = H^*(f)
\]

the convolution theorem yields

\[
\mathcal{F}_r[R_y(\tau)] = H^*(f)H(f)\mathcal{F}_r[R_x(\tau)]
\]

and thus \(G_y(f) = |H(f)|^2G_x(f) \) if we take \(\mathcal{F}_r[R_x(\tau)] = G_y(f) \), etc.

EXAMPLE 3.6–3 **Energy Spectral Density Output of an LTI System**

The signal \(x(t) = \text{sinc} \ 10t \) is input to the system in Fig. 3.6–1 having the transfer function

\[
H(f) = 3\Pi \left(\frac{f}{4} \right) e^{-|4\pi f|}
\]

We can find the energy spectral density of \(x(t) \) from Eq. (24)

\[
G_x(f) = |X(f)|^2 = \frac{1}{100} \Pi(\frac{f}{10})
\]

and the corresponding spectral density of the output \(y(t) \)

\[
G_y(f) = |H(f)|^2G_x(f)
\]

\[
= 9\Pi \left(\frac{f}{4} \right) \left[\frac{1}{100} \Pi(\frac{f}{10}) \right]
\]

\[
= \frac{9}{100} \Pi(\frac{f}{4})
\]
since the amplitudes multiply only in the region where the functions overlap. There are several ways to find the total energies E_x and E_y. We know that

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 \, dt = \int_{-\infty}^{\infty} |X(f)|^2 \, df = \int_{-\infty}^{\infty} G_x(f) \, df$$

$$= \int_{-5}^{5} \frac{1}{100} \, df = \frac{1}{10}$$

Or we can find $R_x(\tau) = \mathcal{F}^{-1}\{G_x(f)\} = \frac{1}{10} \text{sinc} 10\tau$ from which $E_x = R_x(0) = \frac{1}{10}$. Similarly,

$$E_y = \int_{-\infty}^{\infty} |y(t)|^2 \, dt = \int_{-\infty}^{\infty} |Y(f)|^2 \, df = \int_{-\infty}^{\infty} G_y(f) \, df$$

$$= \int_{-2}^{2} \frac{9}{100} \, df = \frac{9}{25}$$

And correspondingly $R_y(\tau) = \mathcal{F}^{-1}\{G_y(f)\} = \frac{9}{25} \text{sinc} 4\tau$ which leads to the same result that $E_y = R_y(0) = \frac{9}{25}$. We can find the output signal $y(t)$ directly from the relationship

$$Y(f) = X(f)H(f) = \frac{3}{10} \Pi\left(\frac{f}{4}\right) e^{-j4\pi f}$$

by doing the same type of multiplication between rectangular functions as we did earlier for the spectral density. Using the Fourier transform theorems, $y(t) = \frac{3}{5} \text{sinc} 4(t - 2)$.

Comb Filter

Consider the **comb filter** in Fig. 3.6–4a. The impulse response is

$$h(t) = \delta(t) - \delta(t - T)$$

so

$$H(f) = 1 - e^{-j2\pi fT}$$

and

$$|H(f)|^2 = 2 - e^{-j2\pi fT} - e^{j2\pi fT}$$

$$= 4 \sin^2 2\pi f_c \quad f_c = 2/T$$

The sketch of $|H(f)|^2$ in Fig. 3.6–4b explains the name of this filter.

If we know the input spectral density, the output density and autocorrelation can be found from...
CHAPTER 3 • Signal Transmission and Filtering

If we also know the input autocorrelation, we can write

\[R_y(\tau) = \mathcal{F}^{-1}[|H(f)|^2] \ast R_x(f) \]

where, using the exponential expression for \(|H(f)|^2\),

\[\mathcal{F}^{-1}[|H(f)|^2] = 2\delta(\tau) - \delta(\tau - T) - \delta(\tau + T) \]

Therefore,

\[R_y(\tau) = 2R_x(\tau) - R_x(\tau - T) - R_x(\tau + T) \]

and the output power or energy is \(R_y(0) = 2R_x(0) - R_x(-T) - R_x(T) \).

EXERCISE 3.6–3 Let \(v(t) \) be an energy signal. Show that \(\mathcal{F}[v^*(−\tau)] = V^*(f) \). Then derive \(G_y(f) = |V(f)|^2 \) by applying Eq. (23a) to Eq. (16).

3.7 QUESTIONS AND PROBLEMS

Questions

1. Why does fiber have more bandwidth than copper?
2. How can we increase the Q of a bandpass filter without eliminating the parasitic resistances in the capacitors and/or inductors?
3. How are satellites used for communications?
4. What is multipath, and why is it a problem?
5. How would you determine responsibility if someone is operating at 28 MHz and is causing television interference (TVI) for channel 2, which operates from 54 to 60 MHz?

6. What is the cost in signal strength if the receiver antenna uses both horizontal and vertical polarization to ensure the signal will be received if transmitted using either polarization?

7. Section 3.3 demonstrates how a satellite is used to relay signals via amplifying, translation, and then rebroadcasting. Describe an alternative system(s) to accomplish the same goal.

8. Why do terrestrial television translators have different input and output frequencies?

9. Describe a method using square waves to evaluate the fidelity of an audio amplifier. Assume the amplifier has a linear phase response. Would triangle waves be better?

10. Devise a method using square waves to evaluate phase distortion of an amplifier.

11. Why would a satellite with a linear repeater FDMA system have a limit on a particular user’s effective radiated power (ERP)?

12. Give some practical examples of electrical networks with ordinary R, L, and/or C components that are not time-invariant.

13. Why do some analog systems seem to “age” with time?

14. At what frequencies is the lumped parameter model no longer valid? State some specific examples why this is so.

15. What assumptions are required to enable the validity of the cascade relationship of Eq. (19b)?

16. Given a multiplicity of input signals, describe at least two methods, either of which we can choose at the exclusion of the others.

17. What is the difference between cascode and cascade circuits?

Problems

3.1–1 A given system has impulse response h(t) and transfer function H(f). Obtain expressions for y(t) and Y(f) when x(t) = A[δ(t + t_d) − δ(t − t_d)].

3.1–2 Do Prob. 3.1–1 with x(t) = A[δ(t + t_d) + δ(t)].

3.1–3* Do Prob. 3.1–1 with x(t) = Ah(t − t_d).

3.1–4 Do Prob. 3.1–1 with x(t) = Au(t − t_d).

3.1–5 Justify Eq. (7b) from Eq. (14) with x(t) = u(t).

3.1–6 Find and sketch |H(f)| and arg H(f) for a system described by the differential equation dy(t)/dt + 4πy(t) = dx(t)/dt + 16πx(t).

3.1–7 Do Prob. 3.1–6 with dy(t)/dt + 16πy(t) = dx(t)/dt + 4πx(t).
3.1–8 Do Prob. 3.1–6 with \(\frac{dy(t)}{dt} - 4\pi y(t) = -dx(t)/dt + 4\pi x(t) \).

3.1–9* Use frequency-domain analysis to obtain an approximate expression for \(y(t) \) when \(H(f) = B/(B +jf) \) and \(x(t) \) is such that \(X(f) = 0 \) for \(|f| < W \) with \(W \gg B \).

3.1–10 Use frequency-domain analysis to obtain an approximate expression for \(y(t) \) when \(H(f) = jf/(B +jf) \) and \(x(t) \) is such that \(X(f) = 0 \) for \(|f| > W \) with \(W \ll B \).

3.1–11 The input to an RC lowpass filter is \(x(t) = 2 \text{sinc}(4\pi Wt) \). Plot the energy ratio \(E_y/E_x \) versus \(B/W \).

3.1–12 Sketch and label the impulse response of the cascade system in Fig. 3.1–8b when the blocks represent zero-order holds with time delays \(T_1 > T_2 \).

3.1–13 Sketch and label the impulse response of the cascade system in Fig. 3.1–8b when \(H_1(f) = [1 + j(f/B)]^{-1} \) and the second block represents a zero-order hold with time delay \(T \gg 1/B \).

3.1–14 Show how a non-ideal filter can be used to take the time derivative of a signal.

3.1–15 Given two identical modules to be connected in cascade. Each one by itself has a voltage gain \(A_V = 5 \). Both have input resistances of 100 ohms and output resistances of 50 ohms. What is the overall voltage gain of the system when connected in cascade?

3.1–16 What is the power loss or gain when a transmitter with a 75 ohm output resistance connected to an antenna whose resistance is 300 ohms?

3.1–17 What is the loss or gain in decibels when a stereo amplifier with a 8 ohm output is connected to a speaker with 4 ohms?

3.1–18* Find the step and impulse response of the feedback system in Fig. 3.1–8c when \(H_1(f) \) is a differentiator and \(H_2(f) \) is a gain \(K \).

3.1–19 Find the step and impulse response of the feedback system in Fig. 3.1–8c when \(H_1(f) \) is a gain \(K \) and \(H_2(f) \) is a differentiator.

3.1–20† If \(H(f) \) is the transfer function of a physically realizable system, then \(h(t) \) must be real and causal. As a consequence, for \(t \geq 0 \) show that

\[
h(t) = 4 \int_0^\infty H_1(f) \cos \omega t \, df = 4 \int_0^\infty H_1(f) \cos \omega t \, df
\]

where \(H_1(f) = \text{Re}[H(f)] \) and \(H_1(f) = \text{Im}[H(f)] \).

3.2–1 Given an input \(x(t) = 10 \cos \frac{\pi}{2}(t - 2) + 10 \cos \frac{\pi}{4}(t - 2) \), determine the steady-state output if the system’s frequency response is \(5e^{-j30^\circ} \).
3.7 Questions and Problems

Express your answer in the form of \(y(t) = Kx(t - t_d) \). How does the phase term affect the output time delays?

3.2–2 Do Prob. 3.2–1 with a system whose frequency response is \(5e^{-j\omega t} \). What is the effect of nonlinear phase distortion?

3.2–3 Show that a first-order lowpass system yields essentially distortionless transmission if \(x(t) \) is bandlimited to \(W \ll B \).

3.2–4 Find and sketch \(y(t) \) when the test signal \(x(t) = 4 \cos \omega_0 t + \frac{1}{2} \cos 3\omega_0 t + \frac{1}{5} \cos 5\omega_0 t \), which approximates a triangular wave, is applied to a first-order lowpass system with \(B = 3f_0 \).

3.2–5* Find and sketch \(y(t) \) when the test signal from Prob. 3.2–4 is applied to a first-order highpass system with \(H(f) = jf/(B +jf) \) and \(B = 3f_0 \).

3.2–6 The signal \(2 \text{sinc } 40t \) is to be transmitted over a channel with transfer function \(H(f) \). The output is \(y(t) = 20 \text{sinc } (40t - 200) \). Find \(H(f) \) and sketch its magnitude and phase over \(|f| \leq 30 \).

3.2–7 Evaluate \(t_d(f) \) at \(f = 0, 0.5, 1, \) and \(2 \text{ kHz} \) for a first-order lowpass system with \(B = 2 \text{ kHz} \).

3.2–8 A channel has the transfer function

\[
H(f) = \begin{cases}
4\Pi \left(\frac{f}{40} \right) e^{-j\pi f/30} & \text{for } |f| \leq 15 \text{ Hz} \\
4\Pi \left(\frac{f}{40} \right) e^{-j\pi/2} & \text{for } |f| > 15 \text{ Hz}
\end{cases}
\]

Sketch the phase delay \(t_d(f) \) and group delay \(t_g(f) \). For what values of \(f \) does \(t_d(f) = t_g(f) \)?

3.2–9 Consider a transmission channel with \(H_C(f) = (1 + 2\alpha \cos \omega T)e^{-j\omega T} \), which has amplitude ripples. (a) Show that \(y(t) = \alpha x(t) + x(t - T) + \alpha x(t - 2T) \), so the output includes a leading and trailing echo. (b) Let \(x(t) = \Pi(t/\tau) \) and \(\alpha = \frac{1}{2} \).

Sketch \(y(t) \) for \(\tau = \frac{2\pi}{\omega} \) and \(\frac{3\pi}{\omega} \).

3.2–10* Consider a transmission channel with \(H_C(f) = \exp[-j(\omega T - \alpha \sin \omega T)] \), which has phase ripples. Assume \(|\alpha| \ll \pi/2 \) and use a series expansion to show that the output includes a leading and trailing echo.

3.2–11 Design a tapped-delay line equalizer for \(H_C(f) \) in Prob. 3.2–10 with \(\alpha = 0.4 \).

3.2–12 Design a tapped-delay line equalizer for \(H_C(f) \) in Prob. 3.2–9 with \(\alpha = 0.4 \).

3.2–13 Suppose \(x(t) = A \cos \omega_0 t \) is applied to a nonlinear system with \(y(t) = 2x(t) - 3x^2(t) \).

Write \(y(t) \) as a sum of cosines. Then evaluate the second-harmonic and third-harmonic distortion when \(A = 1 \) and \(A = 2 \).
3.2–14 Do Prob. 3.2–13 with \(y(t) = 5x(t) - 2x^2(t) + 4x^3(t) \).

3.3–1* Let the repeater system in Fig. 3.3–2 have \(P_{in} = 0.5 \, W \), \(\alpha = 2 \, \text{dB/km} \), and a total path length of 50 km. Find the amplifier gains and the location of the repeater so that \(P_{out} = 50 \, \text{mW} \) and the signal power at the input to each amplifier equals 20 \(\mu \text{W} \).

3.3–2 Do Prob. 3.3–1 with \(P_{in} = 100 \, \text{mW} \) and \(P_{out} = 0.1 \, \text{W} \).

3.3–3 A 400 km repeater system consists of \(m \) identical cable sections with \(\alpha = 0.4 \, \text{dB/km} \) and \(m \) identical amplifiers with 30 dB maximum gain. Find the required number of sections and the gain per amplifier so that \(P_{out} = 50 \, \text{mW} \) when \(P_{in} = 2 \, \text{W} \).

3.3–4 A 3000 km repeater system consists of \(m \) identical fiber-optic cable sections with \(\alpha = 0.5 \, \text{dB/km} \) and \(m \) identical amplifiers. Find the required number of sections and the gain per amplifier so that \(P_{out} = P_{in} = 5 \, \text{mW} \) and the input power to each amplifier is at least 67 \(\mu \text{W} \).

3.3–5 Do Prob. 3.3–4 with \(\alpha = 2.5 \, \text{dB/km} \).

3.3–6* Suppose the radio link in Fig. 3.3–4 has \(f = 3 \, \text{GHz} \), \(\ell = 40 \, \text{km} \), and \(P_{in} = 5 \, \text{W} \). If both antennas are circular dishes with the same radius \(r \), find the value of \(r \) that yields \(P_{out} = 2 \, \mu \text{W} \).

3.3–7 Do Prob. 3.3–6 with \(f = 200 \, \text{MHz} \) and \(\ell = 10 \, \text{km} \).

3.3–8 The radio link in Fig. 3.3–4 is used to transmit a metropolitan TV signal to a rural cable company 50 km away. Suppose a radio repeater with a total gain of \(g_{rpt} \) (including antennas and amplifier) is inserted in the middle of the path. Obtain the condition on the value of \(g_{rpt} \) so that \(P_{out} \) is increased by 20 percent.

3.3–9 A direct broadcast satellite (DBS) system uses 17 GHz for the uplink and 12 GHz for the downlink. Using the values of the amplifiers from Example 3.3–1, find \(P_{out} \) assuming \(P_{in} = 30 \, \text{dBW} \).

3.3–10 Given a geostationary satellite with 36,000 km altitude, a downlink frequency of 4 GHz and a ground receiver with a 1/3 m diameter dish. What is the satellite transmitter’s EIRP in order for a 1 pW input to the ground receiver?

3.3–11 What size antenna dish is required to bounce a signal off the moon and have it received back again at the transmitter location? Assume the following: Earth to moon distance is 385,000 km, transmitter power is 1000 W, operating frequency is 432 MHz, and 0.25 pW is required at the receiver’s input. You may also neglect losses due to absorption or multipath.

3.3–12* Given a LEO satellite system with a dish gain of 20 dB, orbiting altitude of 789 km, and download frequency of 1626 MHz, what is the satellite’s transmitter output power required so that it is received by a wireless phone with 1 pW? You may assume the phone’s antenna has unity gain.
3.7 Questions and Problems

3.3–13 Given a LEO satellite with an altitude of 789 km and if \(f = 1626 \text{ MHz} \), what is its maximum linear velocity when its output frequency shifts by 1 kHz? State any assumptions.

3.3–14 Wireless cell-phone technology uses a system in which a given area is divided up into hexagonal cells, each cell having a radius of approximately \(r \). A cell phone is able to communicate with the base tower using 0.5 watts of power. How much less power is required if the radius is reduced by half?

3.4–1 Find and sketch the impulse response of the ideal HPF defined by Eq. (1) with \(f_0 = \infty \).

3.4–2* Find and sketch the impulse response of an ideal band-rejection filter having \(H(f) = 0 \) for \(f_c - B/2 < |f| < f_c + B/2 \) and distortionless transmission for all other frequencies.

3.4–3 Find the minimum value of \(n \) such that a Butterworth filter has \(|H(f)| \geq -1 \text{ dB} \) for \(|f| < 0.7B \). Then calculate \(|H(3B)| \) in dB.

3.4–4 Find the minimum value of \(n \) such that a Butterworth filter has \(|H(f)| \geq -1 \text{ dB} \) for \(|f| < 0.9B \). Then calculate \(|H(3B)| \) in dB.

3.4–5 The impulse response of a second-order Butterworth LPF is \(h(t) = 2be^{-bt} \sin bt u(t) \) with \(b = 2\pi B/\sqrt{2} \). Derive this result using a table of Laplace transforms by taking \(p = s/2\pi \) in Table 3.4–1.

3.4–6 Let \(R = \sqrt{L/C} \) in Fig. 3.4–7. (a) Show that \(|H(f)|^2 = [1 - (f/f_0)^2 + (f/f_0)^4]^{-1} \) with \(f_0 = 1/(2\pi \sqrt{LC}) \). (b) Find the 3 dB bandwidth in terms of \(f_0 \). Then sketch \(|H(f)| \) and compare with a second-order Butterworth response.

3.4–7 Show that the 10–90 percent risetime of a first-order LPF equals \(1/2.87B \).

3.4–8* Use \(h(t) \) given in Prob. 3.4–5 to find the step response of a second-order Butterworth LPF. Then plot \(g(t) \) and estimate the risetime in terms of \(B \).

3.4–9 Let \(x(t) = A \text{ sinc } 4Wt \) be applied to an ideal LPF with bandwidth \(B \). Taking the duration of sinc \(\Delta t \) to be \(\tau = 2/\Delta \), plot the ratio of output to input pulse duration as a function of \(B/W \).

3.4–10* The effective bandwidth of an LPF and the effective duration of its impulse response are defined by

\[
B_{\text{eff}} \triangleq \int_{-\infty}^{\infty} \frac{|H(f)| \, df}{2H(0)} \quad \tau_{\text{eff}} \triangleq \int_{-\infty}^{\infty} \frac{h(t) \, dt}{|h(t)|_{\text{max}}}
\]

Obtain expressions for \(H(0) \) and \(|h(t)| \) from \(\mathcal{F}[h(t)] \) and \(\mathcal{F}^{-1}[H(f)] \), respectively. Then show that \(\tau_{\text{eff}} \geq 1/2B_{\text{eff}} \).
3.4–11‡ Let the impulse response of an ideal LPF be truncated to obtain the causal function

\[h(t) = 2KB \text{sinc } 2B(t - t_d) \quad 0 < t < 2t_d \]

and \(h(t) = 0 \) elsewhere. (a) Show by Fourier transformation that

\[H(f) = \frac{K}{\pi} e^{-j\omega_d t_d} \{ \text{Si } [2\pi(f + B)t_d] - \text{Si } [2\pi(f - B)t_d] \} \]

(b) Sketch \(h(t) \) and \(|H(f)| \) for \(t_d \gg 1/B \) and \(t_d = 1/2B \).

3.5–1 Let \(x(t) = \delta(t) \). (a) Find \(\hat{x}(t) \) from Eq. (2) and use your result to confirm that \(\mathcal{F}^{-1}[-j \text{sgn } f] = 1/\pi t \). (b) Then derive another Hilbert transform pair from the property \(\hat{x}(t)^*(-1/\pi t) = x(t) \).

3.5–2* Use Eq. (3), Sect. 3.1, and the results in Example 3.5–2 to obtain the Hilbert transform of \(A\Pi(t/\tau) \). Now show that if \(v(t) = A \) for all time, then \(\hat{v}(t) = 0 \).

3.5–3 Use Eq. (3) to show that if \(x(t) = \text{sinc } 2Wt \) then \(\hat{x}(t) = \pi Wt \text{sinc }^2 Wt \).

3.5–4 Find the Hilbert transform of the signal in Fig. 3.2–3 using the results of Example 3.5–1.

3.5–5* Find the Hilbert transform of the signal

\[x(t) = 4 \cos \omega_0 t + \frac{4}{3} \cos 3\omega_0 t + \frac{4}{25} \cos 5\omega_0 t. \]

3.5–6 Show that the functions that form the Hilbert transform pair in Prob. 3.5–3 have the same amplitude spectrum by finding the magnitude of the Fourier transform of each. (Hint: Express the \(\text{sinc }^2 \) term as the product of a sine function and \(\text{sinc } \) function.)

3.5–7 Show that \(\int_{-\infty}^{\infty} x(t) \hat{x}(t) dt = 0 \) for \(x(t) = A \cos \omega_0 t \).

3.5–8‡ Let the transfer function of a filter be written in the form \(H(f) = H_0(f) + jH_\phi(f) \), as in Eq. (10), Sect. 2.2. If the filter is physically realizable, then its impulse response must have the causal property \(h(t) = 0 \) for \(t < 0 \). Hence, we can write \(h(t) = (1 + \text{sgn } t)h_\phi(t) \) where \(h_\phi(t) = \frac{1}{2} h(|t|) \) for \(-\infty < t < \infty \). Show that \(\mathcal{F}[h_\phi(t)] = H_\phi(f) \) and thus causality requires that \(H_\phi(f) = -\frac{1}{j} H_\phi(f) \).

3.6–1 Prove Eq. (6b).

3.6–2 Prove the relation \(|x|^2 = xx^* \).

3.6–3 Let \(v(t) \) be periodic with period \(T_0 \). Show from Eq. (7) that \(R_v(\tau) \) has the same periodicity.

3.6–4 Derive Eq. (8b) by taking \(w(t) = v(t - \tau) \) in Eq. (3).
3.6–5 Use the method of pattern recognition demonstrated in Example 3.6–2 to determine whether \(y(t) = \sin 2\omega_0 t \) is similar to \(x(t) = \cos 2\omega_0 t \).

3.6–6* Use Eq. (24) to obtain the spectral density, autocorrelation, and signal energy when \(v(t) = A\sin 4W(t + t_0) \).

3.6–7 Do Prob. 3.6–6 with \(v(t) = A\cos \omega_0 t + A_1 \sin (2\omega_0 t + \phi) \).

3.6–8 Do Prob. 3.6–7 with \(v(t) = A\sin \omega_0 t \).

3.6–9 Use Eq. (25) to obtain the spectral density, autocorrelation, and signal power when \(v(t) = A_0 + A_1 \sin (\omega_0 t + \phi) \).

3.6–10 Do Prob. 3.6–9 with \(v(t) = A_1 \cos (\omega_0 t + \phi_1) + A_2 \sin (2\omega_0 t + \phi_1) \).

3.6–11* Obtain the autocorrelation of \(v(t) = Au(t) \) from Eq. (7). Use your result to find the signal power and spectral density.

3.6–12 The energy signal \(x(t) = \Pi(10 t) \) is input to an ideal lowpass filter system with \(K = 3 \), \(B = 20 \), and \(t_d = 0.05 \), producing the output signal \(y(t) \). Write and simplify an expression for \(R_y(\tau) \).

3.6–13 Given \(Y(f) = H(f)X(f) \) where \(Y(f) \) and \(X(f) \) are either voltages or currents, prove \(G_y(f) = |H(f)|^2 G_x(f) \).

3.6–14 What is \(R_X(\tau) \) when \(x(t) = A\cos(\omega t - \theta) \)?

3.6–15 What is \(R_{xy}(\tau) \) when \(x(t) = A\cos(\omega t - \theta) \) and \(y(t) = A\sin(\omega t - \theta) \)?

3.6–16 Let \(v(t) = \delta(t) + \delta(t - 1) + \delta(t - 2) + \delta(t - 4) \) and \(w(t) = \delta(t) + \delta(t - 1) + \delta(t - 3) + \delta(t - 6) \). Calculate \(R_{vw}(\tau) \) and \(R_{vv}(\tau) \).

3.6–17 Do Prob. 3.6–16 assume that the functions are periodic and the lengths of \(v(t) \) and \(w(t) \) are 7. What are the periods of \(R_{vw}(\tau) \) and \(R_{vv}(\tau) \)?
Linear CW Modulation

CHAPTER OUTLINE

4.1 Bandpass Signals and Systems
 Analog Message Conventions Bandpass Signals Bandpass Transmission
 Bandwidth

4.2 Double-Sideband Amplitude Modulation
 AM Signals and Spectra DSB Signals and Spectra Tone Modulation and
 Phasor Analysis

4.3 Modulators and Transmitters
 Product Modulators Square-Law and Balanced Modulators Switching Modulators

4.4 Suppressed-Sideband Amplitude Modulation
 SSB Signals and Spectra SSB Generation VSB Signals and Spectra

4.5 Frequency Conversion and Demodulation
 Frequency Conversion Synchronous Detection Envelope Detection
CHAPTER 4 • Linear CW Modulation

The several purposes of modulation were itemized in Chap. 1 along with a qualitative description of the process. To briefly recapitulate: modulation is the systematic alteration of one waveform, called the carrier, according to the characteristics of another waveform, the modulating signal or message. The fundamental goal is to produce an information-bearing modulated wave whose properties are best suited to the given communication task.

We now embark on a tour of continuous-wave (CW) modulation systems. The carrier in these systems is a sinusoidal wave modulated by an analog signal—AM and FM radio being familiar examples. The abbreviation CW also refers to on-off keying of a sinusoid, as in radio telegraphy, but that process is more accurately termed interrupted continuous wave (ICW).

This chapter deals specifically with linear CW modulation, which involves direct frequency translation of the message spectrum. Double-sideband modulation (DSB) is precisely that. Minor modifications of the translated spectrum yield conventional amplitude modulation (AM), single-sideband modulation (SSB), or vestigial-sideband modulation (VSB). Each of these variations has its own distinct advantages and significant practical applications. Each will be given due consideration, including such matters as waveforms and spectra, modulation methods, transmitters, and demodulation. The chapter begins with a general discussion of bandpass signals and systems, pertinent to all forms of CW modulation.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Given a bandpass signal, find its envelope and phase, in-phase and quadrature components, and lowpass equivalent signal and spectrum (Sect. 4.1).
2. State and apply the fractional-bandwidth rule of thumb for bandpass systems (Sect. 4.1).
3. Sketch the waveform and envelope of an AM or DSB signal, and identify the spectral properties of AM, DSB, SSB, and VSB (Sects. 4.2 and 4.4).
4. Construct the line spectrum and phasor diagram, and find the sideband power and total power of an AM, DSB, SSB or VSB signal with tone modulation (Sects. 4.2 and 4.4).
5. Distinguish between product, power-law, and balanced modulators, and analyze a modulation system (Sect. 4.3).
6. Identify the characteristics of synchronous, homodyne, and envelope detection (Sect. 4.5).

4.1 BANDPASS SIGNALS AND SYSTEMS

Effective communication over appreciable distance usually requires a high-frequency sinusoidal carrier. Consequently, by applying the frequency translation (or modulation) property of the Fourier transform from Sect. 2.3 to a bandlimited message signal, we can see that most long-haul transmission systems have a bandpass frequency response. The properties are similar to those of a bandpass filter, and any signal transmitted on such a system must have a bandpass spectrum. Our purpose here is to present the characteristics and methods of analysis unique to bandpass systems and signals. Before plunging into the details, let’s establish some conventions regarding the message and modulated signals.

Analog Message Conventions

Whenever possible, our study of analog communication will be couched in terms of an arbitrary message waveform \(x(t) \)—which might stand for a sample function from
the ensemble of possible messages produced by an information source. The one essential condition imposed on \(x(t) \) is that it must have a reasonably well-defined message bandwidth \(W \), so there’s negligible spectral content for \(|f| > W \). Accordingly, Fig. 4.1–1 represents a typical message spectrum \(X(f) = \mathcal{F}[x(t)] \) assuming the message is an energy signal.

For mathematical convenience, we’ll also scale or normalize all messages to have a magnitude not exceeding unity, so

\[
|x(t)| \leq 1 \quad (1)
\]

This normalization puts an upper limit on the average message power, namely

\[
S_x = \langle x^2(t) \rangle \leq 1 \quad (2)
\]

when we assume \(x(t) \) is a deterministic power signal. Both energy-signal and power-signal models will be used for \(x(t) \), depending on which one best suits the circumstances at hand.

Occasionally, analysis with arbitrary \(x(t) \) turns out to be difficult if not impossible. As a fall-back position we may then resort to the specific case of sinusoidal or tone modulation, taking

\[
x(t) = A_m \cos \omega_m t \quad A_m \leq 1 \quad f_m < W \quad (3)
\]

Tone modulation allows us to work with one-sided line spectra and simplifies power calculations. Moreover, if you can find the response of the modulation system at a particular frequency \(f_m \), you can infer the response for all frequencies in the message band—barring any nonlinearities. To reveal potential nonlinear effects, you must use multitone modulation such as

\[
x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t + \cdots
\]

with \(A_1 + A_2 + \cdots \leq 1 \) to satisfy Eq. (1).

Modulation of an arbitrary signal

EXAMPLE 4.1–1

Before we formally discuss bandpass signals and modulation, let’s consider the following example. Given the message spectrum of Fig. 4.1–1, using the Fourier transform...
modulation property we modulate \(x(t) \) onto a carrier frequency \(f_c \) to create the bandpass signal

\[
x_{bp}(t) = x(t) \cos 2\pi f_c t \leftrightarrow X_{bp}(f) = \frac{1}{2} \left[X(f - f_c) + X(f + f_c) \right].
\]

The message and modulated spectrums are plotted in Fig. 4.1–2. Multiplying the message by \(\cos 2\pi f_c t \) in the time domain translates its spectrum to frequency \(f_c \). Note how the shape of \(X(f) \) is preserved in the graph of \(X_{bp}(f) \); the modulated signal occupies \(B_T = 2W \) Hz of spectrum.

Bandpass Signals

We next explore the characteristics unique to bandpass signals and establish some useful analysis tools that will aid our discussions of bandpass transmission. Consider a real energy signal \(v_{bp}(t) \) whose spectrum \(V_{bp}(f) \) has the bandpass characteristic sketched in Fig. 4.1–3a. This spectrum exhibits hermitian symmetry, because \(v_{bp}(t) \) is real, but \(V_{bp}(f) \) is not necessarily symmetrical with respect to \(\pm f_c \). We define a **bandpass signal** by the frequency domain property

\[
V_{bp}(f) = 0 \quad |f| < f_c - W
\]

\[
|f| > f_c + W
\]

which simply states that the signal has no spectral content outside a band of width \(2W \) centered at \(f_c \). The values of \(f_c \) and \(W \) may be somewhat arbitrary, as long as they satisfy Eq. (4) with \(W < f_c \).

The corresponding bandpass waveform in Fig. 4.1–3b looks like a sinusoid at frequency \(f_c \) with slowly changing amplitude and phase angle. Formally we write

\[
v_{bp}(t) = A(t) \cos [\omega_c t + \phi(t)]
\]

![Figure 4.1–2](image_url)
Figure 4.1–2
Spectrum of a message and its modulated version.
where \(A(t) \) is the envelope and \(\phi(t) \) is the phase, both functions of time. The envelope, shown as a dashed line, is defined as nonnegative, so that \(A(t) \geq 0 \). Negative “amplitudes,” when they occur, are absorbed in the phase by adding \(\pm 180^\circ \).

Figure 4.1–4a depicts \(v_{bp}(t) \) as a complex-plane vector whose length equals \(A(t) \) and whose angle equals \(\omega_c t + \phi(t) \). But the angular term \(\omega_c t \) represents a steady counterclockwise rotation at \(f_c \) revolutions per second and can just as well be suppressed, leading to Fig. 4.1–4b. This phasor representation, used regularly hereafter, relates to Fig. 4.1–4a in the following manner: If you pin the origin of Fig. 4.1–4b and rotate the entire figure counterclockwise at the rate \(f_c \), it becomes Fig. 4.1–4a.

Further inspection of Fig. 4.1–4a suggests another way of writing \(v_{bp}(t) \). If we let

\[
v_i(t) = A(t) \cos \phi(t) \quad \text{and} \quad v_q(t) = A(t) \sin \phi(t)
\]

then

\[
v_{bp}(t) = v_i(t) \cos \omega_c t - v_q(t) \sin \omega_c t = v_i(t) \cos \omega_c t + v_q(t) \sin (\omega_c t + 90^\circ)
\]

Equation (7) is called the quadrature-carrier description of a bandpass signal, as distinguished from the envelope-and-phase description in Eq. (5). The functions \(v_i(t) \) and \(v_q(t) \) are named the in-phase and quadrature components, respectively.

The quadrature-carrier designation comes about from the fact that the two terms in Eq. (7) may be represented by phasors with the second at an angle of \(+90^\circ \) compared to the first.
While both descriptions of a bandpass signal are useful, the quadrature-carrier version has advantages for the frequency-domain interpretation. Specifically, Fourier transformation of Eq. (7) yields

\[V_{bp}(f) = \frac{1}{2} [V_i(f - f_c) + V_i(f + f_c)] + \frac{j}{2} [V_q(f - f_c) - V_q(f + f_c)] \] \hspace{1cm} (8)

where

\[V_i(f) = \mathcal{F}[v_i(t)] \hspace{1cm} V_q(f) = \mathcal{F}[v_q(t)] \]

To obtain Eq. (8) we have used the modulation theorem from Eq. (7), Sect. 2.3, along with \(e^{\pm j 90^\circ} = \pm j \). The envelope-and-phase description does not readily convert to the frequency domain since, from Eq. (6) or Fig. 4.1–4b,

\[A(t) = \sqrt{v_i^2(t) + v_q^2(t)} \hspace{1cm} \phi(t) = \arctan \frac{v_q(t)}{v_i(t)} \] \hspace{1cm} (9)

which are not Fourier-transformable expressions.

An immediate implication of Eq. (8) is that, in order to satisfy the bandpass condition in Eq. (4), the in-phase and quadrature functions must be lowpass signals with

\[V_i(f) = V_q(f) = 0 \hspace{1cm} |f| > W \]

In other words,

\[V_{bp}(f) \] consists of two lowpass spectra that have been translated and, in the case of \(V_q(f) \), quadrature phase shifted.

We’ll capitalize upon this property in the definition of the lowpass equivalent spectrum

\[V_{lep}(f) \triangleq \frac{1}{2} [V_i(f) + jV_q(f)] \] \hspace{1cm} (10a)
As shown in Fig. 4.1–5, $V_{lp}(f)$ simply equals the positive-frequency portion of $V_{bp}(f)$ translated down to the origin.

Going from Eq. (10) to the time domain, we obtain the **lowpass equivalent signal**

$$v_{lp}(t) = \mathcal{F}^{-1}[V_{lp}(f)] = \frac{1}{2}[v(t) + jv_q(t)]$$ \hfill (11a)

Thus, $v_{lp}(t)$ is a fictitious complex signal whose real part equals $\frac{1}{2}v(t)$ and whose imaginary part equals $\frac{1}{2}v_q(t)$. Alternatively, rectangular-to-polar conversion yields

$$v_{lp}(t) = \frac{1}{2}A(t)e^{j\phi(t)}$$ \hfill (11b)

where we’ve drawn on Eq. (9) to write $v_{lp}(t)$ in terms of the envelope and phase functions. The complex nature of the lowpass equivalent signal can be traced back to its spectrum $V_{lp}(f)$, which lacks the hermitian symmetry required for the transform of a real time function. Nonetheless, $v_{lp}(t)$ does represent a *real* bandpass signal.

The connection between $v_{lp}(t)$ and $v_{bp}(t)$ is derived from Eqs. (5) and (11b) as follows:

$$v_{bp}(t) = \Re \{A(t)e^{j[\omega_1 t + \phi(t)]}\}$$ \hfill (12)

$$= 2 \Re \{\frac{1}{2}A(t)e^{j\omega_1 t}\}$$

$$= 2 \Re \{v_{lp}(t)e^{j\omega_1 t}\}$$

This result expresses the **lowpass-to-bandpass transformation** in the time domain. The corresponding frequency-domain transformation is

$$V_{bp}(f) = V_{lp}(f - f_c) + V_{lp}^*(-f - f_c)$$ \hfill (13a)

whose first term constitutes the positive-frequency portion of $V_{bp}(f)$ while the second term constitutes the negative-frequency portion. Since we’ll deal only with real
bandpass signals, we can keep the hermitian symmetry of $V_{bp}(f)$ in mind and use the simpler expression

$$V_{bp}(f) = V_{lp}(f - f_c) \quad f > 0$$ \hspace{1cm} (13b)

which follows from Figs. 4.1–3a and 4.1–5.

EXERCISE 4.1–1 Let $z(t) = v_{lp}(t)e^{j\omega_2t}$ and use $2 \text{Re} [z(t)] = z(t) + z^*(t)$ to derive Eq. (13a) from Eq. (12).

Bandpass Transmission

Now we have the tools needed to analyze bandpass transmission represented by Fig. 4.1–6a where a bandpass signal $x_{bp}(t)$ applied to a bandpass system with transfer function $H_{bp}(f)$ produces the bandpass output $y_{bp}(t)$. Obviously, you could attempt direct bandpass analysis via $Y_{bp}(f) = H_{bp}(f)X_{bp}(f)$. But it’s usually easier to work with the lowpass equivalent spectra related by

$$Y_{lp}(f) = H_{lp}(f)X_{lp}(f)$$ \hspace{1cm} (14a)

where

$$H_{lp}(f) = H_{bp}(f + f_c)u(f + f_c)$$ \hspace{1cm} (14b)

which is the **lowpass equivalent transfer function**.

Equation (14) permits us to replace a bandpass system with the lowpass equivalent model in Fig. 4.1–6b. Besides simplifying analysis, the lowpass model provides valuable insight to bandpass phenomena by analogy with known lowpass relationships. We move back and forth between the bandpass and lowpass models with the help of our previous results for bandpass signals.

In particular, after finding $Y_{lp}(f)$ from Eq. (14), you can take its inverse Fourier transform

$$y_{lp}(t) = \mathcal{F}^{-1}[Y_{lp}(f)] = \mathcal{F}^{-1}[H_{lp}(f)X_{lp}(f)]$$

The lowpass-to-bandpass transformation in Eq. (12) then yields the output signal $y_{bp}(t)$. Or you can get the output quadrature components or envelope and phase immediately from $y_{lp}(t)$ as

![Figure 4.1–6](image_url)

(a) Bandpass system; (b) lowpass model.
4.1 Bandpass Signals and Systems

\[y_i(t) = 2 \text{Re} \left[y_{ip}(t) \right] \quad y_q(t) = 2 \text{Im} \left[y_{ip}(t) \right] \quad \text{(15)} \]
\[A_i(t) = 2 |y_{ip}(t)| \quad \phi_i(t) = \text{arg} \left[y_{ip}(t) \right] \]

which follow from Eq. (10). The example below illustrates an important application of these techniques.

Carrier and Envelope Delay

Consider a bandpass system having constant amplitude ratio but nonlinear phase shift \(\theta(f) \) over its passband. Thus,

\[H_{bp}(f) = K e^{j\theta(f)} \quad f_c < |f| < f_u \]

and

\[H_{lp}(f) = K e^{j\theta(f+f_c)} u(f+f_c) \quad f_c - f < f < f_u - f_c \]

as sketched in Fig. 4.1–7. Assuming the phase nonlinearities are relatively smooth, we can write the approximation

\[\theta(f + f_c) = -2\pi(t_0 f_c + t_1 f) \]

where

\[t_0 \triangleq -\frac{\theta(f_c)}{2\pi f_c} \quad t_1 \triangleq -\frac{1}{2\pi} \left. \frac{d\theta(f)}{df} \right|_{f=f_c} \quad \text{(16)} \]

This approximation comes from the first two terms of the Taylor series expansion of \(\theta(f + f_c) \).

To interpret the parameters \(t_0 \) and \(t_1 \), let the input signal have zero phase so that \(x_{bp}(t) = A_x(t) \cos \omega_c t \) and \(x_{lp}(t) = \frac{1}{2} A_x(t) \). If the input spectrum \(X_{bp}(f) \) falls entirely within the system’s passband, then, from Eq. (14),

EXAMPLE 4.1–2

\[\theta(f + f_c) = -2\pi(t_0 f_c + t_1 f) \]

Figure 4.1–7 (a) Bandpass transfer function; (b) lowpass equivalent.
Recalling the time-delay theorem, we see that the second term corresponds to \(x_{\text{cp}}(t) \) delayed by \(t_i \). Hence,

\[
y_{\text{cp}}(t) = K e^{-j\omega t_i} x_{\text{cp}}(t - t_i) = K e^{-j\omega t_i} \frac{1}{2} A(t - t_i)
\]

and Eq. (12) yields the bandpass output

\[
y_{\text{bp}}(t) = KA(t - t_i) \cos \omega(t - t_i)
\]

Based on this result, we conclude that \(t_0 \) is the \textbf{carrier delay} while \(t_1 \) is the \textbf{envelope delay} of the system. And since \(t_1 \) is independent of frequency, at least to the extent of our approximation for \(\theta(f + f_c) \), the envelope has not suffered delay distortion. Envelope delay is also called the \textbf{group delay}.

We’ll later describe \textbf{multiplexing} systems in which several bandpass signals at different carrier frequencies are transmitted over a single channel. Plots of \(\frac{d\theta}{df} \) versus \(f \) are used in this context to evaluate the channel’s delay characteristics. If the curve is not reasonably flat over a proposed band, phase equalization may be required to prevent excessive envelope distortion.

EXERCISE 4.1–2

Suppose a bandpass system has zero phase shift but \(|H_{\text{bp}}(f)| = K_0 + (K_0/f_c) (f - f_c) \) for \(f_c < f < f_u \), where \(K_0 > (K_0/f_c)(f_c - f_u) \). Sketch \(H_{\text{cp}}(f) \) taking \(f_c < f_c \) and \(f_u > f_c \). Now show that if \(x_{\text{bp}}(t) = A_0(t) \cos \omega_0 t \) then the quadrature components of \(y_{\text{bp}}(t) \) are

\[
y(t) = K_0 A_0(t) \quad y_0(t) = -\frac{K_1}{2\pi f_c} \frac{dA_0(t)}{dt}
\]

provided that \(x_{\text{bp}}(f) \) falls entirely within the bandpass of the system.

The simplest bandpass system is the parallel resonant or tuned circuit represented by Fig. 4.1–8a. The voltage transfer function plotted in Fig. 4.1–8b can be written as

\[
H(f) = \frac{1}{1 + jQ \left(\frac{f}{f_0} - \frac{f_0}{f} \right)}
\]

in which the resonant frequency \(f_0 \) and quality factor \(Q \) are related to the element values by

\[
f_0 = \frac{1}{2\pi \sqrt{LC}} \quad Q = R \sqrt{\frac{C}{L}}
\]
4.1 Bandpass Signals and Systems

The 3 dB bandwidth between the lower and upper cutoff frequencies is

\[B = f_u - f_l = \frac{f_0}{Q} \] \hspace{1cm} (17b)

Since practical tuned circuits usually have $10 < Q < 100$, the 3 dB bandwidth falls between 1 and 10 percent of the center-frequency value.

A complete bandpass system consists of the transmission channel plus tuned amplifiers and coupling devices connected at each end. Hence, the overall frequency response has a more complicated shape than that of a simple tuned circuit. Nonetheless, various physical effects result in a loose but significant connection between the system’s bandwidth and the carrier frequency f_c similar to Eq. (17b).

For instance, the antennas in a radio system produce considerable distortion unless the frequency range is small compared to f_c. Moreover, designing a reasonably distortionless bandpass amplifier turns out to be quite difficult if B is either very large or very small compared to f_c. As a rough rule of thumb, the fractional bandwidth B/f_c should be kept within the range

\[0.01 < \frac{B}{f_c} < 0.1 \] \hspace{1cm} (18)

Otherwise, the signal distortion may be beyond the scope of practical equalizers.

From Eq. (18) we see that

Large bandwidths require high carrier frequencies.

This observation is underscored by Table 4.1–1, which lists selected carrier frequencies and the corresponding nominal bandwidth $B \approx 0.02f_c$ for different frequency bands. Larger bandwidths can be achieved, of course, but at substantially greater
cost. As a further consequence of Eq. (18), the terms bandpass and narrowband are virtually synonymous in signal transmission.

Table 4.1–1

<table>
<thead>
<tr>
<th>Frequency Band</th>
<th>Carrier Frequency</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longwave radio</td>
<td>100 kHz</td>
<td>2 kHz</td>
</tr>
<tr>
<td>Shortwave radio</td>
<td>5 MHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>VHF</td>
<td>100 MHz</td>
<td>2 MHz</td>
</tr>
<tr>
<td>Microwave</td>
<td>5 GHz</td>
<td>100 MHz</td>
</tr>
<tr>
<td>Millimeterwave</td>
<td>100 GHz</td>
<td>2 GHz</td>
</tr>
<tr>
<td>Optical</td>
<td>5×10^{14} Hz</td>
<td>10^{13} Hz</td>
</tr>
</tbody>
</table>

EXAMPLE 4.1–3

Bandpass Pulse Transmission

We found in Sect. 3.4 that transmitting a pulse of duration τ requires a lowpass bandwidth $B \geq 1/2\tau$. We also found in Example 2.3–2 that frequency translation converts a pulse to a bandpass waveform and doubles its spectral width. Putting these two observations together, we conclude that bandpass pulse transmission requires

$$B \geq 1/\tau$$

Since Eq. (18) imposes the additional constraint $0.1f_c > B$, the carrier frequency must satisfy

$$f_c > 10/\tau$$

These relations have long served as useful guidelines in radar work and related fields. To illustrate, if $\tau = 1 \mu s$ then bandpass transmission requires $B \geq 1$ MHz and $f_c > 10$ MHz.

Bandwidth

At this point it is useful to provide a more quantitative and practical description of the bandwidth of bandpass signals particularly because bandwidth often is mentioned in the literature and yet loosely specified. This is often the case when we specify that some modulation type has a given transmission bandwidth, B_T. Unfortunately in real systems, there isn’t just one definition of bandwidth. Before we tackle this subject, let’s present a problem that could be encountered by an FM broadcast radio engineer. As you might know, the FCC assigns an FM broadcast station a particular carrier frequency between 88.1 to 107.9 MHz, with a transmission bandwidth B_T of 200 kHz; that’s why the digital frequency readout in your FM car radio dial generally displays frequencies only in odd 200 kHz increments (e.g., 95.3, 95.5, . . . etc.). The FM station is required to limit its emissions to within this 200 kHz bandpass. But does this mean that the station is not allowed to radiate any energy outside the 200 kHz bandwidth?
Of course not, since anything that is time limited will have unlimited bandwidth, and there is no such thing as an ideal BPF. And as you will see in Chapter 5, formulas for FM bandwidth are only approximations. However, the FCC could say that 99% of the radiated energy has to be confined to the 200 kHz slot, or that the power level outside the bandwidth must be at least 50 dB below the maximum level transmitted. The FCC website with the relevant Code of Federal Regulations (CFR) that pertain to bandwidth is at http://access.gpo.gov/nara/cfr/waisidx_07/47cfr2_07.html (47 CFR 2.202). Let’s consider the following definitions of bandwidth:

1. **Absolute bandwidth.** This is where 100% of the energy is confined between some frequency range of \(f_a \rightarrow f_b \). We can speak of absolute bandwidth if we have ideal filters and unlimited time signals.

2. **3 dB bandwidth.** This is also called the half-power bandwidth and is the frequency(s) where the signal power starts to decrease by 3 dB \((\frac{1}{2}) \). This is shown in Fig. 4.1–8.

3. **Noise equivalent bandwidth.** This is described in Sect. 9.3.

4. **Null-to-null bandwidth.** Frequency spacing between a signal spectrum’s first set of zero crossings. For example, in the triangle pulse of Fig. 2.3–4, the null-to-null bandwidth is \(\frac{\lambda}{2} \).

5. **Occupied bandwidth.** This is an FCC definition, which states, “The frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission” (47 CFR 2.202 at http://access.gpo.gov/nara/cfr/waisidx_07/47cfr2_07.html). In other words, 99% of the energy is contained in the signal’s bandwidth.

6. **Relative power spectrum bandwidth.** This is where the level of power outside the bandwidth limits is reduced to some value relative to its maximum level. This is usually specified in negative decibels (dB). For example, consider a broadcast FM signal with a maximum carrier power of 1000 watts and relative power spectrum bandwidth of −40 dB (i.e., 1/10,000). Thus we would expect the station’s power emission to not exceed 0.1 W outside of \(f_c \pm 100 \text{ kHz} \).

In subsequent sections of this chapter and book, there may be a specific formula for a modulated signal’s \(B_T \), but keep in mind that this value is based on several assumptions and is relative to other modulation types.

4.2 DOUBLE-SIDEBAND AMPLITUDE MODULATION

There are two types of double-sideband amplitude modulation: standard amplitude modulation (AM) and suppressed-carrier double-sideband modulation (DSB). We’ll examine both types and show that the minor theoretical difference between them has major repercussions in practical applications.

AM Signals and Spectra

The unique property of AM is that the envelope of the modulated carrier has the same shape as the message. If \(A_c \) denotes the unmodulated carrier amplitude, modulation by \(x(t) \) produces the AM signal
where μ is a positive constant called the **modulation index**. The signal's envelope is then

$$A(t) = A_c[1 + \mu x(t)]$$ \hspace{1cm} (2)

Since $x_c(t)$ has no time-varying phase, its in-phase and quadrature components are

$$x_c(t) = A(t) \quad x_{\phi}(t) = 0$$

as obtained from Eqs. (5) and (6), Sect. 4.1, with $\phi(t) = 0$. Actually, we should include a constant carrier phase shift to emphasize that the carrier and message come from independent and unsynchronized sources. However, putting a constant phase in Eq. (2) increases the notational complexity without adding to the physical understanding.

Figure 4.2–1 shows part of a typical message and the resulting AM signal with two values of μ. The envelope clearly reproduces the shape of $x(t)$ if

$$f_c \gg W \quad \text{and} \quad \mu \leq 1$$ \hspace{1cm} (3)

When these conditions are satisfied, the message $x(t)$ is easily extracted from $x_c(t)$ by use of a simple **envelope detector** whose circuitry will be described in Sect. 4.5.

The condition $f_c \gg W$ ensures that the carrier oscillates rapidly compared to the time variation of $x(t)$; otherwise, an envelope could not be visualized. The condition $\mu \leq 1$ ensures that $A_c[1 + \mu x(t)]$ does not go negative. With 100 percent modulation ($\mu = 1$), the envelope varies between $A_{\min} = 0$ and $A_{\max} = 2A_c$. **Overmodulation** ($\mu > 1$), causes **phase reversals** and **envelope distortion** illustrated by Fig. 4.2–1c.

Going to the frequency domain, Fourier transformation of Eq. (2) yields

$$X_c(f) = \frac{1}{2}A_c \delta(f - f_c) + \frac{\mu}{2}A_c X(f - f_c) \quad f > 0$$ \hspace{1cm} (4)

where we've written out only the positive-frequency half of $X_c(f)$. The negative-frequency half will be the hermitian image of Eq. (4) since $x_c(t)$ is a real bandpass signal. Both halves of $X_c(f)$ are sketched in Fig. 4.2–2 with $X(f)$ from Fig. 4.1–1. The AM spectrum consists of carrier-frequency impulses and **symmetrical sidebands** centered at $\pm f_c$. The presence of **upper sidebands** and **lower sidebands** accounts for the name **double-sideband** amplitude modulation. It also accounts for the AM **transmission bandwidth**

$$B_T = 2W$$ \hspace{1cm} (5)

Note that AM requires twice the bandwidth needed to transmit $x(t)$ at baseband without modulation.
4.2 Double-sideband Amplitude Modulation

Figure 4.2–1 AM waveforms: (a) message; (b) AM wave with $\mu < 1$; (c) AM wave with $\mu > 1$.

Figure 4.2–2 AM spectrum.

Transmission bandwidth is an important consideration for the comparison of modulation systems. Another important consideration is the average transmitted power

$$S_T \triangleq \langle x_c^2(t) \rangle$$

Upon expanding $x_c^2(t)$ from Eq. (2), we have

$$S_T = \frac{1}{2}A_c^2(1 + 2\mu x(t) + \mu^2x^2(t)) + \frac{1}{2}A_c^2(\mu^2 + \mu x(t))^2 \cos 2\omega_c t)$$
whose second term averages to zero under the condition \(f_c \gg W \). Thus, if \(\langle x(t) \rangle = 0 \) and \(\langle x^2(t) \rangle = S_x \) then

\[
S_T = \frac{1}{2} A_c^2 (1 + \mu^2 S_x) \quad (6)
\]

The assumption that the message has zero average value (or no dc component) anticipates the conclusion from Sect. 4.5 that ordinary AM is not practical for transmitting signals with significant low-frequency content.

We bring out the interpretation of Eq. (6) by putting it in the form

\[
S_T = P_c + 2P_{sb}
\]

where

\[
P_c = \frac{1}{2} A_c^2 \quad P_{sb} = \frac{1}{4} A_c^2 \mu^2 S_x = \frac{1}{2} \mu^2 S_x P_c \quad (7)
\]

The term \(P_c \) represents the **unmodulated carrier power**, since \(S_T = P_c \) when \(\mu = 0 \); the term \(P_{sb} \) represents the **power per sideband** since, when \(\mu \neq 0 \), \(S_T \) consists of the power in the carrier plus two symmetric sidebands. The modulation constraint \(|\mu x(t)| \leq 1 \) requires that \(\mu^2 S_x \leq 1 \), so \(P_{sb} \leq \frac{1}{2} P_c \) and

\[
P_c = S_T - 2P_{sb} \geq \frac{1}{2} S_T \quad P_{sb} \leq \frac{1}{4} S_T \quad (8)
\]

Consequently, at least 50 percent (and often close to 2/3) of the total transmitted power resides in a carrier term that’s independent of \(x(t) \) and thus conveys no message information.

DSB Signals and Spectra

The “wasted” carrier power in amplitude modulation can be eliminated by setting \(\mu = 1 \) and suppressing the unmodulated carrier-frequency component. The resulting modulated wave becomes

\[
x_c(t) = A_c x(t) \cos \omega_c t \quad (9)
\]

which is called **double-sideband-suppressed-carrier modulation**—or DSB for short. (The abbreviations DSB–SC and DSSC are also used.) The transform of Eq. (9) is simply

\[
X_c(f) = \frac{1}{2} A_c X(f - f_c) \quad f > 0
\]

and the DSB spectrum looks like an AM spectrum without the unmodulated carrier impulses. The transmission bandwidth thus remains unchanged at \(B_T = 2W \).

Although DSB and AM are quite similar in the frequency domain, the time-domain picture is another story. As illustrated by Fig. 4.2–3 the DSB envelope and phase are

\[
A(t) = A_c |x(t)| \quad \phi(t) = \begin{cases} 0 & x(t) > 0 \\ \pm 180^\circ & x(t) < 0 \end{cases} \quad (10)
\]
The envelope here takes the shape of $|x(t)|$, rather than $x(t)$, and the modulated wave undergoes a phase reversal whenever $x(t)$ crosses zero. Full recovery of the message requires knowledge of these phase reversals, and could not be accomplished by an envelope detector. Suppressed-carrier DSB thus involves more than just “amplitude” modulation and, as we’ll see in Sect. 4.5, calls for a more sophisticated demodulation process.

However, carrier suppression does put all of the average transmitted power into the information-bearing sidebands. Thus

$$S_T = 2P_{sb} = \frac{1}{2}A_c^2S_x$$

which holds even when $x(t)$ includes a DC component. From Eqs. (11) and (8) we see that DSB makes better use of the total average power available from a given transmitter. Practical transmitters also impose a limit on the peak envelope power A_{max}^2. We’ll take account of this peak-power limitation by examining the ratio P_{sb}/A_{max}^2. Under maximum modulation conditions. Using Eq. (11) with $A_{max} = A_c$ for DSB and using Eq. (7) with $A_{max} = 2A_c$ for AM, we find that

$$P_{sb}/A_{max}^2 = \begin{cases} S_x/4 & \text{DSB} \\ S_x/16 & \text{AM with } \mu = 1 \end{cases}$$

Hence, if A_{max} is fixed and other factors are equal, a DSB transmitter produces four times the sideband power of an AM transmitter.

The foregoing considerations suggest a trade-off between power efficiency and demodulation methods.

DSB conserves power but requires complicated demodulation circuitry, whereas AM requires increased power to permit simple envelope detection.
EXAMPLE 4.2–1 Consider a radio transmitter rated for $S_T \leq 3 \text{ kW}$ and $A_{\text{max}}^2 \leq 8 \text{ kW}$. Let the modulating signal be a tone with $A_m = 1$ so $S_x = A_m^2/2 = 1/2$. If the modulation is DSB, the maximum possible power per sideband equals the lesser of the two values determined from Eqs. (11) and (12). Thus

$$P_{sb} = \frac{1}{2}S_T \leq 1.5 \text{ kW} \quad P_{sb} = \frac{1}{8}A_{\text{max}}^2 \leq 1.0 \text{ kW}$$

which gives the upper limit $P_{sb} = 1.0 \text{ kW}$.

If the modulation is AM with $\mu = 1$, then Eq. (12) requires that $P_{sb} = A_{\text{max}}^2/32 \leq 0.25 \text{ kW}$. To check on the average-power limitation, we note from Eq. (7) that $P_{sb} = P_c/4$ so $S_T = P_c + 2P_{sb} = 6P_{sb}$ and $P_{sb} = S_T/6 \leq 0.5 \text{ kW}$. Hence, the peak power limit again dominates and the maximum sideband power is $P_{sb} = 0.25 \text{ kW}$. Since transmission range is proportional to P_{sb}, the AM path length would be only 25 percent of the DSB path length with the same transmitter.

EXERCISE 4.2–1 Let the modulating signal be a square wave that switches periodically between $x(t) = +1$ and $x(t) = -1$. Sketch $x_c(t)$ when the modulation is AM with $\mu = 0.5$, AM with $\mu = 1$, and DSB. Indicate the envelopes by dashed lines.

EXERCISE 4.2–2 Suppose a voice signal has $|x(t)|_{\text{max}} = 1$ and $S_x = 1/5$. Calculate the values of S_T and A_{max}^2 needed to get $P_{sb} = 10 \text{ W}$ for DSB and for AM with $\mu = 1$.

Tone Modulation and Phasor Analysis

Setting $x(t) = A_m \cos \omega_m t$ in Eq. (9) gives the tone-modulated DSB waveform

$$x_c(t) = A_c A_m \cos \omega_m t \cos \omega_c t$$

$$x_c(t) = \frac{A_c A_m}{2} \cos (\omega_c - \omega_m)t + \frac{A_c A_m}{2} \cos (\omega_c + \omega_m)t$$

where we have used the trigonometric expansion for the product of cosines. Similar expansion of Eq. (2) yields the tone-modulated AM wave

$$x_c(t) = A_c \cos \omega_c t + \frac{A_c \mu A_m}{2} \cos (\omega_c - \omega_m)t + \frac{A_c \mu A_m}{2} \cos (\omega_c + \omega_m)t$$

Figure 4.2–4 shows the positive-frequency line spectra obtained from Eqs. (13a) and (13b).

It follows from Fig. 4.2–4 that tone-modulated DSB or AM can be viewed as a sum of ordinary phasors, one for each spectral line. This viewpoint prompts the use...
of phasor analysis to find the envelope-and-phase or quadrature-carrier terms. Pha-
sor analysis is especially helpful for studying the effects of transmission distortion,
interference, and so on, as demonstrated in the example below.

AM and Phasor Analysis

Let’s take the case of tone-modulated AM with $\mu A_m = \frac{2}{3}$ for convenience. The pha-
sor diagram is constructed in Fig. 4.2–5a by adding the sideband phasors to the tip
of the horizontal carrier phasor. Since the carrier frequency is f_c, the sideband pha-
sors at $f_c \pm f_m$ rotate with speeds of $\pm f_m$ relative to the carrier phasor. The resultant
of the sideband phasors is seen to be collinear with the carrier, and the phasor sum
equals the envelope $A_c(1 + \frac{2}{3} \cos \omega_m t)$.

But suppose a transmission channel completely removes the lower sideband, so
we get the diagram in Fig. 4.2–5b. Now the envelope becomes

$$A(t) = \left[(A_c + \frac{1}{3}A_c \cos \omega_m t)^2 + (\frac{1}{3}A_c \sin \omega_m t)^2 \right]^{1/2}$$

$$= A_c \sqrt{\frac{10}{9} + \frac{2}{3} \cos \omega_m t},$$

from which the envelope distortion can be determined. Also note that the transmis-
sion amplitude distortion has produced a time-varying phase $\phi(t)$.

EXAMPLE 4.2–2

Draw the phasor diagram for tone-modulated DSB with $A_m = 1$. Then find $A(t)$ and
$\phi(t)$ when the amplitude of the lower sideband is cut in half.

EXERCISE 4.2–3

4.3 MODULATORS AND TRANSMITTERS

The sidebands of an AM or DSB signal contain new frequencies that were not present
in the carrier or message. The modulator must therefore be a time-varying or nonlinear system, because LTI systems never produce new frequency components. This section describes the operating principles of modulators and transmitters that
employ product, square-law, or switching devices. Detailed circuit designs are given in the references cited in the Supplementary Reading.

Product Modulators

Figure 4.3–1a is the block diagram of a **product modulator** for AM based on the equation $x_c(t) = A_c \cos \omega_c t + \mu x(t) A_c \cos \omega_c t$. The schematic diagram in Fig. 4.3–1b implements this modulator with an analog multiplier and an op-amp summer. Of course, a DSB product modulator needs only the multiplier to produce $x_c(t) = x(t) A_c \cos \omega_c t$. In either case, the crucial operation is multiplying two analog signals.

Analog multiplication can be carried out electronically in a number of different ways. One popular integrated-circuit design is the **variable transconductance multiplier** illustrated by Fig. 4.3–2. Here, input voltage v_1 is applied to a differential amplifier whose gain depends on the transconductance of the transistors which, in turn, varies with the total emitter current. Input v_2 controls the emitter current by means of a voltage-to-current converter, so the differential output equals $K v_1 v_2$. Other circuits achieve multiplication directly with **Hall-effect** devices, or indirectly with **log amplifiers** and **antilog amplifiers** arranged to produce antilog ($\log v_1 + \log v_2 = v_1 v_2$). However, most analog multipliers are limited to low power levels and relatively low frequencies.

Square-Law and Balanced Modulators

Signal multiplication at higher frequencies can be accomplished by the **square-law modulator** diagrammed in Fig. 4.3–3a. The circuit realization in Fig. 4.3–3b uses a
4.3 Modulators and Transmitters

We assume the nonlinear element approximates the square-law transfer curve

Thus, with

Thus, with

The last term is the desired AM wave, with $A_c = a_1$ and $\mu = 2a_2/a_1$, provided it can be separated from the rest.
As to the feasibility of separation, Fig. 4.3–4 shows the spectrum \(V_{\text{out}}(f) = \mathcal{F}[v_{\text{out}}(t)] \) taking \(X(f) \) as in Fig. 4.1–1. Note that the \(x^2(t) \) term in Eq. (1) becomes \(X \ast X(f) \), which is bandlimited in \(2W \). Therefore, if \(f_c > 3W \), there is no spectral overlapping and the required separation can be accomplished by a bandpass filter of bandwidth \(B_T = 2W \) centered at \(f_c \). Also note that the carrier-frequency impulse disappears and we have a DSB wave if \(a_1 = 0 \)—corresponding to the perfect square-law curve \(v_{\text{out}} = a_2 v^2_{\text{in}} \).

Unfortunately, perfect square-law devices are rare, so high-frequency DSB is obtained in practice using two AM modulators arranged in a balanced configuration to cancel out the carrier. Figure 4.3–5 shows such a balanced modulator in block-diagram form. Assuming the AM modulators are identical, save for the reversed sign of one input, the outputs are \(A_c [1 + \frac{1}{2} x(t)] \cos \omega_c t \) and \(A_c [1 - \frac{1}{2} x(t)] \cos \omega_c t \). Subtracting one from the other yields \(x_c(t) = x(t) A_c \cos \omega_c t \), as required. Hence, a balanced modulator is a multiplier. You should observe that if the message has a dc term, that component is not canceled out in the modulator, even though it appears at the carrier frequency in the modulated wave.

Another modulator that is commonly used for generating DSB signals is the ring modulator shown in Fig. 4.3–6. A square-wave carrier \(c(t) \) with frequency \(f_c \) causes the diodes to switch on and off. When \(c(t) > 0 \), the top and bottom diodes are switched on, while the two inner diodes in the cross-arm section are off. In this case, \(v_{\text{out}} = x(t) \). Conversely, when \(c(t) < 0 \), the inner diodes are switched on and the top and bottom diodes are off, resulting in \(v_{\text{out}} = -x(t) \). Functionally, the ring
modulator can be thought of as multiplying \(x(t) \) and \(c(t) \). However because \(c(t) \) is a periodic function, it can be represented by a Fourier series expansion. Thus

\[
 v_{\text{out}}(t) = \frac{4}{\pi} x(t) \cos \omega_c t - \frac{4}{3\pi} x(t) \cos 3\omega_c t + \frac{4}{5\pi} x(t) \cos 5\omega_c t - \cdots
\]

Observe that the DSB signal can be obtained by passing \(v_{\text{out}}(t) \) through a bandpass filter having bandwidth 2\(W \) centered at \(f_c \). This modulator is often referred to as a **double-balanced** modulator since it is balanced with respect to both \(x(t) \) and \(c(t) \).

A balanced modulator using switching circuits is discussed in Example 6.1–1 regarding **bipolar choppers**. Other circuit realizations can be found in the literature.
EXERCISE 4.3–1
Suppose the AM modulators in Fig. 4.3–5 are constructed with identical nonlinear elements having $v_{out} = a_1 v_{in} + a_2 v_{in}^2 + a_3 v_{in}^3$. Take $v_{in} = \pm x(t) + A_c \cos \omega_c t$ and show that the AM signals have second-harmonic distortion but, nonetheless, the final output is undistorted DSB.

Switching Modulators
In view of the heavy filtering required, square-law modulators are used primarily for low-level modulation, i.e., at power levels lower than the transmitted value. Substantial linear amplification is then necessary to bring the power up to S_T. But RF power amplifiers of the required linearity are not without problems of their own, and it often is better to employ high-level modulation if S_T is to be large.

Efficient high-level modulators are arranged so that undesired modulation products never fully develop and need not be filtered out. This is usually accomplished with the aid of a switching device, whose detailed analysis is postponed to Chap. 6. However, the basic operation of the supply-voltage modulated class C amplifier is readily understood from its idealized equivalent circuit and waveforms in Fig. 4.3–7.

The active device, typically a transistor, serves as a switch driven at the carrier frequency, closing briefly every $1/f_c$ seconds. The RLC load, called a tank circuit, is tuned to resonate at f_c, so the switching action causes the tank circuit to “ring” sinusoidally. The steady-state load voltage in absence of modulation is then $v(t) = V \cos \omega_c t$. Adding the message to the supply voltage, say via transformer,
4.4 Suppressed-sideband Amplitude Modulation

Conventional amplitude modulation is wasteful of both transmission power and bandwidth. Suppressing the carrier reduces the transmission power. Suppressing one sideband, in whole or part, reduces transmission bandwidth and leads to single-sideband modulation (SSB) or vestigial-sideband modulation (VSB) discussed in this section.

SSB Signals and Spectra

The upper and lower sidebands of DSB are uniquely related by symmetry about the carrier frequency, so either one contains all the message information. Hence, transmission bandwidth can be cut in half if one sideband is suppressed along with the carrier.

Figure 4.4–1a presents a conceptual approach to single-sideband modulation. Here, the DSB signal from a balanced modulator is applied to a sideband filter that suppresses one sideband. If the filter removes the lower sideband, the output spectrum \(X_c(f) \) consists of the upper sideband alone, as illustrated by Fig. 4.4–1b. We’ll label this a USSB spectrum to distinguish it from the LSSB spectrum containing...
just the lower sideband, as illustrated by Fig. 4.4–1c. The resulting signal in either case has

\[B_T = W \quad S_T = P_{sb} = \frac{1}{2} A_c^2 S_x \quad (1) \]

which follow directly from our DSB results.

Although SSB is readily visualized in the frequency domain, the time-domain description is not immediately obvious—save for the special case of tone modulation. By referring back to the DSB line spectrum in Fig. 4.2–4a, we see that removing one sideband line leaves only the other line. Hence,

\[x_c(t) = \frac{1}{2} A_c A_m \cos (\omega_c \pm \omega_m) t \quad (2) \]

in which the upper sign stands for USSB and the lower for LSSB, a convention employed hereafter. Note that the frequency of a tone-modulated SSB wave is offset from \(f_c \) by \(\pm f_m \) and the envelope is a constant proportional to \(A_m \). Obviously, envelope detection won’t work for SSB.

To analyze SSB with an arbitrary message \(x(t) \), we’ll draw upon the fact that the sideband filter in Fig. 4.4–1a is a bandpass system with a bandpass DSB input.
4.4 Suppressed-sideband Amplitude Modulation

\[x_{bp}(t) = A_c x(t) \cos \omega_c t \] and a bandpass SSB output \(y_{bp}(t) = x_c(t) \). Hence, we’ll find \(x_c(t) \) by applying the equivalent lowpass method from Sect. 4.1. Since \(x_{bp}(t) \) has no quadrature component, the lowpass equivalent input is simply

\[x_{lp}(t) = \frac{1}{2} A_c x(t) \quad X_{lp}(f) = \frac{1}{2} A_c X(f) \]

The bandpass filter transfer function for USSB is plotted in Fig. 4.4–2a along with the equivalent lowpass function

\[H_{bp}(f) = H_{lp}(f + f_c)u(f + f_c) = u(f) - u(f - W) \]

The corresponding transfer functions for LSSB are plotted in Fig. 4.4–2b, where

\[H_{lp}(f) = u(f + W) - u(f) \]

Both lowpass transfer functions can be represented by

\[H_{lp}(f) = \frac{1}{2}(1 \pm \text{sgn } f) \quad |f| \leq W \quad (3) \]

You should confirm for yourself that this rather strange expression does include both parts of Fig. 4.4–2.

Multiplying \(H_{lp}(f) \) and \(X_{lp}(f) \) yields the lowpass equivalent spectrum for either USSB or LSSB, namely

\[Y_{lp}(f) = \frac{1}{2} A_c (1 \pm \text{sgn } f) X(f) = \frac{1}{2} A_c [X(f) \pm \text{sgn } f X(f)] \]

Now recall that \((-j \text{sgn } f)X(f) = \mathcal{F}[\hat{x}(t)]\), where \(\hat{x}(t) \) is the Hilbert transform of \(x(t) \) defined in Sect. 3.5. Therefore, \(\mathcal{F}^{-1}[(\text{sgn } f)X(f)] = j\hat{x}(t) \) and

\[y_{lp}(t) = \frac{1}{2} A_c [x(t) \pm j\hat{x}(t)] \]
Finally, we perform the lowpass-to-bandpass transformation $x_c(t) = y_{bp}(t) = 2 \text{Re}[y_{cp}(t)e^{j\omega_c t}]$ to obtain

$$x_c(t) = \frac{1}{2} A_c [x(t) \cos \omega_c t + \hat{x}(t) \sin \omega_c t]$$ \hspace{1cm} (4)

This is our desired result for the SSB waveform in terms of an arbitrary message $x(t)$.

Closer examination reveals that Eq. (4) has the form of a quadrature-carrier expression. Hence, the in-phase and quadrature components are

$$x_i(t) = \frac{1}{2} A_c x(t) \quad x_q(t) = \pm \frac{1}{2} A_c \hat{x}(t)$$

while the SSB envelope is

$$A(t) = \frac{1}{2} A_c \sqrt{x^2(t) + \hat{x}^2(t)}$$ \hspace{1cm} (5)

The complexity of Eqs. (4) and (5) makes it a difficult task to sketch SSB waveforms or to determine the peak envelope power. Instead, we must infer time-domain properties from simplified cases such as tone modulation or pulse modulation.

EXAMPLE 4.4–1
SSB with Pulse Modulation

Whenever the SSB modulating signal has abrupt transitions, the Hilbert transform $\hat{x}(t)$ contains sharp peaks. These peaks then appear in the envelope $A(t)$, giving rise to the effect known as envelope horns. To demonstrate this effect, let’s take the rectangular pulse $x(t) = u(t) - u(t - \tau)$ so we can use $\hat{x}(t)$ found in Example 3.5–2. The resulting SSB envelope plotted in Fig. 4.4–3 exhibits infinite peaks at $t = 0$ and $t = \tau$, the instants when $x(t)$ has stepwise discontinuities. Clearly, a transmitter couldn’t handle the peak envelope power needed for these infinite horns. Also note the smears in $A(t)$ before and after each peak.

We thus conclude that

SSB is not appropriate for pulse transmission, digital data, or similar applications, and more suitable modulating signals (such as audio waveforms) should still be lowpass filtered before modulation in order to smooth out any abrupt transitions that might cause excessive horns or smearing.

EXERCISE 4.4–1

Show that Eqs. (4) and (5) agree with Eq. (2) when $x(t) = A_m \cos \omega_m t$ so $\hat{x}(t) = A_m \sin \omega_m t$

SSB Generation

Our conceptual SSB generation system (Fig. 4.4–1a) calls for the ideal filter functions in Fig. 4.4–2. But a perfect cutoff at $f = f_c$ cannot be synthesized, so a real
4.4 Suppressed-sideband Amplitude Modulation

The sideband filter will either pass a portion of the undesired sideband or attenuate a portion of the desired sideband. (The former is tantamount to vestigial-sideband modulation.) Fortunately, many modulating signals of practical interest have little or no low-frequency content, their spectra having “holes” at zero frequency as shown in Fig. 4.4–4a. Such spectra are typical of audio signals (voice and music), for example. After translation by the balanced modulator, the zero-frequency hole appears as a vacant space centered about the carrier frequency into which the transition region of a practical sideband filter can be fitted. Figure 4.4–4b illustrates this point.

As a rule of thumb, the width 2β of the transition region cannot be much smaller than 1 percent of the nominal cutoff frequency, which imposes the limit $f_{co} < 200\beta$. Since 2β is constrained by the width of the spectral hole and f_{co} should equal f_c, it may not be possible to obtain a sufficiently high carrier frequency with a given message spectrum. For these cases the modulation process can be carried out in two (or more) steps using the system in Fig. 4.4–5 (see Prob. 4.4–5).
Another method for SSB generation is based on writing Eq. (4) in the form

\[x_c(t) = \frac{A_c}{2} x(t) \cos \omega_c t + \frac{A_c}{2} \hat{x}(t) \cos (\omega_c t - 90^\circ) \]

This expression suggests that an SSB signal consists of two DSB waveforms with quadrature carriers and modulating signals \(x(t) \) and \(\hat{x}(t) \). Figure 4.4–6 diagrams a system that implements Eq. (6) and produces either USSB or LSSB, depending upon the sign at the summer. This system, known as the phase-shift method, bypasses the need for sideband filters. Instead, the DSB sidebands are phased such that they cancel out on one side of \(f_c \) and add on the other side to create a single-sideband output.

However, the quadrature phase shifter \(H_0(f) \) is itself an unrealizable network that can only be approximated — usually with the help of additional but identical phase networks in both branches of Fig. 4.4–6. Approximation imperfections generally cause low-frequency signal distortion, and the phase-shift system works best with message spectra of the type in Fig. 4.4–4a. A third method for SSB generation, Weaver’s method, which avoids both sideband filters and quadrature phase shifters is considered in Example 4.4–2.

EXAMPLE 4.4–2
Weaver’s SSB Modulator

Consider the modulator in Fig. 4.4–7 taking \(x(t) = \cos 2\pi f_m t \) with \(f_m < W \). Then \(x_c(t) = v_1 \pm v_2 \) where \(v_1 \) is the signal from the upper part of the loop and \(v_2 \) is from the lower part. Taking these separately, the input to the upper LPF is \(\cos 2\pi f_m t \cos 2\pi \frac{f}{2} t \). The output of LPF1 is multiplied by \(\cos 2\pi (f_c \pm \frac{W}{2}) t \),
resulting in

\[v_1 = \frac{1}{4} \left[\cos 2\pi \left(f_c \pm \frac{W}{2} - \frac{f_m}{2} \right) t + \cos 2\pi \left(f_c \pm \frac{W}{2} + \frac{f_m}{2} \right) t \right]. \]

The input to the lower LPF is \(\cos 2\pi f_m t \sin 2\pi \frac{W}{2} t \). The output of LPF2 is multiplied by \(\sin 2\pi (f_c \pm \frac{W}{2}) t \), resulting in

\[v_2 = \frac{1}{4} \left[\cos 2\pi \left(f_c \pm \frac{W}{2} - \frac{f_m}{2} \right) t - \cos 2\pi \left(f_c \pm \frac{W}{2} + \frac{f_m}{2} \right) t \right]. \]

Taking the upper signs, \(x_c(t) = 2 \times \frac{1}{4} \cos 2\pi (f_c + \frac{W}{2} - \frac{f_m}{2}) t = \frac{1}{2} \cos (\omega_c + \omega_m) t \), which corresponds to USSB. Similarly, we achieve LSSB by taking the lower signs, resulting in \(x_c(t) = \frac{1}{2} \cos (\omega_c - \omega_m) t \).

EXERCISE 4.4–2

Take \(x(t) = \cos \omega_m t \) in Fig. 4.4–6 and confirm the sideband cancellation by sketching line spectra at appropriate points.

VSB Signals and Spectra

Consider a modulating signal of very large bandwidth having significant low-frequency content. Principal examples are analog television video, facsimile, and high-speed data signals. Bandwidth conservation argues for the use of SSB, but practical SSB systems have poor low-frequency response. On the other hand, DSB works quite well for low message frequencies but the transmission bandwidth is twice that of SSB. Clearly, a compromise modulation scheme is desired; that compromise is VSB.

VSB is derived by filtering DSB (or AM) in such a fashion that one sideband is passed almost completely while just a trace, or vestige, of the other sideband is included. The key to VSB is the sideband filter, a typical transfer function being that of Fig. 4.4–8a. While the exact shape of the response is not crucial, it must have odd symmetry about the carrier frequency and a relative response of 1/2 at \(f_c \). Therefore, taking the upper sideband case, we have

\[
H(f) = u(f - f_c) - H_\beta(f - f_c) \quad f > 0 \tag{7a}
\]

where

\[
H_\beta(-f) = -H_\beta(f) \quad \text{and} \quad H_\beta(f) = 0 \quad |f| > \beta \tag{7b}
\]
The VSB filter is thus a practical sideband filter with transition width 2β. Because the width of the partial sideband is one-half the filter transition width, the transmission bandwidth is

$$B_T = W + \beta = W$$ \hspace{1cm} (8)

However, in some applications the vestigial filter symmetry is achieved primarily at the receiver, so the transmission bandwidth must be slightly larger than $W + \beta$.

When $\beta \ll W$, which is usually true, the VSB spectrum looks essentially like an SSB spectrum. The similarity also holds in the time domain, and a VSB waveform can be expressed as a modification of Eq. (4). Specifically,

$$x_q(t) = \frac{1}{2} A_c [x(t) \cos \omega_c t - x_d(t) \sin \omega_c t]$$ \hspace{1cm} (9a)

where $x_q(t)$ is the quadrature message component defined by

$$x_q(t) = \tilde{x}(t) + x_d(t)$$ \hspace{1cm} (9b)

with

$$x_d(t) = j 2 \int_{-\beta}^\beta H_p(f) X(f) e^{j\omega t} df$$ \hspace{1cm} (9c)
4.5 Frequency Conversion and Demodulation

If $\beta \ll W$, VSB approximates SSB and $x_\beta(t) = 0$; conversely, for large β, VSB approximates DSB and $\hat{x}(t) + x_\beta(t) = 0$. The transmitted power S_T is not easy to determine exactly, but is bounded by

$$\frac{1}{2}A_c^2S_x \leq S_T \leq \frac{1}{2}A_c^2S_x$$

depending on the vestige width β.

Finally, suppose an AM wave is applied to a vestigial sideband filter. This modulation scheme, termed VSB plus carrier (VSB + C), is used for television video transmission. The unsuppressed carrier allows for envelope detection, as in AM, while retaining the bandwidth conservation of suppressed sideband. Distortionless envelope modulation actually requires symmetric sidebands, but VSB + C can deliver a fair approximation.

To analyze the envelope of VSB + C, we incorporate a carrier term and modulation index μ in Eq. (9) which becomes

$$x_c(t) = A_c[1 + \mu x(t)] \cos \omega_c t - \mu x_q(t) \sin \omega_c t$$

(11)

The in-phase and quadrature components are then

$$x_{ci}(t) = A_c[1 + \mu x(t)] \quad x_{cq}(t) = A_c \mu x_q(t)$$

so the envelope is $A(t) = [x_{ci}^2(t) + x_{cq}^2(t)]^{1/2}$ or

$$A(t) = A_c[1 + \mu x(t)] \left[1 + \left(\frac{\mu x_q(t)}{1 + \mu x(t)} \right)^2 \right]^{1/2}$$

(12)

Hence, if μ is not too large and β not too small, then $|\mu x_q(t)| \ll 1$ and

$$A(t) \approx A_c[1 + \mu x(t)]$$

as desired. Empirical studies with typical signals are needed to find values for μ and β that provide a suitable compromise between the conflicting requirements of distortionless envelope modulation, power efficiency, and bandwidth conservation.

4.5 FREQUENCY CONVERSION AND DEMODULATION

Linear CW modulation—be it AM, DSB, SSB, or VSB—produces upward translation of the message spectrum. **Demodulation** therefore implies downward frequency translation in order to recover the message from the modulated wave. Demodulators that perform this operation fall into the two broad categories of **synchronous detectors** and **envelope detectors**.

Frequency translation, or **conversion**, is also used to shift a modulated signal to a new carrier frequency (up or down) for amplification or other processing. Thus,
translation is a fundamental concept in linear modulation systems and includes modulation and detection as special cases. Before examining detectors, we’ll look briefly at the general process of frequency conversion.

Frequency Conversion

Frequency conversion starts with multiplication by a sinusoid. Consider, for example, the DSB wave $x(t) \cos \omega_1 t$. Multiplying by $\cos \omega_2 t$, we get

$$x(t) \cos \omega_1 t \cos \omega_2 t = \frac{1}{2}x(t) \cos (\omega_1 + \omega_2) t + \frac{1}{2}x(t) \cos (\omega_1 - \omega_2) t$$ \hspace{1cm} (1)

The product consists of the sum and difference frequencies, $f_1 + f_2$ and $|f_1 - f_2|$, each modulated by $x(t)$. We write $|f_1 - f_2|$ for clarity, since $\cos (\omega_2 - \omega_1) t = \cos (\omega_1 - \omega_2) t$. Assuming $f_2 \neq f_1$, multiplication has translated the signal spectra to two new carrier frequencies. With appropriate filtering, the signal is up-converted or down-converted. Devices that carry out this operation are called frequency converters or mixers. The operation itself is termed heterodyning or mixing.

Figure 4.5–1 diagrams the essential components of a frequency converter. Implementation of the multiplier follows the same line as the modulator circuits discussed in Sect. 4.3. Converter applications include beat-frequency oscillators, regenerative frequency dividers, speech scramblers, and spectrum analyzers, in addition to their roles in transmitters and receivers.

EXAMPLE 4.5–1 Satellite Transponder

Figure 4.5–2 represents a simplified transponder in a satellite relay that provides two-way communication between two ground stations. Different carrier frequencies, 6 GHz and 4 GHz, are used on the uplink and downlink to prevent self-oscillation due to positive feedback from the transmitting side to the receiving side. A frequency converter translates the spectrum of the amplified uplink signal to the passband of the downlink amplifier.

EXERCISE 4.5–1 Sketch the spectrum of Eq. (1) for $f_2 < f_1$, $f_2 = f_1$, and $f_2 > f_1$, taking $X(f)$ as in Fig. 4.1–1.
Synchronous Detection

All types of linear modulation can be detected by the product demodulator of Fig. 4.5–3. The incoming signal is first multiplied with a locally generated sinusoid and then lowpass-filtered, the filter bandwidth being the same as the message bandwidth \(W \) or somewhat larger. It is assumed that the local oscillator (LO) is exactly synchronized with the carrier, in both phase and frequency, accounting for the name synchronous or coherent detection.

For purposes of analysis, we’ll write the input signal in the generalized form

\[
x_c(t) = [K_c + K_\mu x(t)] \cos \omega_c t - K_\mu x_q(t) \sin \omega_c t
\]

(2)

which can represent any type of linear modulation with proper identification of \(K_c, K_\mu \), and \(x_q(t) \)—i.e., take \(K_c = 0 \) for suppressed carrier, \(x_q(t) = 0 \) for double sideband, and so on. The filter input is thus the product

\[
x_c(t)A_{LO} \cos \omega_c t
\]

\[
= \frac{A_{LO}}{2} \{[K_c + K_\mu x(t)] + [K_c + K_\mu x(t)] \cos 2\omega_c t - K_\mu x_q(t) \sin 2\omega_c t\}
\]

Since \(f_c > W \), the double-frequency terms are rejected by the lowpass filter, leaving only the leading term

\[
y_d(t) = K_D [K_c + K_\mu x(t)]
\]

(3)

where \(K_D \) is the detection constant. The DC component \(K_D K_c \) corresponds to the translated carrier if present in the modulated wave. This can be removed from the
output by a blocking capacitor or transformer—which also removes any DC term in \(x(t) \) as well. With this minor qualification we can say that the message has been fully recovered from \(x_c(t) \).

Although perfectly correct, the above manipulations fail to bring out what goes on in the demodulation of VSB. This is best seen in the frequency domain with the message spectrum taken to be constant over \(W \) (Fig. 4.5–4a) so the modulated spectrum takes the form of Fig. 4.5–4b. The downward-translated spectrum at the filter input will then be as shown in Fig. 4.5–4c. Again, high-frequency terms are eliminated by filtering, while the down-converted sidebands overlap around zero frequency. Recalling the symmetry property of the vestigial filter, we find that the portion removed from the upper sideband is exactly restored by the corresponding vestige of the lower sideband, so \(X(f) \) has been reconstructed at the output and the detected signal is proportional to \(x(t) \).

Theoretically, product demodulation borders on the trivial; in practice, it can be rather tricky. The crux of the problem is synchronization—synchronizing an oscillator to a sinusoid that is not even present in the incoming signal if carrier is suppressed. To facilitate the matter, suppressed-carrier systems may have a small amount of carrier reinserted in \(x_c(t) \) at the transmitter. This pilot carrier is picked off at the receiver by a narrow bandpass filter, amplified, and used in place of an LO. The system, shown in Fig. 4.5–5, is called homodyne detection. (Actually, the amplified pilot more often serves to synchronize a separate oscillator rather than being used directly.)

A variety of other techniques are possible for synchronization, including phase-locked loops (to be covered in Sect. 7.3) or the use of highly stable, crystal-controlled oscillators at transmitter and receiver. Nonetheless, some degree of asynchronism must be expected in synchronous detectors. It is therefore important to investigate the effects of phase and frequency drift in various applications. This we’ll do for DSB and SSB in terms of tone modulation.
Let the local oscillator wave be \(\cos (\omega_c t + \omega' t + \phi') \), where \(\omega' \) and \(\phi' \) represent slowly drifting frequency and phase errors compared to the carrier. For double sideband with tone modulation, the detected signal becomes

\[
y_d(t) = K_0 \cos \omega_m t \cos (\omega' t + \phi')
\]

\[
y_d(t) = \begin{cases}
K_0 \left(\cos (\omega_m + \omega') t + \cos (\omega_m - \omega') t \right) & \phi' = 0 \\
K_0 \cos \omega_m t \cos \phi' & \omega' = 0
\end{cases}
\]

Similarly, for single sideband with \(x_c(t) = \cos (\omega_c \pm \omega_m)t \), we get

\[
y_d(t) = K_0 \cos [\omega_m t \mp (\omega' t + \phi')]
\]

\[
y_d(t) = \begin{cases}
K_0 \cos (\omega_m \mp \omega') t & \phi' = 0 \\
K_0 \cos (\omega_m t \mp \phi') & \omega' = 0
\end{cases}
\]

All of the foregoing expressions come from simple trigonometric expansions.

Clearly, in both DSB and SSB, a frequency drift that’s not small compared to \(W \) will substantially alter the detected tone. The effect is more severe in DSB since a pair of tones, \(f_m + f' \) and \(f_m - f' \), is produced. If \(f' \ll f_m \), this sounds like warbling or the beat note heard when two musical instruments play in unison but slightly out of tune. While only one tone is produced with SSB, this too can be disturbing, particularly for music transmission. To illustrate, the major triad chord consists of three notes whose frequencies are related as the integers 4, 5, and 6. Frequency error in detection shifts each note by the same absolute amount, destroying the harmonic relationship and giving the music an East Asian flavor. (Note that the effect is \textit{not} like playing recorded music at the wrong speed, which preserves the frequency ratios.) For voice transmission, subjective listener tests have shown that frequency drifts of less than \(\pm 10 \) Hz are tolerable, otherwise, everyone sounds rather like Donald Duck.

As to phase drift, again DSB is more sensitive, for if \(\phi' = \pm 90^\circ \) (LO and carrier in quadrature), the detected signal vanishes entirely. With slowly varying \(\phi' \), we get an apparent \textbf{fading} effect. Phase drift in SSB appears as \textbf{delay distortion}, the extreme case being when \(\phi' = \pm 90^\circ \) and the demodulated signal becomes \(\hat{x}(t) \). However, as
was remarked before, the human ear can tolerate sizeable delay distortion, so phase
 drift is not so serious in voice-signal SSB systems.

To summarize,

Phase and frequency synchronization requirements are rather modest for voice
 transmission via SSB. But in data, facsimile, and video systems with suppressed
carrier, careful synchronization is a necessity. Consequently, television broad-
casting employs VSB + C rather than suppressed-carrier VSB.

Envelope Detection

Very little has been said here about synchronous demodulation of AM for the simple
reason that it’s almost never used. True, synchronous detectors work for AM, but as
we will see in Sect. 10.2, synchronous detectors are best for weak signal reception.
However, in most cases, the envelope detector is much simpler and more suitable.
Because the envelope of an AM wave has the same shape as the message, independent
of carrier frequency and phase, demodulation can be accomplished by extracting
the envelope with no worries about synchronization.

Envelope detection can only demodulate signals with a carrier.

Generally speaking, this means that the envelope detector will demodulate only
AM signals or, in the case of suppressed carrier systems (i.e., DSB, SSB), when a
carrier is inserted into the signal at the receiver end, as shown in Fig. 4.5–7.

A simplified envelope detector and its waveforms are shown in Fig. 4.5–6,
where the diode is assumed to be piecewise-linear. In absence of further circuitry, the
voltage \(v \) would be just the half-rectified version of the input \(v_{in} \). But \(R_1C_1 \) acts as a
lowpass filter, responding only to variations in the peaks of \(v_{in} \) provided that

\[
W \ll \frac{1}{R_1C_1} \ll f_c
\]

Thus, as noted earlier, we need \(f_c \gg W \) so the envelope is clearly defined. Under
these conditions, \(C_1 \) discharges only slightly between carrier peaks, and \(v \) approxi-
mates the envelope of \(v_{in} \). More sophisticated filtering produces further improvement
if needed. Finally, \(R_2C_2 \) acts as a DC block to remove the bias of the unmodulated
carrier component. Since the DC block distorts low-frequency message components,
conventional envelope detectors are inadequate for signals with important low-
frequency content.

The voltage \(v \) may also be filtered to remove the envelope variations and pro-
duce a DC voltage proportional to the carrier amplitude. This voltage in turn is fed
back to earlier stages of the receiver for automatic volume control (AVC) to com-
pensate for fading. Despite the nonlinear element, Fig. 4.5–6 is termed a linear
4.5 Frequency Conversion and Demodulation

Envelope detector; the output is linearly proportional to the input envelope. Power-law diodes can also be used, but then v will include terms of the form $v^2_{in}, v^3_{in},$ and so on, and there may be appreciable second-harmonic distortion unless $\mu \ll 1.$

Some DSB and SSB demodulators employ the method of envelope reconstruction diagrammed in Fig. 4.5–7. The addition of a large, locally generated carrier to the incoming signal reconstructs the envelope for recovery by an envelope detector. This method eliminates signal multiplication but does not get around the synchronization problem, for the local carrier must be as well synchronized as the LO in a product demodulator.

Figure 4.5–6 Envelope detection: (a) circuit; (b) waveforms.

Figure 4.5–7 Envelope reconstruction for suppressed-carrier modulation.
EXERCISE 4.5–2 Let the input in Fig. 4.5–7 be SSB with tone modulation, and let the LO have a phase error ϕ' but no frequency error. Use a phasor diagram to obtain an expression for the resulting envelope. Then show that $A(t) = A_{LO} + \frac{1}{2} A_c A_m \cos(\omega_m t + \theta) + \frac{1}{2} A_c A_m \cos(\omega_m t + \phi')$ if $A_{LO} \gg A_c A_m$.

EXERCISE 4.5–3 Envelope detection of suppressed carrier signals

Write a MATLAB program that emulates the envelope detector of Fig. 4.5–6a to have it detect a 100 percent modulated AM signal and then a DSB signal. Show why it is not suitable for detection of DSB signals. Use a single-tone message and plot the message, modulated signal, and the envelope detector output.

4.6 QUESTIONS AND PROBLEMS
Questions

1. Some areas of the world have a tax on radios and televisions. How would you determine if a particular homeowner is in compliance without entering his or her property or tracking his or her purchases?

2. Why are TV and cell-phone signals assigned the VHF and UHF frequencies, whereas AM broadcasters assigned the low-frequency bands?

3. An oscillator circuit’s frequency can be governed by either a single crystal or an RLC BPF network. List the pros and cons of each type.

4. In addition to what is already described in Sects. 4.5 and 7.3, describe at least one way to synchronize the receiver’s product detector local oscillator to the sender’s carrier frequency.

5. Which modulation type(s) is (are) suitable for transmitting messages with low frequency or DC content?

6. What modulation type is highly prone to interception and why?

7. Describe why $f_c < 100\,\text{B}$ as specified in Sect. 4.1, Eq. (18).

8. List at least one reason why a transmitter’s carrier frequency would vary over a relatively short time period.

9. The product detector’s LO has a 500 Hz error while detecting an AM signal. What will the receiver’s output sound like? What if the receiver is listening to a DSB or SSB signal?

10. Given the condition in question 9, describe a mechanical analogy.

11. Why are class C amplifiers not suitable for DSB or SSB applications?

12. Under what conditions can a class C amplifier be used for AM?
13. Why is the tank circuit used in Fig. 4.3–7?
14. What difficulty is there with practical multiplier circuits?
15. Why would germanium diodes be preferred over silicon diodes for envelope detectors?
16. Why would it be difficult to modulate and demodulate an ordinary light source versus a laser source?
17. Why is the parallel RC LPF for the envelope detector in Fig. 4.5–6, used instead of the series RC LPF of Fig. 3.1–2?
18. What two benefits do we gain from increasing the order of a filter?

Problems
4.1–1 Use a phasor diagram to obtain expressions for \(v_i(t) \), \(v_q(t) \), \(A(t) \), and \(\phi(t) \) when \(v_{bp}(t) = v_i(t) \cos \omega_t t + v_q(t) \cos (\omega_t t + \alpha) \). Then simplify \(A(t) \) and \(\phi(t) \) assuming \(|v_q(t)| \ll |v_i(t)| \).

4.1–2 Do Prob. 4.1–1 with \(v_{bp}(t) = v_i(t) \cos (\omega_t - \omega_0) t + v_q(t) \cos (\omega_t + \omega_0) t \).

4.1–3 Let \(v_i(t) \) and \(v_q(t) \) in Eq. (7) be lowpass signals with energy \(E_i \) and \(E_q \), respectively, and bandwidth \(W < f_c \). (a) Use Eq. (17), Sect. 2.2, to prove that

\[
\int_{-\infty}^{\infty} v_{bp}(t) dt = 0
\]

(b) Now show that the bandpass signal energy equals \((E_i + E_q)/2 \).

4.1–4* Find \(v_{eq}(t) \), \(v_i(t) \) and \(v_q(t) \) when \(f_c = 1200 \) Hz and

\[
V_{bp}(f) = \begin{cases}
1 & 900 \leq |f| < 1300 \\
0 & \text{otherwise}
\end{cases}
\]

4.1–5 Do Prob. 4.1–4 with

\[
V_{bp}(f) = \begin{cases}
1 & 1100 \leq |f| < 1200 \\
1/2 & 1200 \leq |f| < 1350 \\
0 & \text{otherwise}
\end{cases}
\]

4.1–6 Let \(v_{bp}(t) = 2x(t) \cos [(\omega_t \pm \omega_0) t + \alpha] \). Find \(v_i(t) \) and \(v_q(t) \) to obtain

\[
v_{eq}(t) = 2x(t) \exp \{ (\pm \omega_0 t + \alpha) \}
\]

4.1–7 Derive Eq. (17b) by obtaining expressions for \(f_i \) and \(f_q \) from Eq. (17a).
4.1–8 Let $f = (1 + \delta)f_0$ in Eq. (17a) and assume that $|\delta| \ll 1$. Derive the handy approximation

$$H(f) = 1/[1 + |Q(f - f_0)/f_0|]$$

which holds for $f > 0$ and $|f - f_0| \ll f_0$.

4.1–9 A stagger-tuned bandpass system centered at $f = f_c$ has $H(f) = 2H_1(f)H_2(f)$, where $H_1(f)$ is given by Eq. (17a) with $f_0 = f_c - b$ and $Q = f_0/2b$ while $H_2(f)$ is given by Eq. (17a) with $f_0 = f_c + b$ and $Q = f_0/2b$. Use the approximation in Prob. 4.1–8 to plot $|H(f)|$ for $f_c - 2b < f < f_c + 2b$ and compare it with a simple tuned circuit having $f_0 = f_c$ and $B = 2b\sqrt{2}$.

4.1–10* Use lowpass time-domain analysis to find and sketch $x_{bp}(t)$ when $x_{lp}(t) = A \cos \omega_c t \ u(t)$ and $H_{bp}(f) = 1/[1 + j2(f - f_c)/B]$ for $f > 0$, which corresponds to the tuned-circuit approximation in Prob. 4.1–8.

4.1–11 Do Prob. 4.1–10 with $H_{bp}(f) = \Pi[(f - f_c)/B]e^{-j\omega_c t}$ for $f > 0$, which corresponds to an ideal BPF. Hint: See Eq. (9), Sect. 3.4.

4.1–12‡ The bandpass signal in Prob. 4.1–6 has $z(t) = 2u(t)$ and is applied to an ideal BPF with unit gain, zero time delay, and bandwidth B centered at f_c. Use lowpass frequency-domain analysis to obtain an approximation for the bandpass output signal when $B \ll f_c$.

4.1–13‡ Consider a BPF with bandwidth B centered at f_c, unit gain, and parabolic phase shift $\theta(f) = (f - f_c)^2/b$ for $f > 0$. Obtain a quadrature-carrier approximation for the output signal when $|b| \gg (B/2)^2$ and $x_{bp}(t) = z(t) \cos \omega_c t$, where $z(t)$ has a bandlimited lowpass spectrum with $W \leq \frac{B}{2}$.

4.1–14 Design a notch filter circuit using $C = 300$ pf that will block a troublesome 1080 kHz signal from entering your receiver’s input. State any assumptions.

4.1–15 Restate the following signal so it is in quadrature carrier form:

$$y(t) = 20 \cos 2\pi 10t \cos(2\pi 1000t) + \cos 2\pi 1010t.$$
4.2–2 Do Prob. 4.2–1 with \(x(t) = 0.5u(t) - 1.5u(t - T) \) with \(T \gg 1/f_c \).

4.2–3* If \(x(t) = \cos 200\pi t \), find \(B_T \) and \(S_T \) for the AM modulated signal assuming \(A_c = 10 \) and \(\mu = 0.6 \). Repeat for DSB transmission.

4.2–4 The signal \(x(t) = \text{sinc}^2 40t \) is to be transmitted using AM with \(\mu < 1 \). Sketch the double-sided spectrum of \(x_c(t) \) and find \(B_T \).

4.2–5 Calculate the transmitted power of an AM wave with 100 percent tone modulation and peak envelope power 32 kW.

4.2–6 Consider a radio transmitter rated for 4 kW peak envelope power. Find the maximum allowable value of \(\mu \) for AM with tone modulation and \(S_T = 1 \) kW.

4.2–7 Consider a 50 MHz DSB system that was originally a 100 percent AMed with \(SX = 0.5 \). The DSB signal has \(S_T = 1000 \) W and carrier suppression is \(-40 \) dB. Assuming the signal is radiating from a directional antenna with \(g_T = 10 \) dB, how does the information power compare to the carrier power at a distance of 1.6 km?

4.2–8 Consider a AM broadcast station that will be transmitting music. What order of LPF is required on the audio section to ensure that signals outside \(B_T = 10 \) kHz will be reduced by 40 dB, but that voice signals will not be attenuated by more than 3 dB?

4.2–9 The multitone modulating signal \(x(t) = 3K(\cos 8\pi t + 2 \cos 20\pi t) \) is input to an AM transmitter with \(\mu = 1 \) and \(f_c = 1000 \). Find \(K \) so that \(x(t) \) is properly normalized, draw the positive-frequency line spectrum of the modulated wave, and calculate the upper bound on \(2P_{sb}/S_T \).

4.2–10 Do Prob. 4.2–9 with \(x(t) = 2K(\cos 8\pi t + 1) \cos 20\pi t \).

4.2–11* The signal \(x(t) = 4 \sin \frac{\pi}{2}t \) is transmitted by DSB. What range of carrier frequencies can be used?

4.2–12 The signal in Prob. 4.2–11 is transmitted by AM with \(\mu = 1 \). Draw the phasor diagram. What is the minimum amplitude of the carrier such that phase reversals don’t occur?

4.2–13 The signal \(x(t) = \cos 2\pi 40t + \frac{1}{2} \cos 2\pi 90t \) is transmitted using DSB. Sketch the positive-frequency line spectrum and the phasor diagram.

4.3–1 The signal \(x(t) = \frac{1}{2} \cos 2\pi 70t + \frac{1}{2} \cos 2\pi 120t \) is input to the square-law modulator system given in Fig. 4.3–3a with a carrier frequency of 10 kHz. Assume \(v_{out} = a_1v_{in} + a_2v_{in}^2 \) (a) Give the center frequency and bandwidth of the filter such that this system will produce a standard AM signal, and (b) determine values of \(a_1 \) and \(a_2 \) such that \(A_c = 10 \) and \(\mu = \frac{1}{2} \).

4.3–2* A modulation system with nonlinear elements produces the signal \(x_c(t) = aK^2(v(t) + A \cos \omega_c t)^2 - b(v(t) - A \cos \omega_c t)^2 \). If the carrier has frequency \(f_c \) and \(v(t) = x(t) \), show that an appropriate choice of \(K \) produces DSB modulation without filtering. Draw a block diagram of the modulation system.
4.3–3 Find K and $v(t)$ so that the modulation system from Prob. 4.3–2 produces AM without filtering. Draw a block diagram of the modulation system.

4.3–4 A modulator similar to the one in Fig. 4.3–3a has a nonlinear element of the form $v_{out} = a_1 v_{in} + a_3 v_{in}^3$. Sketch $V_{out}(f)$ for the input signal in Fig. 4.1–1. Find the parameters of the oscillator and BPF to produce a DSB signal with carrier frequency f_c.

4.3–5 Design in block-diagram form an AM modulator using the nonlinear element from Prob. 4.3–4 and a frequency doubler. Carefully label all components and find a required condition on f_c in terms of W to realize this system.

4.3–6 Find the output signal in Fig. 4.3–5 when the AM modulators are unbalanced, so that one nonlinear element has $v_{out} = a_1 v_{in} + a_2 v_{in}^2 + a_3 v_{in}^3$ while the other has $v_{out} = b_1 v_{in} + b_2 v_{in}^2 + b_3 v_{in}^3$.

4.3–7* The signal $x(t) = 20\text{sinc}^2 400t$ is input to the ring modulator in Fig. 4.3–6. Sketch the spectrum of v_{out} and find the range of values of f_c that can be used to transmit this signal.

4.4–1 Derive Eq. (4) from $y_{in}(t)$.

4.4–2 Take the transform of Eq. (4) to obtain the SSB spectrum

\[X_c(f) = \frac{1}{2} A_c \{ [1 \pm \text{sgn}(f - f_c)] X(f - f_c) + [1 \mp \text{sgn}(f + f_c)] X(f + f_c) \}. \]

4.4–3 Confirm that the expression for $X_c(f)$ in Prob. 4.4–2 agrees with Figs. 4.4–1b and 4.4–1c.

4.4–4 Find the SSB envelope when $x(t) = \cos \omega_m t + \frac{1}{3} \cos 3\omega_m t$ which approximates a triangular wave. Sketch $A(t)$ taking $A_c = 81$ and compare with $x(t)$.

4.4–5 The system in Fig. 4.4–5 produces USSB with $f_c = f_1 + f_2$ when the lower cutoff frequency of the first BPF equals f_1 and the lower cutoff frequency of the second BPF equals f_2. Demonstrate the system’s operation by taking $X(f)$ as in Fig. 4.4–4a and sketching spectra at appropriate points. How should the system be modified to produce LSSB?

4.4–6 Suppose the system in Fig. 4.4–5 is designed for USSB as described in Prob. 4.4–5. Let $x(t)$ be a typical voice signal, so $X(f)$ has negligible content outside $200 < |f| < 3200$ Hz. Sketch the spectra at appropriate points to find the maximum permitted value of f_c when the transition regions of the BPFs must satisfy $2\beta \geq 0.01f_{co}$.

4.4–7* The signal $x(t) = \cos 2\pi 100t + 3 \cos 2\pi 200t + 2 \cos 2\pi 400t$ is input to an LSSB amplitude modulation system with a carrier frequency of 10 kHz. Sketch the double-sided spectrum of the transmitted signal. Find the transmitted power S_T and bandwidth B_T.
4.4–8 Draw the block diagram of a system that would generate the LSSB signal in Prob. 4.4–7, giving exact values for filter cutoff frequencies and oscillators. Make sure your filters meet the fractional bandwidth rule.

4.4–9 Consider a message with $x(t) = \cos 2\pi 1000t + \frac{1}{2} \cos 2\pi 1500t + \frac{1}{2} \cos 2\pi 1800t$ and $A = 10$. Sketch the positive output spectra if the modulation were 100 percent modulated AM, DSB, LSSB, and USSB.

4.4–10 Show mathematically how a product detector can be used to detect a USSB signal.

4.4–11 Suppose the carrier phase shift in Fig. 4.4–6 is actually $-90^\circ + \delta$, where δ is a small angular error. Obtain approximate expressions for $x_c(t)$ and $A(t)$ at the output.

4.4–12 Obtain an approximate expression for $x_c(t)$ at the output in Fig. 4.4–6 when $x(t) = \cos \omega_n t$ and the quadrature phase shifter has $|H_Q(f_m)| = 1 - \epsilon$ and $\arg H_Q(f_m) = -90^\circ + \delta$, where ϵ and δ are small errors. Write your answer as a sum of two sinusoids.

4.4–13 The tone signal $x(t) = A_m \cos 2\pi f_m t$ is input to a VSB + C modulator. The resulting transmitted signal is

$$x_c(t) = A_c \cos 2\pi f_c t + \frac{1}{2} a A_m A_c \cos [2\pi f_c (f_c + f_m) t] + \frac{1}{2} (1 - a) A_m A_c \cos [2\pi (f_c - f_m) t].$$

Sketch the phasor diagram assuming $a > \frac{1}{2}$. Find the quadrature component $x_{q0}(t)$.

4.4–14* Obtain an expression for VSB with tone modulation taking $f_m < \beta$ so the VSB filter has $H(f_c \pm f_m) = 0.5 \pm a$. Then show that $x_c(t)$ reduces to DSB when $a = 0$ or SSB when $a = \pm 0.5$.

4.4–15 Obtain an expression for VSB with tone modulation taking $f_m > \beta$. Construct the phasor diagram and find $A(t)$.

4.5–1 Given a bandpass amplifier centered at 66 MHz, design a television transponder that receives a signal on Channel 11 (199.25 MHz) and transmits it on Channel 4 (67.25 MHz). Use only one oscillator.

4.5–2 Do Prob. 4.5–1 with the received signal on Channel 44 (651.25 MHz) and the transmitted signal on Channel 22 (519.25 MHz).

4.5–3 The system in Fig. 4.4–5 becomes a scrambler when the first BPF passes only the upper sideband, the second oscillator frequency is f_c, and the second BPF is replaced by an LPF with $B = W$. Sketch the output spectrum taking $X(f)$ as in Fig. 4.4–4a, and explain why this output would be unintelligible when $x(t)$ is a voice signal. How can the output signal be unscrambled?

4.5–4 Take $x_c(t)$ as in Eq. (2) and find the output of a synchronous detector whose local oscillator produces $2 \cos (\omega_k t + \phi)$, where ϕ is a constant phase error. Then write separate answers for AM, DSB, SSB, and VSB by appropriate substitution of the modulation parameters.
4.5–5 The transmitted signal in Prob. 4.4–13 is demodulated using envelope detection. Assuming $0 \leq a \leq 1$, what values of a minimize and maximize the distortion at the output of the envelope detector?

4.5–6 The signal $x(t) = 2 \cos 4\pi t$ is transmitted by DSB. Sketch the output signal if envelope detection is used for demodulation.

4.5–7 Design a system whereby a 7 MHz LSSB signal is converted to a 50 MHz USSB one. Justify your design by sketching the output spectra from the various stages of your system.

4.5–8 Consider a DSB signal where the message consists of ± 1s. Design a demodulator using a nonlinear element in the form of $v_{out} = a_1 v_{in} + a_2 v_{in}^2$ without using a local oscillator. Express the solution in block diagram form and justify your answer by describing the signal output of each block.

4.5–9 Design and AM demodulator using a nonlinear element in the form of $v_{out} = a_1 v_{in} + a_2 v_{in}^2$ without using a local oscillator or multiplier. Express the solution in block diagram form and justify your answer by describing the signal output of each block. You may assume $|x(t)| \ll 1$.

4.5–10 You wish to send a sequence of zeros and ones by turning on and off the carrier. Thus, $x_c(t) = m(t) \cos 2\pi f_c t$ with $m(t) = 0$ or 1. Show how either an envelope or product detector can be used to detect your signal.

4.5–11 Suppose the DSB waveform from Prob. 4.5–6 is demodulated using a synchronous detector that has a square wave with a fundamental frequency of f_c as the local oscillator. Will the detector properly demodulate the signal? Will the same be true if periodic signals other than the square wave are substituted for the oscillator?

4.5–12 Sketch a half-rectified AM wave having tone modulation with $\mu A_m = 1$ and $f_m = W$. Use your sketch to determine upper and lower limits on the time constant $R_1 C_1$ of the envelope detector in Fig. 4.5–6. From these limits find the minimum practical value of f_c/W.
Angle CW Modulation

CHAPTER OUTLINE

5.1 Phase and Frequency Modulation
 PM and FM Signals Narrowband PM and FM Tone Modulation Multitone and Periodic Modulation

5.2 Transmission Bandwidth and Distortion
 Transmission Bandwidth Estimates Linear Distortion Nonlinear Distortion and Limiters

5.3 Generation and Detection of FM and PM
 Direct FM and VCOs Phase Modulators and Indirect FM Triangular-Wave FM Frequency Detection

5.4 Interference
 Interfering Sinusoids Deemphasis and Preemphasis Filtering FM Capture Effect
Two properties of linear CW modulation bear repetition at the outset of this chapter: the modulated spectrum is basically the translated message spectrum and the transmission bandwidth never exceeds twice the message bandwidth. A third property, derived in Chap. 10, is that the destination signal-to-noise ratio \(\frac{S}{N} \) is no better than baseband transmission and can be improved only by increasing the transmitted power. Angle or exponential modulation differs on all three counts.

In contrast to linear modulation, angle modulation is a nonlinear process; therefore, it should come as no surprise that the modulated spectrum is not related in a simple fashion to the message spectrum. Moreover, it turns out that the transmission bandwidth is usually much greater than twice the message bandwidth. Compensating for the bandwidth liability is the fact that exponential modulation can provide increased signal-to-noise ratios without increased transmitted power. Exponential modulation thus allows you to trade bandwidth for power in the design of a communication system. Moreover, unlike linear modulation, in which the message information resides in the signal’s amplitude, with angle modulation, the message information resides where the signal crosses the time axis or the zero crossings.

We begin our study of angle modulation by defining the two basic types, phase modulation (PM) and frequency modulation (FM). We’ll examine signals and spectra, investigate the transmission bandwidth and distortion problem, and describe typical hardware for generation and detection. The analysis of interference at the end of the chapter brings out the value of FM for radio broadcasting and sets the stage for our consideration of noise in Chap. 10.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Find the instantaneous phase and frequency of a signal with exponential modulation (Sect. 5.1).
2. Construct the line spectrum and phasor diagram for FM or PM with tone modulation (Sect. 5.1).
3. Estimate the bandwidth required for FM or PM transmission (Sect. 5.2).
4. Identify the effects of distortion, limiting, and frequency multiplication on an FM or PM signal (Sect. 5.2).
5. Design an FM generator and detector appropriate for an application (Sect. 5.3).
6. Use a phasor diagram to analyze interference in AM, FM, and PM (Sect. 5.4).

5.1 PHASE AND FREQUENCY MODULATION

This section introduces the concepts of instantaneous phase and frequency for the definition of PM and FM signals. Then, since the nonlinear nature of exponential modulation precludes spectral analysis in general terms, we must work instead with the spectra resulting from particular cases such as narrowband modulation and tone modulation.

PM and FM Signals

Consider a CW signal with constant envelope but time-varying phase, so

\[
x_c(t) = A_c \cos [\omega_c t + \phi(t)]
\]

Upon defining the total instantaneous angle

\[
\theta_c(t) \triangleq \omega_c t + \phi(t)
\]
we can express \(x_c(t) \) as
\[
x_c(t) = A_c \cos \theta_c(t) = A_c \Re \{ e^{j \theta(t)} \}
\]

Hence, if \(\theta_c(t) \) contains the message information \(x(t) \), we have a process that may be termed either \textbf{angle} modulation or \textbf{exponential} modulation. We’ll use the latter name because it emphasizes the nonlinear relationship between \(x_c(t) \) and \(x(t) \).

As to the specific dependence of \(\theta_c(t) \) on \(x(t) \), \textbf{phase modulation (PM)} is defined by
\[
\phi(t) \triangleq \phi_\Delta x(t) \quad \phi_\Delta \leq 180^\circ
\]
so that
\[
x_c(t) = A_c \cos \left[\omega_c t + \phi_\Delta x(t) \right]
\]

These equations state that the instantaneous phase varies directly with the modulating signal. The constant \(\phi_\Delta \) represents the \textbf{maximum phase shift} produced by \(x(t) \), since we’re still keeping our normalization convention \(|x(t)| \leq 1 \). The upper bound \(\phi_\Delta \leq 180^\circ \) (or \(\pi \) radians) limits \(\phi(t) \) to the range \(\pm 180^\circ \) and prevents phase ambiguities—after all, in the relative time series there’s no physical distinction between angles of \(+270^\circ \) and \(-90^\circ \), for instance. The bound on \(\phi_\Delta \) is analogous to the restriction \(\mu \leq 1 \) in AM, and \(\phi_\Delta \) can justly be called the \textbf{phase modulation index}, or the \textbf{phase deviation}.

The rotating-phasor diagram in Fig. 5.1–1 helps interpret phase modulation and leads to the definition of frequency modulation. The total angle \(\theta_c(t) \) consists of the constant rotational term \(\omega_c t \) plus \(\phi(t) \), which corresponds to angular shifts relative to the dashed line. Consequently, the phasor’s instantaneous rate of rotation in cycles per second or Hz will be
\[
f(t) \triangleq \frac{1}{2\pi} \dot{\theta}_c(t) = f_c + \frac{1}{2\pi} \dot{\phi}(t)
\]
in which the dot notation stands for the time derivative, that is, \(\dot{\phi}(t) = d\phi(t)/dt \), and so on. We call \(f(t) \) the \textbf{instantaneous frequency} of \(x_c(t) \). Although \(f(t) \) is measured in hertz, it should not be equated with spectral frequency. Spectral frequency \(f \) is the independent variable of the frequency domain, whereas instantaneous frequency \(f(t) \) is a time-dependent property of waveforms with exponential modulation.

\[\text{Figure 5.1–1} \quad \text{Rotating-phasor representation of exponential modulation.}\]
In the case of **frequency modulation** (FM), the instantaneous frequency of the modulated wave is defined to be

\[f(t) \triangleq f_c + f_d x(t) \quad f_d < f_c \]

so \(f(t) \) varies in proportion with the modulating signal. The proportionality constant \(f_d \), called the **frequency deviation**, represents the maximum shift of \(f(t) \) relative to the carrier frequency \(f_c \). The upper bound \(f_d < f_c \) simply ensures that \(f(t) > 0 \). However, we usually want \(f_d \ll f_c \) in order to preserve the bandpass nature of \(x_c(t) \).

Equations (4) and (5) show that an FM wave has \(\dot{\phi}(t) = 2\pi f_d x(t) \), and integration yields the phase modulation

\[\phi(t) = 2\pi f_d \int_{t_0}^{t} x(\lambda) \, d\lambda + \phi(t_0) \quad t \geq t_0 \]

If \(t_0 \) is taken such that \(\phi(t_0) = 0 \), we can drop the lower limit of integration and use the informal expression

\[\phi(t) = 2\pi f_d \int_{t}^{t} x(\lambda) \, d\lambda \]

The FM waveform is then written as

\[x_c(t) = A_c \cos \left[\omega_c t + 2\pi f_d \int_{t}^{t} x(\lambda) \, d\lambda \right] \]

But it must be assumed that the message has no DC component so the above integrals do not diverge when \(t \to \infty \). Physically, a DC term in \(x(t) \) would produce a constant carrier-frequency shift equal to \(f_d \langle x(t) \rangle \).

A comparison of Eqs. (3) and (7) implies little difference between PM and FM, the essential distinction being the integration of the message in FM. Moreover, nomenclature notwithstanding, both FM and PM have both time-varying phase and frequency, as underscored by Table 5.1–1. These relations clearly indicate that, with the help of integrating and differentiating networks, a phase modulator can produce frequency modulation and vice versa. In fact, in the case of tone modulation it’s nearly impossible visually to distinguish FM and PM waves.

On the other hand, a comparison of angle modulation with linear modulation reveals some pronounced differences. For one thing,

The amplitude of an angle-modulated wave is constant.

Therefore, regardless of the message \(x(t) \), the average transmitted power is

\[S_T = \frac{1}{2} A_c^2 \]
Table 5.1–1

<table>
<thead>
<tr>
<th>Instantaneous phase φ(t)</th>
<th>Instantaneous frequency f(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>$\phi(t)$</td>
</tr>
<tr>
<td>FM</td>
<td>$2\pi f_c \int_0^t x(\lambda) d\lambda$</td>
</tr>
</tbody>
</table>

For another, the zero crossings of an exponentially modulated wave are not periodic, though they do follow the equations for the phase as above, whereas they are always periodic in linear modulation. Indeed, because of the constant-amplitude property of FM and PM, it can be said that

The message resides in the zero crossings alone, providing the carrier frequency is large.

Finally, since exponential modulation is a nonlinear process,

The modulated wave does not resemble the message waveform.

Figure 5.1–2 illustrates some of these points by showing typical AM, FM, and PM waves. As a mental exercise you may wish to check these waveforms against the corresponding modulating signals. For FM and PM this is most easily done by considering the instantaneous frequency rather than by substituting $x(t)$ in Eqs. (3) and (7). Again, note from Fig. 5.1–2 that the message information for a PM or FM signal resides in the carrier’s zero crossings versus in the amplitude of the AM signal.

Despite the many similarities of PM and FM, frequency modulation turns out to have superior noise-reduction properties and thus will receive most of our attention. To gain a qualitative appreciation of FM noise reduction, suppose a demodulator simply extracts the instantaneous frequency $f(t) = f_c + f_c \dot{x}(t)$ from $x(t)$. The demodulated output is then proportional to the frequency deviation f_c, which can be increased without increasing the transmitted power S_T. If the noise level remains constant, increased signal output is equivalent to reduced noise. However, noise reduction does require increased transmission bandwidth to accommodate large frequency deviations.

Ironically, frequency modulation was first conceived as a means of bandwidth reduction, the argument going somewhat as follows: If, instead of modulating the
carrier amplitude, we modulate the frequency by swinging it over a range of, say, ±50 Hz, then the transmission bandwidth will be 100 Hz regardless of the message bandwidth. As we’ll soon see, this argument has a serious flaw, for it ignores the distinction between instantaneous and spectral frequency. Carson (1922) recognized the fallacy of the bandwidth-reduction notion and cleared the air on that score. Unfortunately, he and many others also felt that exponential modulation had no advantages over linear modulation with respect to noise. It took some time to overcome this belief but, thanks to Armstrong (1936), the merits of exponential modulation were finally appreciated. Before we can understand them quantitatively, we must address the problem of spectral analysis.

EXERCISE 5.1–1 Suppose FM had been defined in direct analogy to AM by writing $x_c(t) = A_c \cos \omega_c(t) t$ with $\omega_c(t) = \omega_c[1 + \mu x(t)]$. Demonstrate the physical impossibility of this definition by finding $f(t)$ when $x(t) = \cos \omega_m t$.

Narrowband PM and FM

Our spectral analysis of exponential modulation starts with the quadrature-carrier version of Eq. (1), namely

$$x_c(t) = x_c(t) \cos \omega_c t - x_{cq}(t) \sin \omega_c t$$

where

$$x_c(t) = A_c \cos \phi(t) = A_c \left[1 - \frac{1}{2!} \phi^2(t) + \cdots \right]$$
Now we impose the simplifying condition

\[|\phi(t)| \ll 1 \text{ rad} \tag{11a} \]

so that

\[x_{c1}(t) \approx A_c \quad x_{cq}(t) \approx A_c \phi(t) \tag{11b} \]

Then it becomes an easy task to find the spectrum \(x_c(f) \) of the modulated wave in terms of an arbitrary message spectrum \(X(f) \).

Specifically, the transforms of Eqs. (9) and (11b) yield

\[x_c(f) = \frac{1}{2} A_c \delta(f - f_c) + \frac{j}{2} A_c \Phi(f - f_c) \quad f > 0 \tag{12a} \]

in which

\[\Phi(f) = \mathcal{F}[\phi(t)] = \begin{cases} \phi_\Delta X(f) & \text{PM} \\ -j f_c X(f)/f & \text{FM} \end{cases} \tag{12b} \]

The FM expression comes from the integration theorem applied to \(\phi(t) \) in Eq. (6).

Based on Eq. (12), we conclude that if \(x(t) \) has message bandwidth \(W \ll f_c \), then \(x_c(t) \) will be a bandpass signal with bandwidth \(2W \). But this conclusion holds only under the conditions of Eq. (11). For larger values of \(|\phi(t)| \), the terms \(\phi^2(t) \), \(\phi^3(t) \), \ldots cannot be ignored in Eq. (10) and will increase the bandwidth of \(x_c(t) \). Hence, Eqs. (11) and (12) describe the special case of **narrowband** phase or frequency modulation (NBPM or NBFM), which approximates an AM signal with a large corner component.

NBFM Spectra

An informative illustration of Eq. (12) is provided by taking \(x(t) = \text{sinc } 2Wt \), so \(X(f) = (1/2W) \Pi(f/2W) \). The resulting NBPM and NBFM spectra are depicted in Fig. 5.1–3. Both spectra have carrier-frequency impulses and bandwidth \(2W \). However, the lower sideband in NBFM is 180° out of phase (represented by the negative sign), whereas both NBPM sidebands have a 90° phase shift (represented by \(j \)). Except for the phase shift, the NBPM spectrum looks just like an AM spectrum with the same modulating signal.

Use the second-order approximations \(x_{c1}(t) \approx A_c[1 - \frac{1}{2} \phi^2(t)] \) and \(x_{cq}(t) \approx A_c \phi(t) \) to find and sketch the components of the PM spectrum when \(x(t) = \text{sinc } 2Wt \).

Tone Modulation

The study of FM and PM with single-tone modulation can be carried out jointly by the simple expedient of allowing a 90° difference in the modulating tones. For if we take
then Eqs. (2) and (6) both give

$$\phi(t) = \beta \sin \omega_m t \quad (13a)$$

where

$$\beta \triangleq \begin{cases} \frac{\phi_\Delta A_m}{(A_m/f_m) f_\Delta} & \text{PM} \\ \frac{\phi_\Delta A_m}{(A_m/f_m) f_\Delta} & \text{FM} \end{cases} \quad (13b)$$

The parameter β serves as the modulation index for PM or FM with tone modulation. This parameter equals the maximum phase deviation and is proportional to the tone amplitude A_m in both cases. Note, however, that β for FM is inversely proportional to the tone frequency f_m since the integration of $\cos \omega_m t$ yields $\sin \omega_m t/\omega_m$.

Narrowband tone modulation requires $\beta \ll 1$, and Eq. (9) simplifies to

$$x_c(t) = A_c \cos \omega_c t - A_c \beta \sin \omega_m t \sin \omega_c t$$

$$= A_c \cos \omega_c t - \frac{A_c \beta}{2} \cos (\omega_c - \omega_m) t + \frac{A_c \beta}{2} \cos (\omega_c + \omega_m) t \quad (14)$$

The corresponding line spectrum and phasor diagram are shown in Fig. 5.1–4. Observe how the phase reversal of the lower sideband line produces a component perpendicular or quadrature to the carrier phasor. This quadrature relationship is precisely what’s needed to create phase or frequency modulation instead of amplitude modulation.
5.1 Phase and Frequency Modulation

Now, to determine the line spectrum with an arbitrary value of the modulation index, we drop the narrowband approximation and write

$$x_c(t) = A_c \left[\cos \phi(t) \cos \omega_c t - \sin \phi(t) \sin \omega_c t \right]$$ \hspace{1cm} (15)

$$= A_c \left[\cos (\beta \sin \omega_m t) \cos \omega_c t - \sin (\beta \sin \omega_m t) \sin \omega_c t \right]$$

Then we use the fact that, even though $x_c(t)$ is not necessarily periodic, the terms $\cos (\beta \sin \omega_m t)$ and $\sin (\beta \sin \omega_m t)$ are periodic and each can be expanded as a trigonometric Fourier series with $f_0 = f_m$. Indeed, a well-known result from applied mathematics states that

$$\cos (\beta \sin \omega_m t) = \int_0^\infty J_n(\beta) \cos n\omega_m t \, dn$$ \hspace{1cm} (16)

$$\sin (\beta \sin \omega_m t) = \int_0^\infty J_{n+1}(\beta) \sin (n+1)\omega_m t \, dn$$

where n is positive and

$$J_n(\beta) \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{j\beta \sin \omega_m t} \, d\lambda$$ \hspace{1cm} (17)

The coefficients $J_n(\beta)$ are Bessel functions of the first kind, of order n and argument β. With the aid of Eq. (17), you should encounter little difficulty in deriving the trigonometric expansions given in Eq. (16).

Substituting Eq. (16) into Eq. (15) and expanding products of sines and cosines finally yields

$$x_c(t) = A \sum_{n} J_n(\beta) \cos (\omega_c t + n\omega_m t)$$ \hspace{1cm} (18a)

$$+ \sum_{n} A_n J_n(\beta) \cos (\omega_c t - n\omega_m t)$$

$$+ \sum_{n} A_n J_n(\beta) \sin (\omega_c t + n\omega_m t)$$

$$+ \sum_{n} A_n J_n(\beta) \sin (\omega_c t - n\omega_m t)$$

Figure 5.1–4 NBFM with tone modulation: (a) line spectrum; (b) phasor diagram.
Alternatively, taking advantage of the property that \(J_{-n}(\beta) = (-1)^n J_n(\beta) \), we get the more compact but less informative expression

\[
\chi_c(t) = A_c \sum_{n=-\infty}^{\infty} j_n(\beta) \cos(\omega_c + n\omega_m)t
\]

(18b)

In either form, Eq. (18) is the mathematical representation for a constant-amplitude wave whose instantaneous frequency varies sinusoidally. A phasor interpretation, to be given shortly, will shed more light on the matter.

Examining Eq. (18), we see that

The FM spectrum consists of a carrier-frequency line plus an infinite number of sideband lines at frequencies \(f_c \pm nf_m \). All lines are equally spaced by the modulating frequency, and the odd-order lower sideband lines are reversed in phase or inverted relative to the unmodulated carrier. In a positive-frequency line spectrum, any apparent negative frequencies \(f_c \pm nf_m < 0 \) must be folded back to the positive values \(f_c \pm nf_m \).

A typical spectrum is illustrated in Fig. 5.1–5. Note that negative frequency components will be negligible as long as \(\beta f_m \ll f_c \). In general, the relative amplitude of a line at \(f_c \pm nf_m \) is given by \(J_n(\beta) \), so before we can say more about the spectrum, we must examine the behavior of Bessel functions.

Figure 5.1–6a shows a few Bessel functions of various order plotted versus the argument \(\beta \). Several important properties emerge from this plot.

1. The relative amplitude of the carrier line \(J_0(\beta) \) varies with the modulation index and hence depends on the modulating signal. Thus, in contrast to linear modulation, the carrier-frequency component of an FM wave “contains” part of the message information. Nonetheless, there will be spectra in which the carrier line has zero amplitude since \(J_0(\beta) = 0 \) when \(\beta = 2.4, 5.5, \) and so on.

Figure 5.1–5 Line spectrum of FM with single-tone modulation.
2. The number of sideband lines having appreciable relative amplitude also depends on β. With $\beta \ll 1$ only J_0 and J_1 are significant, so the spectrum will consist of carrier and two sideband lines as in Fig. 5.1–4a. But if $\beta \gg 1$, there will be many sideband lines, giving a spectrum quite unlike linear modulation.

3. Large β implies a large bandwidth to accommodate the extensive sideband structure, agreeing with the physical interpretation of large frequency deviation.

Some of the above points are better illustrated by Fig. 5.1–6b, which gives $J_n(\beta)$ as a function of n/β for various fixed values of β. These curves represent the “envelope” of the sideband lines if we multiply the horizontal axis by βf_m to obtain the line

Figure 5.1–6 Plots of Bessel functions: (a) fixed order n, variable argument β; (b) fixed argument β, variable order n.
position \(n f_m \) relative to \(f_c \). Observe in particular that all \(J_n(\beta) \) decay monotonically for \(n/\beta > 1 \) and that \(|J_n(\beta)| \ll 1 \) if \(|n/\beta| \gg 1 \). Table 5.1–2 lists selected values of \(J_n(\beta) \), rounded off at the second decimal place. Blanks in the table correspond to conditions where \(|n/\beta| < 0.01 \).

Line spectra drawn from the data in Table 5.1–2 are shown in Fig. 5.1–7, omitting the sign inversions. Part (a) of the figure has \(\beta \) increasing with \(f_m \) held fixed, and applies to FM and PM. Part (b) applies only to FM and illustrates the effect of increasing \(\beta \) by decreasing \(f_m \) with \(A_m f \) held fixed. The dashed lines help bring out the concentration of significant sideband lines within the range \(f_c \pm \beta f_m \) as \(\beta \) becomes large.

For the phasor interpretation of \(x_c(t) \) in Eq. (18), we first return to the narrowband approximation and Fig. 5.1–4. The envelope and phase constructed from the carrier and first pair of sideband lines are seen to be

\[
A(t) = \sqrt{A_c^2 + \left(\frac{2\beta}{2A_c \sin \omega_m t}\right)^2} = A_c \left[1 + \frac{\beta^2}{4} - \frac{\beta^2}{4} \cos 2\omega_m t\right]
\]

\[
\phi(t) = \arctan \left[\frac{2(\beta/2)A_c \sin \omega_m t}{A_c}\right] = \beta \sin \omega_m t
\]

Thus the phase variation is approximately as desired, but there is an additional amplitude variation at twice the tone frequency. To cancel out the latter we should

<table>
<thead>
<tr>
<th>(n)</th>
<th>(J_n(0.1))</th>
<th>(J_n(0.2))</th>
<th>(J_n(0.5))</th>
<th>(J_n(1.0))</th>
<th>(J_n(2.0))</th>
<th>(J_n(5.0))</th>
<th>(J_n(10))</th>
<th>(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>0.99</td>
<td>0.94</td>
<td>0.77</td>
<td>0.22</td>
<td>-0.18</td>
<td>-0.25</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.10</td>
<td>0.24</td>
<td>0.44</td>
<td>0.58</td>
<td>-0.33</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.03</td>
<td>0.11</td>
<td>0.35</td>
<td>0.05</td>
<td>0.25</td>
<td>0.06</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0.02</td>
<td>0.13</td>
<td>0.36</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.03</td>
<td>0.39</td>
<td>-0.22</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.26</td>
<td>-0.23</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.13</td>
<td>-0.01</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>0.22</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.02</td>
<td>0.32</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.29</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.21</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.12</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.06</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.03</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.01</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase and Frequency Modulation

include the second-order pair of sideband lines that rotate at $\pm 2f_m$ relative to the carrier and whose resultant is collinear with the carrier. While the second-order pair virtually wipes out the undesired amplitude modulation, it also distorts $\phi(t)$. The phase distortion is then corrected by adding the third-order pair, which again introduces amplitude modulation, and so on ad infinitum.

When all spectral lines are included, the odd-order pairs have a resultant in quadrature with the carrier that provides the desired frequency modulation plus unwanted amplitude modulation. The resultant of the even-order pairs, being collinear with the carrier, corrects for the amplitude variations. The net effect is then as illustrated in Fig. 5.1–8. The tip of the resultant sweeps through a circular arc reflecting the constant amplitude A_c.

Tone Modulation With NBFM

The narrowband FM signal $x(t) = 100 \cos [2\pi 5000t + 0.05 \sin 2\pi 200t]$ is transmitted. To find the instantaneous frequency $\dot{f}(t)$ we take the derivative of $\theta(t)$

$$f(t) = \frac{1}{2\pi} \dot{\theta}(t)$$

$$= \frac{1}{2\pi} [2\pi 5000 + 0.05(2\pi 200) \cos 2\pi 200t]$$

$$= 5000 + 10 \cos 2\pi 200t$$
From \(f(t)\) we determine that \(f_c = 5000 \text{ Hz}, \ f_\Delta = 10, \) and \(x(t) = \cos 2\pi 200t.\) There are two ways to find \(\beta.\) For NBFM with tone modulation we know that \(\phi(t) = \beta \sin \omega_m t.\) Since \(x_c(t) = A_c \cos [\omega_c t + \phi(t)],\) we can see that \(\beta = 0.05.\) Alternatively we can calculate

\[
\beta = \frac{A_m}{f_m} f_\Delta
\]

From \(f(t)\) we find that \(A_m f_\Delta = 10\) and \(f_m = 200\) so that \(\beta = 10/200 = 0.05\) just as we found earlier. The line spectrum has the form of Fig. 5.1–4a with \(A_c = 100\) and sidelobes \(A_c \beta / 2 = 2.5.\) The minor distortion from the narrowband approximation shows up in the transmitted power. From the line spectrum we get \(S_T = \frac{1}{2}(-2.5)^2 + \frac{1}{2}(100)^2 = 5006.25\) versus \(S_T = \frac{1}{2} A_c^2 = \frac{1}{2}(100)^2 = 5000\) when there are enough sidelobes so that there is no amplitude distortion.

EXERCISE 5.1–3

Consider tone-modulated FM with \(A_c = 100, \ A_m f_\Delta = 8 \text{ kHz},\) and \(f_m = 4 \text{ kHz.}\) Draw the line spectrum for \(f_c = 30 \text{ kHz}\) and for \(f_c = 11 \text{ kHz.}\)

Multitone and Periodic Modulation

The Fourier series technique used to arrive at Eq. (18) also can be applied to the case of FM with multitone modulation. For instance, suppose that \(x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t,\) where \(f_1\) and \(f_2\) are not harmonically related. The modulated wave is first written as

\[
x_c(t) = A_c [\cos \alpha_1 \cos \alpha_2 - \sin \alpha_1 \sin \alpha_2) \cos \omega_c t
\]
where \(\alpha_1 = \beta_1 \sin \omega_1 t \), \(\beta_1 = A f_1 / f_1 \), and so on. Terms of the form \(\cos \alpha_1 \), \(\sin \alpha_1 \), and so on, are then expanded according to Eq. (16), and after some routine manipulations we arrive at the compact result

\[
x_c(t) = A_c \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} j_n(\beta_1) j_m(\beta_2) \cos (\omega_c + n\omega_1 + m\omega_2) t
\]

This technique can be extended to include three or more nonharmonic tones; the procedure is straightforward but tedious.

To interpret Eq. (19) in the frequency domain, the spectral lines can be divided into four categories: (1) the carrier line of amplitude \(A_c \), \(j_0(\beta_1) j_0(\beta_2) \); (2) sideband lines at \(f_c \pm nf_1 \) due to \(f_1 \) alone; (3) sideband lines at \(f_c \pm mf_2 \) due to the \(f_2 \) tone alone; and (4) sideband lines at \(f_c \pm nf_1 \pm mf_2 \) which appear to be beat-frequency modulation at the sum and difference frequencies of the modulating tones and their harmonics. (This last category would not occur in linear modulation where simple superposition of sideband lines is the rule.) A double-tone FM spectrum showing the various types of spectral lines is given in Fig. 5.1–9 for \(f_1 \ll f_2 \) and \(\beta_1 \gg \beta_2 \). Under these conditions there exists the curious property that each sideband line at \(f_c \pm mf_2 \) looks like another FM carrier with tone modulation of frequency \(f_1 \).

When the tone frequencies are harmonically related—meaning that \(x(t) \) is a periodic waveform—then \(\phi(t) \) is periodic and so is \(e^{i\phi(t)} \). The latter can be expanded in an exponential Fourier series with coefficients

\[
c_n = \frac{1}{T_0} \int_{T_0} \exp (i\phi(t) - n\omega_0 t) \, dt
\]

Therefore

\[
x_c(t) = A_c \text{Re} \left[\sum_{n=-\infty}^{\infty} c_n e^{i(\omega_c + n\omega_0)t} \right]
\]

and \(A_c |c_n| \) equals the magnitude of the spectral line at \(f = f_c + n\omega_0 \).
EXAMPLE 5.1–3 FM With Pulse-Train Modulation

Let \(x(t) \) be a unit-amplitude rectangular pulse-train modulating function with period \(T_0 \), pulse duration \(\tau \), and duty cycle \(d = \tau/T_0 \). After removing the DC component \(\langle x(t) \rangle = d \), the instantaneous frequency of the resulting FM wave is as shown in Fig. 5.1–10a. The time origin is chosen such that \(\phi(t) \) plotted in Fig. 5.1–10b has a peak value \(\phi_\Delta = 2\pi f_\Delta \tau \) at \(t = 0 \). We've also taken the constant of integration such that \(\phi(t) \geq 0 \). Thus

\[
\phi(t) = \begin{cases}
\phi_\Delta (1 + t/\tau) & -\tau < t < 0 \\
\phi_\Delta [1 - t/(T_0 - \tau)] & 0 < t < T_0 - \tau
\end{cases}
\]

which defines the range of integration for Eq. (20a).

The evaluation of \(c_n \) is a nontrivial exercise involving exponential integrals and trigonometric relations. The final result can be written as

\[
c_n = \left[\sin \pi (\beta - n)d + (1 - d) \sin \pi (\beta - n)d \right] \exp(i\pi n d)
\]

\[
= \frac{\beta d}{(\beta - n)d + n} \sin(\beta - n)d \exp(i\pi n d)
\]

where we've let

\[\beta = f_\Delta T_0 = f_\Delta / f_0 \]

which plays a role similar to the modulation index for single-tone modulation.

Figure 5.1–10c plots the magnitude line spectrum for the case of \(d = \frac{1}{4} \), \(\beta = 4 \), and \(A_c = 1 \). Note the absence of symmetry here and the peaking around \(f = f_c - \frac{1}{4} f_\Delta \).

Figure 5.1–10 FM with pulse-train modulation: (a) instantaneous frequency; (b) phase; (c) line spectrum for \(d = \frac{1}{4} \).
and \(f = f_c + \frac{3}{4} f_A \), the two values taken on by the instantaneous frequency. The fact that the spectrum contains other frequencies as well underscores the difference between spectral frequency and instantaneous frequency. The same remarks apply for the continuous spectrum of FM with a single modulating pulse—demonstrated by our results in Example 2.5–1.

5.2 TRANSMISSION BANDWIDTH AND DISTORTION

The spectrum of a signal with exponential modulation has infinite extent, in general. Hence, generation and transmission of pure FM requires infinite bandwidth, whether or not the message is bandlimited. But practical FM systems having finite bandwidth do exist and perform quite well. Their success depends upon the fact that, sufficiently far away from the carrier frequency, the spectral components are quite small and may be discarded. True, omitting any portion of the spectrum will cause distortion in the demodulated signal; but the distortion can be minimized by keeping all significant spectral components.

We’ll formulate in this section estimates of transmission bandwidth requirements by drawing upon results from Sect. 5.1. Then we’ll look at distortion produced by linear and nonlinear systems. Topics encountered in passing include the concept of wideband FM and that important piece of FM hardware known as a limiter. We’ll concentrate primarily on FM, but minor modifications make the analyses applicable to PM.

Transmission Bandwidth Estimates

Determination of FM transmission bandwidth boils down to the question: How much of the modulated signal spectrum is significant? Of course, significance standards are not absolute, being contingent upon the amount of distortion that can be tolerated in a specific application. However, rule-of-thumb criteria based on studies of tone modulation have met with considerable success and lead to useful approximate relations. Our discussion of FM bandwidth requirements therefore begins with the significant sideband lines for tone modulation.

Figure 5.1–6 indicated that \(J_n(b) \) falls off rapidly for \(|n/\beta| > 1 \), particularly if \(\beta \gg 1 \). Assuming that the modulation index \(\beta \) is large, we can say that \(|J_n(\beta)| \) is significant only for \(|n| \ll \beta = A_m f_A/f_m \). Therefore, all significant lines are contained in the frequency range \(f_c \pm \beta f_m = f_c \pm A_m f_A \), a conclusion agreeing with intuitive reasoning. On the other hand, suppose the modulation index is small; then all sideband lines are small compared to the carrier, since \(J_0(\beta) \gg J_{n \neq 0}(\beta) \) when \(\beta \ll 1 \). But we must retain at least the first-order sideband pair, else there would be no frequency modulation at all. Hence, for small \(\beta \), the significant sideband lines are contained in \(f_c \pm f_m \).

To put the above observations on a quantitative footing, all sideband lines having relative amplitude \(|J_n(\beta)| > \epsilon \) are defined as being significant, where \(\epsilon \) ranges...
from 0.01 to 0.1 according to the application. Then, if \(\| \mathbf{V}(\beta) \| > \epsilon \) and \(\| H(\beta) \| > \epsilon \), there are \(M \) significant sideband pairs and \(2M + 1 \) significant lines all told. The bandwidth is thus written as

\[
B = 2M(\beta)f_m \quad M(\beta) \geq 1
\] (1)

since the lines are spaced by \(f_m \) and \(M \) depends on the modulation index \(\beta \). The condition \(M(\beta) \geq 1 \) has been included in Eq. (1) to account for the fact that \(B \) cannot be less than \(2f_m \).

Figure 5.2–1 shows \(M \) as a continuous function of \(\beta \) for \(\epsilon = 0.01 \) and 0.1. Experimental studies indicate that the former is often overly conservative, while the latter may result in small but noticeable distortion. Values of \(M \) between these two bounds are acceptable for most purposes and will be used hereafter.

But the bandwidth \(B \) is not the transmission bandwidth \(B_T \); rather it’s the minimum bandwidth necessary for modulation by a tone of specified amplitude and frequency. To estimate \(B_T \), we should calculate the maximum bandwidth required when the tone parameters are constrained by \(A_m \leq 1 \) and \(f_m \leq W \). For this purpose, the dashed line in Fig. 5.2–1 depicts the approximation

\[
M(\beta) = \beta + 2
\] (2)

which falls midway between the solid lines for \(\beta \geq 2 \). Inserting Eq. (2) into Eq. (1) gives

\[
B = 2(\beta + 2)f_m = 2 \left(\frac{A_m f_A}{f_m} + 2 \right) f_m = 2(A_m f_A + 2 f_m)
\]

Figure 5.2–1 The number of significant sideband pairs as a function of \(\beta \) (or \(D \)).
Now, bearing in mind that \(f_{f/9004} \) is a property of the modulator, what tone produces the maximum bandwidth? Clearly, it is the maximum-amplitude-maximum-frequency tone having \(A_m = 1 \) and \(f_m = W \). The worst-case tone-modulation bandwidth is then

\[
B_T = 2(f_{f/9004} + 2W) \quad \text{if } \beta > 2
\]

Note carefully that the corresponding modulation index \(\beta = f_{f/9004}/W \) is not the maximum value of \(\beta \) but rather the value which, combined with the maximum modulating frequency, yields the maximum bandwidth. Any other tone having \(A_m < 1 \) or \(f_m < W \) will require less bandwidth even though \(\beta \) may be larger.

Finally, consider a reasonably smooth but otherwise arbitrary modulating signal having the message bandwidth \(W \) and satisfying the normalization convention \(|x(t)| \leq 1 \). We’ll estimate \(B_T \) directly from the worst-case tone-modulation analysis, assuming that any component in \(x(t) \) of smaller amplitude or frequency will require a smaller bandwidth than \(B_T \). Admittedly, this procedure ignores the fact that superposition is not applicable to exponential modulation. However, our investigation of multitone spectra has shown that the beat-frequency sideband pairs are contained primarily within the bandwidth of the dominating tone alone, as illustrated by Fig. 5.1–9.

Therefore, extrapolating tone modulation to an arbitrary modulating signal, we define the deviation ratio

\[
D \triangleq \frac{f_{f/9004}}{W} \tag{3}
\]

which equals the maximum deviation divided by the maximum modulating frequency, analogous to the modulation index of worst-case tone modulation. The transmission bandwidth required for \(x(t) \) is then

\[
B_T = 2 M(D)W \tag{4}
\]

where \(D \) is treated just like \(\beta \) to find \(M(D) \), say from Fig. 5.2–1.

Lacking appropriate curves or tables for \(M(D) \), there are several approximations to \(B_T \) that can be invoked. With extreme values of the deviation ratio we find that

\[
B_T = \begin{cases}
2DW = 2f_{f/9004} & D \gg 1 \\
2W & D \ll 1
\end{cases}
\]

paralleling our results for tone modulation with \(\beta \) very large or very small. Both of these approximations are combined in the convenient relation

\[
B_T = 2(f_{f/9004} + W) = 2(D + 1)W \quad D \gg 1
\]

\[
\quad D \ll 1
\]

known as Carson’s rule. Perversely, the majority of actual FM systems have \(2 < D < 10 \), for which Carson’s rule somewhat underestimates the transmission bandwidth. A better approximation for equipment design is then

\[
B_T = 2(f_{f/9004} + 2W) = 2(D + 2)W \quad D > 2
\]
which would be used, for example, to determine the 3 dB bandwidths of FM amplifiers. Note that Carson’s rule overestimates B_T for some applications using the narrowband approximation. The bandwidth of the transmitted signal in Example 5.1–2 is 400 Hz, whereas Eq. (5) estimates $B_T \approx 420$ Hz.

Physically, the deviation ratio represents the maximum phase deviation of an FM wave under worst-case bandwidth conditions. Our FM bandwidth expressions therefore apply to phase modulation if we replace D with the maximum phase deviation ϕ_Δ of the PM wave. Accordingly, the transmission bandwidth for PM with arbitrary $x(t)$ is estimated to be

$$B_T = 2M(\phi_\Delta)W \quad M(\phi_\Delta) \geq 1 \quad (7a)$$

or

$$B_T = 2(\phi_\Delta + 1)W \quad (7b)$$

which is the approximation equivalent to Carson’s rule. These expressions differ from the FM case in that ϕ_Δ is independent of W.

You should review our various approximations and their conditions of validity. In deference to most of the literature, we’ll usually take B_T as given by Carson’s rule in Eqs. (5) and (7b). But when the modulating signal has discontinuities—a rectangular pulse train, for instance—the bandwidth estimates become invalid and we must resort to brute-force spectral analysis.

EXAMPLE 5.2–1

Commercial FM Bandwidth

Commercial FM broadcast stations in the United States are limited to a maximum frequency deviation of 75 kHz, and modulating frequencies typically cover 30 Hz to 15 kHz. Letting $W = 15$ kHz, the deviation ratio is $D = 75$ kHz/15 kHz = 5 and Eq. (6) yields $B_T \approx 2(5 + 2) \times 15$ kHz = 210 kHz. High-quality FM radios have bandwidths of at least 200 kHz. Carson’s rule in Eq. (5) underestimates the bandwidth, giving $B_T \approx 180$ kHz.

If a single modulating tone has $A_m = 1$ and $f_m = 15$ kHz, then $\beta = 5$, $M(\beta) \approx 7$, and Eq. (1) shows that $B = 210$ kHz. A lower-frequency tone, say 3 kHz, would result in a larger modulation index ($\beta = 25$), a greater number of significant sideband pairs ($M = 27$), but a smaller bandwidth since $B = 2 \times 27 \times 3$ kHz = 162 kHz.

EXERCISE 5.2–1

Calculate B_T/W for $D = 0.3$, 3, and 30 using Eqs. (5) and (6) where applicable.

Linear Distortion

The analysis of distortion produced in an FM or PM wave by a linear network is an exceedingly knotty problem—so much so that several different approaches to it have
been devised, none of them easy. Panter (1965) devotes three chapters to the subject and serves as a reference guide. Since we’re limited here to a few pages, we can only view the “tip of the iceberg.” Nonetheless, we’ll gain some valuable insights regarding linear distortion of FM and PM.

Figure 5.2–2 represents an angle-modulated bandpass signal $x_c(t)$ applied to a linear system with transfer function $H(f)$, producing the output $y_c(t)$. The constant-amplitude property of $x_c(t)$ allows us to write the lowpass equivalent input

$$x_{lp}(t) = \frac{1}{2} A_c e^{j\phi(t)}$$

(8)

where $\phi(t)$ contains the message information. In terms of $X_{lp}(f)$, the lowpass equivalent output spectrum is

$$Y_{lp}(f) = H(f + f_c) u(f + f_c) X_{lp}(f)$$

(9)

Lowpass-to-bandpass transformation finally gives the output as

$$y_c(t) = 2 \text{ Re} [y_{lp}(t) e^{j\omega t}]$$

(10)

While this method appears simple on paper, the calculations of $X_{lp}(f) = \mathcal{F}[x_{lp}(t)]$ and $y_{lp}(t) = \mathcal{F}^{-1}[Y_{lp}(f)]$ generally prove to be major stumbling blocks. Computer-aided numerical techniques are then necessary.

One of the few cases for which Eqs. (8)–(10) yield closed-form results is the transfer function plotted in Fig. 5.2–3. The gain $|H(f)|$ equals K_0 at f_c and increases (or decreases) linearly with slope K_1/f_c; the phase-shift curve corresponds to carrier

![Figure 5.2–2](angle_modulation_linear_system.png)

Figure 5.2–2 Angle modulation applied to a linear system.

![Figure 5.2–3](transfer_function.png)

Figure 5.2–3 Transfer function of system in Fig. 5.2–2.
delay \(t_0 \) and group delay \(t_1 \), as discussed in Example 4.1–1. The lowpass equivalent of \(H(f) \) is

\[
H(f + f_c) u(f + f_c) = \left(K_0 + \frac{K_1 f}{f_c} \right) e^{-2\pi i t_0 f} e^{-2\pi i t_1 f}
\]

and Eq. (9) becomes

\[
Y_{\phi}(f) = K_0 e^{-j\omega_c t_0} [X_{\phi}(f) e^{-2\pi i t_1 f}] + \frac{K_1}{j\omega_c} e^{-j\omega_c t_1} [j2\pi f X_{\phi}(f) e^{-2\pi i t_1 f}]
\]

Invoking the time-delay and differentiation theorems for we see that

\[
y_{\phi}(t) = K_0 e^{-j\omega_c t_0} \hat{x}_{\phi}(t - t_1) + \frac{K_1}{j\omega_c} e^{-j\omega_c t_1} \hat{\phi}(t - t_1)
\]

where

\[
\hat{x}_{\phi}(t - t_1) = \frac{d}{dt} \left[\frac{1}{2} A_c e^{j(\phi(t) - t_1)} \right] = \frac{j}{2} A_c \hat{\phi}(t - t_1) e^{j(\phi(t) - t_1)}
\]

obtained from Eq. (8).

Inserting these expressions into Eq. (10) gives the output signal

\[
y_c(t) = A(t) \cos [\omega_c(t - t_0) + \phi(t - t_1)] \tag{11a}
\]

which has a time-varying amplitude

\[
A(t) = A_c \left[K_0 + \frac{K_1}{\omega_c} \hat{\phi}(t - t_1) \right] \tag{11b}
\]

In the case of an FM input, \(\dot{\phi}(t) = 2\pi f_\Delta x(t) \) so

\[
A(t) = A_c \left[K_0 + \frac{K_1 f_\Delta}{f_c} x(t - t_1) \right] \tag{12}
\]

Equation (12) has the same form as the envelope of an AM wave with \(\mu = K_1 f_\Delta / K_0 f_c \).

We thus conclude that \(|H(f)| \) in Fig. 5.2–3 produces **FM-to-AM conversion**, along with the carrier delay \(t_0 \) and group delay \(t_1 \) produced by \(\arg H(f) \). In practice the AM variations are minimized by the use of a limiter and filter in the FM receiver, as will be shown shortly. (By the way, a second look at Example 4.2–2 reveals that amplitude distortion of an AM wave can produce AM-to-PM conversion.)

FM-to-AM conversion does not present an insurmountable problem for FM or PM transmission, as long as \(\phi(t) \) suffers no ill effects other than time delay. We therefore ignore the amplitude distortion from any reasonably smooth gain curve. But delay distortion from a nonlinear phase-shift curve can be quite severe and must be equalized in order to preserve the message information.

A simplified approach to phase-distortion effects is provided by the quasi-static approximation which assumes that the instantaneous frequency of an FM wave with \(f_\Delta \gg W \) varies so slowly compared to \(1/W \) that \(x_c(t) \) looks more or less like an
ordinary sinusoid at frequency $f(t) = f_c + f_\Delta x(t)$. For if the system’s response to a carrier-frequency sinusoid is

$$y_c(t) = A_c|H(f_c)| \cos \left[\omega_c t + \arg H(f_c) \right]$$

and if $x_c(t)$ has a slowly changing instantaneous frequency $f(t)$, then

$$y_c(t) = A_c|H[f(t)]| \cos \{ \omega_c t + \phi(t) + \arg H[f(t)] \} \tag{13}$$

It can be shown that this approximation requires the condition

$$|\hat{\phi}(t)|_{\text{max}} \left| \frac{1}{H(f)} \frac{d^2H(f)}{df^2} \right|_{\text{max}} \ll 8\pi^2 \tag{14}$$

in which $|\hat{\phi}(t)| \leq 4\pi^2 f_\Delta W$ for tone-modulated FM with $f_m \leq W$. If $H(f)$ represents a single-tuned bandpass filter with 3 dB bandwidth B, then the second term in Eq. (14) equals $8/B^2$ and the condition becomes $4f_\Delta W/B^2 \ll 1$ which is satisfied by the transmission bandwidth requirement $B \geq B_T$.

Now suppose that Eq. (14) holds and the system has a nonlinear phase shift such as $\arg H(f) = \alpha f^2$, where α is a constant. Upon substituting $f(t) = f_c + \phi(t)/2\pi$ we get

$$\arg H[f(t)] = \alpha f_c^2 + \frac{\alpha f_c}{2\pi} \hat{\phi}(t) + \frac{\alpha}{4\pi^2} \hat{\phi}^2(t)$$

Thus, the total phase in Eq. (13) will be distorted by the addition of $\hat{\phi}(t)$ and $\hat{\phi}^2(t)$.

Let $|H(f)| = 1$ and $\arg H(f) = -2\pi t_1(f - f_c)$. Show that Eqs. (11) and (13) give the same result with $\phi(t) = \beta \sin \omega_m t$ provided that $\omega_m t_1 \ll \pi$. \hfill EXERCISE 5.2–2

Nonlinear Distortion and Limiters

Amplitude distortion of an FM wave produces FM-to-AM conversion. Here we’ll show that the resulting AM can be eliminated through the use of controlled nonlinear distortion and filtering.

For purposes of analysis, let the input signal in Fig. 5.2–4 be

$$v_{in}(t) = A(t) \cos \theta_c(t)$$

where $\theta_c(t) = \omega_c t + \phi(t)$ and $A(t)$ is the amplitude. The nonlinear element is assumed to be memoryless—meaning no energy storage—so the input and output are related by an instantaneous nonlinear transfer characteristic $v_{out} = T[v_{in}]$. We’ll also assume for convenience that $T[0] = 0$.

Although $v_{in}(t)$ is not necessarily periodic in time, it may be viewed as a periodic function of θ_c with period 2π. (Try to visualize plotting v_{in} versus θ_c with
Nonlinear system to reduce envelope variations (AM).

Figure 5.2–4 Nonlinear system to reduce envelope variations [AM].

time held fixed.) Likewise, the output is a periodic function of \(\theta_c \) and can be expanded in the trigonometric Fourier series

\[
v_{\text{out}} = \sum_{n=1}^{\infty} |2a_n| \cos (n \theta_c + \arg a_n)
\]

where

\[
a_n = \frac{1}{2\pi} \int_{2\pi} T[v_{\text{in}}] e^{-in\theta_c} d\theta_c
\]

The time variable \(t \) does not appear explicitly here, but \(v_{\text{out}} \) depends on \(t \) via the time-variation of \(u_c \). Additionally, the coefficients \(a_n \) may be functions of time when the amplitude of \(v_{\text{in}} \) has time variations.

But we’ll first consider the case of an undistorted FM input, so \(A(t) \) equals the constant \(A_c \) and all the \(a_n \) are constants. Hence, writing out Eq. (15a) term by term with \(t \) explicitly included, we have

\[
v_{\text{out}}(t) = |2a_1| \cos [\omega_c t + \phi(t) + \arg a_1] + |2a_2| \cos [2\omega_c t + 2\phi(t) + \arg a_2] + \cdots
\]

This expression reveals that the nonlinear distortion produces additional FM waves at harmonics of the carrier frequency, the \(n \)th harmonic having constant amplitude \(|2a_n| \) and phase modulation \(n\phi(t) \) plus a constant phase shift \(\arg a_n \).

If these waves don’t overlap in the frequency domain, the undistorted input can be recovered by applying the distorted output to a bandpass filter. Thus, we say that FM enjoys considerable immunity from the effects of memoryless nonlinear distortion.

Now let’s return to FM with unwanted amplitude variations \(A(t) \). Those variations can be flattened out by an \textit{ideal hard limiter} or \textit{clipper} whose transfer characteristic is plotted in Fig. 5.2–5a. Figure 5.2–5b shows a clipper circuit that uses a comparator or high-gain operational amplifier such that any input voltages greater or less than zero cause the output to reach either the positive or negative power supply rails.

The clipper output looks essentially like a square wave, since \(T[v_{\text{in}}] = V_0 \, \text{sgn} \, v_{\text{in}} \) and

\[
v_{\text{out}} = \begin{cases} +V_0 & v_{\text{in}} > 0 \\ -V_0 & v_{\text{in}} < 0 \end{cases}
\]
Figure 5.2–5 Hard limiter: (a) transfer characteristic; (b) circuit realization with Zener diodes.

The coefficients are then found from Eq. (15b) to be

\[
a_n = \begin{cases}
2V_0/\pi n & n = 1, 5, 9, \\
-2V_0/\pi n & n = 3, 7, 11, \\
0 & n = 2, 4, 6, \ldots
\end{cases}
\]

which are independent of time because the amplitude \(A(t) \) does not affect the sign of \(v_{in} \). Therefore,

\[
v_{out}(t) = \frac{4V_0}{\pi} \cos[\omega t + \phi(t)] - \frac{4V_0}{3\pi} \cos [3\omega t + 3\phi(t)] + \cdots
\]

and bandpass filtering yields a constant-amplitude FM wave if the components of \(v_{out}(t) \) have no spectral overlap. Incidentally, this analysis lends support to the previous statement that the message information resides entirely in the zero-crossings of an FM or PM wave.

Figure 5.2–6 summarizes our results. The limiter plus BPF in part \(\textbf{a} \) removes unwanted amplitude variations from an AM or PM wave, and would be used in a receiver. The nonlinear element in part \(\textbf{b} \) distorts a constant-amplitude wave, but the BPF passes only the undistorted term at the \(n \)th harmonic. This combination acts as a frequency multiplier if \(n > 1 \), and is used in certain types of transmitters.

Figure 5.2–6 Nonlinear processing circuits: (a) amplitude limiter; (b) frequency multiplier.
The operating principles of several methods for the generation and detection of exponential modulation are presented in this section. Other FM and PM systems that involve phase-locked loops will be mentioned in Sect. 7.3. Additional methods and information regarding specific circuit designs can be found in the radio electronics texts cited at the back of the book.

When considering equipment for angle modulation, you should keep in mind that the instantaneous phase or frequency varies linearly with the message waveform. Devices are thus required that produce or are sensitive to phase or frequency variation in a linear fashion. Such characteristics can be approximated in a variety of ways, but it is sometimes difficult to obtain a suitably linear relationship over a wide operating range.

On the other hand, the constant-amplitude property of angle modulation is a definite advantage from the hardware viewpoint. For one thing, the designer need not worry about excessive power dissipation or high-voltage breakdown due to extreme envelope peaks. For another, the relative immunity to nonlinear distortion allows the use of nonlinear electronic devices that would hopelessly distort a signal with linear

EXAMPLE 5.2–1 FM Limiter

Consider the FM waveform in Fig. 5.2–7a. Figure 5.2–7b is the version that has been corrupted by additive noise. We input the signal of Fig. 5.2–7b to the limiter of Fig. 5.2–5, which outputs the square-wave signal shown in Fig. 5.2–7c. Although the square wave has some glitches, the amplitude variations have largely been removed. We then input the square-wave signal to a bandpass filter, giving us a “cleaned up” FM signal as shown in Fig. 5.2–7d. The filter not only removes the high-frequency components of the square wave but also “smooths out” the glitches. While the resultant signal in Fig. 5.2–7d may have some slight distortion, as compared to the original signal in Fig. 5.2–7a, most of the noise of Fig. 5.2–7b has been removed.

![Figure 5.2–7](image-url)

Figure 5.2–7 FM signal processing using a hard limiter: (a) FM signal without noise; (b) FM signal corrupted by noise; (c) output from limiter; (d) output from bandpass filter.

5.3 GENERATION AND DETECTION OF FM AND PM

The operating principles of several methods for the generation and detection of exponential modulation are presented in this section. Other FM and PM systems that involve phase-locked loops will be mentioned in Sect. 7.3. Additional methods and information regarding specific circuit designs can be found in the radio electronics texts cited at the back of the book.

When considering equipment for angle modulation, you should keep in mind that the instantaneous phase or frequency varies linearly with the message waveform. Devices are thus required that produce or are sensitive to phase or frequency variation in a linear fashion. Such characteristics can be approximated in a variety of ways, but it is sometimes difficult to obtain a suitably linear relationship over a wide operating range.

On the other hand, the constant-amplitude property of angle modulation is a definite advantage from the hardware viewpoint. For one thing, the designer need not worry about excessive power dissipation or high-voltage breakdown due to extreme envelope peaks. For another, the relative immunity to nonlinear distortion allows the use of nonlinear electronic devices that would hopelessly distort a signal with linear
modulation. Consequently, considerable latitude is possible in the design and selection of equipment. As a case in point, the microwave repeater links of long-distance telephone communications employ FM primarily because the wideband linear amplifiers required for amplitude modulation are unavailable or too inefficient at microwave frequencies.

Direct FM and VCOs

Conceptually, direct FM is straightforward and requires nothing more than a *voltage-controlled oscillator* (VCO) whose oscillation frequency has a linear dependence on applied voltage. It’s possible to modulate a conventional tuned-circuit oscillator by introducing a *variable-reactance* element as part of the LC parallel resonant circuit. If the equivalent capacitance has a time dependence of the form

\[C(t) = C_0 - C_X(t) \]

and if \(C_X(t) \) is “small enough” and “slow enough,” then the oscillator produces

\[X_C(t) = A_C \cos \theta_C(t) \]

where

\[\dot{\theta}_C(t) = \frac{1}{\sqrt{LC(t)}} = \frac{1}{\sqrt{LC_0}} \left[1 - \frac{C}{C_0} x(t) \right]^{-1/2} \]

Letting \(\omega_c = 1/\sqrt{LC_0} \) and assuming \(|(C/C_0)X(t)| \ll 1\), the binomial series expansion gives \(\dot{\theta}_C(t) \approx \omega_c \left[1 + (C/2C_0)X(t) \right] \), or

\[\theta_C(t) \approx 2\pi f_c t + 2\pi \frac{C}{2C_0} \int_0^t x(\lambda) d\lambda \]

(1)

which constitutes frequency modulation with \(f_\Delta = (C/2C_0)f_c \). Since \(|X(t)| \ll 1\), the approximation is good to within 1 percent when \(C/C_0 < 0.013 \) so the attainable frequency deviation is limited by

\[f_\Delta = \frac{C}{2C_0} f_c \leq 0.006 f_c \]

(2)

This limitation quantifies our meaning of \(C_X(t) \) being “small” and seldom imposes a design hardship. Similarly, the usual condition \(W \ll f_c \) ensures that \(C_X(t) \) is “slow enough.”

Figure 5.3–1 shows a tuned-circuit oscillator with a varactor diode biased to get \(C_X(t) \). The input transformer, RF choke (RFC), and DC block serve to isolate the low-frequency, high-frequency, and DC voltages. The major disadvantage with this type of circuit is that the carrier frequency tends to drift and must be stabilized by rather elaborate feedback frequency control. For this reason, many older FM transmitters are of the indirect type.

Linear integrated-circuit (IC) voltage-controlled oscillators can generate a direct FM output waveform that is relatively stable and accurate. However, in order to operate, IC VCOs require several additional external components to function.
Because of their low output power, they are most suitable for applications such as cordless telephones. Figure 5.3–2 shows the schematic diagram for a direct FM transmitter using the Motorola MC1376, an 8-pin IC FM modulator. The MC1376 operates with carrier frequencies between 1.4 and 14 MHz. The VCO is fairly linear between 2 and 4 volts and can produce a peak frequency deviation of approximately 150 kHz. Higher power outputs can be achieved by utilizing an auxiliary transistor connected to a 12-V power supply.

Phase Modulators and Indirect FM

Although we seldom transmit a PM wave, we’re still interested in phase modulators because (1) the implementation is relatively easy; (2) the carrier can be supplied by a stable frequency source, such as a crystal-controlled oscillator; and (3) integrating the input signal to a phase modulator produces a frequency-modulated output.

Figure 5.3–3 depicts a narrowband phase modulator derived from the approximation $x_c(t) = A_c \cos \omega_c t - A_c \phi_x x(t) \sin \omega_c t$—see Eqs. (9) and (11), Sect. 5.1. The evident simplicity of this modulator depends upon the approximation condition $|\phi_x x(t)| \ll 1$ radian, and phase deviations greater than 10° result in distorted modulation.
Larger phase shifts can be achieved by the **switching-circuit** modulator in Fig. 5.3–4. The typical waveforms shown in Fig. 5.3–4 help explain the operation. The modulating signal and a sawtooth wave at twice the carrier frequency are applied to a comparator. The comparator’s output voltage goes high whenever \(x(t) \) exceeds the sawtooth wave, and the flip-flop switches states at each rising edge of a comparator pulse. The flip-flop thus produces a phase-modulated square wave (like the output of a hard limiter), and bandpass filtering yields \(x_c(t) \).

Now consider the indirect FM transmitter diagrammed in Fig. 5.3–5. The integrator and phase modulator constitute a narrowband frequency modulator that generates an initial NBFM signal with instantaneous frequency

\[
f_f(t) = f_c + \frac{\phi_\Delta}{2\pi T} x(t)
\]

Figure 5.3–3 Narrowband phase modulator.

Figure 5.3–4 Switching-circuit phase modulator: (a) schematic diagram (b) waveforms.
where T is the integrator’s proportionality constant. The initial frequency deviation therefore equals $\phi_\Delta/2\pi T$ and must be increased to the desired value f_Δ by a **frequency multiplier**.

The frequency multiplier produces n-fold multiplication of instantaneous frequency, so

$$f_\Delta(t) = nf_c(t) = nf_{c_1} + f_\Delta x(t)$$ \hspace{1cm} (3)

where

$$f_\Delta = n \left(\frac{\phi_\Delta}{2\pi T} \right)$$

Typical frequency multipliers consist of a chain of doublers and triplers, each unit constructed as shown in Fig. 5.2–6b. Note that this multiplication is a subtle process, affecting the range of frequency variation but not the rate. Frequency multiplication of a tone-modulated signal, for instance, increases the carrier frequency and modulation index but not the modulation frequency, so the amplitude of the sideband lines is altered while the line spacing remains the same. (Compare the spectra in Fig. 5.1–7a with $\beta = 5$ and $\beta = 10$.)

The amount of multiplication required to get f_Δ usually results in nf_{c_1} being much higher than the desired carrier frequency. Hence, Fig. 5.3–5 includes a frequency converter that translates the spectrum intact down to $f_c = |nf_{c_1} \pm f_{LO}|$ and the final instantaneous frequency becomes $f(t) = f_c + f_\Delta x(t)$. (The frequency conversion may actually be performed in the middle of the multiplier chain to keep the frequencies at reasonable values.) The last system component is a **power amplifier**, since all of the previous operations must be carried out at low power levels. Note the similarity to the ring modulator discussed in Sect. 4.3 that is used to generate DSB signals.

EXAMPLE 5.3–1 \hspace{1cm} **Indirect FM**

The indirect FM system originally designed by Armstrong employed a narrowband phase modulator in the form of Fig. 5.3–3 and produced a minute initial frequency deviation. As an illustration with representative numbers, suppose that $\phi_\Delta/2\pi T \approx 15$ Hz (which ensures negligible modulation distortion) and that $f_{c_1} = 200$ kHz (which falls near the lower limit of practical crystal-oscillator circuits). A broadcast
FM output with $f_\Delta=75$ kHz requires frequency multiplication by the factor $n \approx 75,000 \div 15 = 5000$. This could be achieved with a chain of four triplers and six doublers, so $n = 3^4 \times 2^6 = 5184$. But $nf_c \approx 5000 \times 200$ kHz = 1000 MHz, and a down-converter with $f_{LO} = 900$ MHz is needed to put f_c in the FM band of 88–108 MHz.

Show that the phase at the output of Fig. 5.3–3 is given by

$$\phi(t) = \phi_\Delta x(t) - \frac{1}{3} \phi_\Delta^3 x^3(t) + \frac{1}{5} \phi_\Delta^5 x^5(t) + \cdots$$

Hence, $\phi(t)$ contains odd-harmonic distortion unless ϕ_Δ is quite small.

Triangular-Wave FM

Triangular-wave FM is a modern and rather novel method for frequency modulation that overcomes the inherent problems of conventional VCOs and indirect FM systems. The method generates virtually distortionless modulation at carrier frequencies up to 30 MHz, and is particularly well suited for instrumentation applications.

We’ll define triangular FM by working backwards from $x_c(t) = A_c \cos \theta_c(t)$ with

$$\theta_c(t) = \omega_c t + \phi(t) - \phi(0)$$

where the initial phase shift $-\phi(0)$ has been included so that $\theta_c(0) = 0$. This phase shift does not affect the instantaneous frequency

$$f(t) = \frac{1}{2\pi} \dot{\theta}_c(t) = f_c + f_\Delta x(t)$$

Expressed in terms of $\theta_c(t)$, a unit-amplitude triangular FM signal is

$$x_\Delta(t) = \frac{2}{\pi} \arcsin [\cos \theta_c(t)]$$

which defines a triangular waveform when $\phi(t) = 0$. Even with $\phi(t) \neq 0$, Eq. (5a) represents a periodic triangular function of θ_c, as plotted in Fig. 5.3–6a. Thus,

$$x_\Delta = \begin{cases}
1 - \frac{2}{\pi} \theta_c & 0 < \theta_c < \pi \\
-3 + \frac{2}{\pi} \theta_c & \pi < \theta_c < 2\pi
\end{cases}$$

and so forth for $\theta_c > 2\pi$.

Figure 5.3–6b shows the block diagram of a system that produces $x_\Delta(t)$ from the voltage

$$v(t) = \frac{2}{\pi} \dot{\theta}_c(t) = 4[f_c + f_\Delta x(t)]$$
which is readily derived from the message waveform \(x(t) \). The system consists of an analog inverter, an integrator, and a Schmitt trigger controlling an electronic switch. The trigger puts the switch in the upper position whenever \(x(t) \) increases to \(1 \) and puts the switch in the lower position whenever \(x(t) \) decreases to \(-1 \).

Suppose the system starts operating at \(t = 0 \) with \(x(0) = +1 \) and the switch in the upper position. Then, for \(0 > t > t_1 \),

\[
x_A(t) = 1 - \int_0^1 v(\lambda) \, d\lambda = 1 - \frac{2}{\pi} \left[\theta_c(t) - \theta_c(0) \right]
\]

so \(x_A(t) \) traces out the downward ramp in Fig. 5.3-6(a) until time \(t_1 \) when \(x_A(t_1) = -1 \), corresponding to \(\theta_c(t_1) = \pi \). Now the trigger throws the switch to the lower position and

\[
x_A(t) = -1 + \int_{t_1}^1 v(\lambda) \, d\lambda = -1 + \frac{2}{\pi} \left[\theta_c(t) - \theta_c(t_1) \right]
\]

so \(x_A(t) \) traces out the upward ramp in Fig. 5.3-6(a). The upward ramp continues until time \(t_2 \) when \(\theta_c(t_2) = 2\pi \) and \(x_A(t_2) = +1 \). The switch then triggers back to the upper position, and the operating cycle goes on periodically for \(t > t_2 \).
5.3 Generation and Detection of FM and PM

A sinusoidal FM wave is obtained from \(x_A(t) \) using a nonlinear waveshaper with transfer characteristics
\[T[x_A(t)] = A_c \sin \left(\frac{\pi}{2} x_A(t)\right), \]
which performs the inverse of Eq. (5a). Or \(x_A(t) \) can be applied to a hard limiter to produce square-wave FM. A laboratory test generator might have all three outputs available.

Frequency Detection

A **frequency detector**, often called a **discriminator**, produces an output voltage that should vary linearly with the instantaneous frequency of the input. There are perhaps as many different circuit designs for frequency detection as there are designers who have considered the problem. However, almost every circuit falls into one of the following four operational categories:

1. FM-to-AM conversion
2. Phase-shift discrimination
3. Zero-crossing detection
4. Frequency feedback

We’ll look at illustrative examples from the first three categories, postponing frequency feedback to Sect. 7.3. Analog phase detection is not discussed here because it’s seldom needed in practice and, if needed, can be accomplished by integrating the output of a frequency detector.

Any device or circuit whose output equals the time derivative of the input produces **FM-to-AM conversion**. To be more specific, let \(x_c(t) = A_c \cos \theta_c(t) \) with \(\dot{\theta}_c(t) = 2\pi f_c + f_x(t) \); then

\[
x_c(t) = -A_c \dot{\theta}_c(t) \sin \theta_c(t)
= 2\pi A_c [f_c + f_x(t)] \sin [\theta_c(t) \pm 180^\circ]
\]

Hence, an **envelope detector** with input \(x_c(t) \) yields an output proportional to \(f(t) = f_c + f_x(t) \).

Figure 5.3–7a diagrams a conceptual frequency detector based on Eq. (6). The diagram includes a limiter at the input to remove any spurious amplitude variations from \(x_c(t) \) before they reach the envelope detector. It also includes a DC block to remove the constant carrier-frequency offset from the output signal. Typical waveforms are sketched in Fig. 5.3–7b taking the case of tone modulation. A LPF has been included after the limiter to remove waveform discontinuities and thereby facilitate differentiation. However with slope detection, filtering and differentiation occur in the same stage.

For actual hardware implementation of FM-to-AM conversion, we draw upon the fact that an ideal differentiator has \(|H(f)| = 2\pi f \). Slightly above or below resonance, the transfer function of an ordinary tuned circuit shown in Fig. 5.3–8a approximates the desired linear amplitude response over a small frequency range. Thus, for instance, a detuned AM receiver will roughly demodulate FM via **slope detection**.

Extended linearity is achieved by the **balanced discriminator** circuit in Fig. 5.3–8b. A balanced discriminator includes two resonant circuits, one tuned above \(f_c \) and the other below, and the output equals the difference of the two
envelopes. The resulting frequency-to-voltage characteristic takes the form of the well-known S curve in Fig. 5.3–8c. No DC block is needed, since the carrier-frequency offset cancels out, and the circuit has good performance at low modulating frequencies. The balanced configuration easily adapts to the microwave band, with resonant cavities serving as tuned circuits and crystal diodes for envelope detectors.

Phase-shift discriminators involve circuits with linear phase response, in contrast to the linear amplitude response of slope detection. The underlying principle comes from an approximation for time differentiation, namely

\[\phi(t) = \frac{1}{t_i} [v(t) - v(t - t_i)] \]

providing that \(t_i \) is small compared to the variation of \(v(t) \). Now an FM wave has \(\phi(t) = 2\pi f_\Delta x(t) \) so

\[\phi(t) - \phi(t - t_i) = t_i \phi(t) = 2\pi f_\Delta t_i x(t) \]
The term $\phi(t - t_1)$ can be obtained with the help of a delay line or, equivalently, a linear phase-shift network.

Figure 5.3–9 represents a phase-shift discriminator built with a network having group delay t_1 and carrier delay t_0 such that $\omega_c t_0 = 90^\circ$—which accounts for the name **quadrature detector**. From Eq. (11), Sect. 5.2, the phase-shifted signal is proportional to $\cos[\omega_c t - 90^\circ + \phi(t - t_1)] = \sin [\omega_c t + \phi(t - t_1)]$. Multiplication by $\cos [\omega_c t + \phi(t)]$ followed by lowpass filtering yields an output proportional to

$$\sin[\phi(t) - \phi(t - t_1)] = \phi(t) - \phi(t - t_1)$$
assuming \(t_1 \) is small enough that \(|\phi(t) - \phi(t - t_1)| \ll \pi\). Therefore,

\[
y_D(t) = K_D f_x(t)
\]

where the detection constant \(K_D \) includes \(t_1 \). Despite these approximations, a quadrature detector provides better linearity than a balanced discriminator and is often found in high-quality receivers.

Other phase-shift circuit realizations include the Foster-Seely discriminator and the popular ratio detector. The latter is particularly ingenious and economical, for it combines the operations of limiting and demodulation into one unit. See Tomasi (1998, Chap. 7) for further details.

Lastly, Fig. 5.3–10 gives the diagram and waveforms for a simplified zero-crossing detector. The square-wave FM signal from a hard limiter triggers a monostable pulse generator, which produces a short pulse of fixed amplitude \(A \) and duration \(\tau \) at each upward (or downward) zero crossing of the FM wave. If we invoke the quasi-static viewpoint and consider a time interval \(T \) such that \(W \ll 1/T \ll f_c \), the monostable output \(v(t) \) looks like a rectangular pulse train with nearly constant period \(1/f(t) \). Thus, there are \(n_T = T f(t) \) pulses in this interval, and continually integrating \(v(t) \) over the past \(T \) seconds yields

\[
\frac{1}{T} \int_{t-T}^{t} v(\lambda) \, d\lambda = \frac{1}{T} n_T A \tau = A \tau f(t)
\]

which becomes \(y_D(t) = K_D f_x(t) \) after the DC block.

Commercial zero-crossing detectors may have better than 0.1 percent linearity and operate at center frequencies from 1 Hz to 10 MHz. A divide-by-ten counter inserted after the hard limiter extends the range up to 100 MHz.

Today most FM communication devices utilize linear integrated circuits for FM detection. Their reliability, small size, and ease of design have fueled the growth of portable two-way FM and cellular radio communications systems. Phase-locked loops and FM detection will be discussed in Sect. 7.3.

EXERCISE 5.3–2

Given a delay line with time delay \(t_0 \ll 1/f_c \), devise a frequency detector based on Eqs. (6) and (7).
5.4 INTERFERENCE

Interference refers to the contamination of an information-bearing signal by another similar signal, usually from a human source. This occurs in radio communication when the receiving antenna picks up two or more signals in the same frequency band. Interference may also result from multipath propagation, or from electromagnetic coupling between transmission cables. Regardless of the cause, severe interference prevents successful recovery of the message information.

Our study of interference begins with the simple but nonetheless informative case of interfering sinusoids, representing unmodulated carrier waves. This simplified case helps bring out the differences between interference effects in AM, FM, and PM. Then we’ll see how the technique of **deemphasis filtering** improves FM performance in the face of interference. We conclude with a brief examination of the FM **capture effect**.

Interfering Sinusoids

Consider a receiver tuned to some carrier frequency \(f_c \). Let the total received signal be

\[
v(t) = A_c \cos \omega_c t + A_i \cos [(\omega_c + \omega_i)t + \phi_i]
\]

The first term represents the desired signal as an unmodulated carrier, while the second term is an interfering carrier with amplitude \(A_i \), frequency \(f_c + f_i \), and relative phase angle \(\phi_i \).

To put \(v(t) \) in the envelope-and-phase form \(v(t) = A_v(t) \cos [\omega_t t + \phi_v(t)] \), we’ll introduce

\[
\rho \triangleq A_i/A_c \quad \theta_i(t) \triangleq \omega_i t + \phi_i
\]

(1)
Hence, $A_i = \rho A_c$ and the phasor construction in Fig. 5.4–1 gives

$$A_c(t) = A_c \sqrt{1 + \rho^2 + 2\rho \cos \theta_i(t)}$$

$$\phi_c(t) = \arctan \left(\frac{\rho \sin \theta_i(t)}{1 + \rho \cos \theta_i(t)} \right)$$

(2)

These expressions show that interfering sinusoids produce both amplitude and phase modulation. In fact, if $\rho \ll 1$ then

$$A_c(t) = A_c[1 + \rho \cos (\omega_i t + \phi_i)]$$

$$\phi_c(t) = \rho \sin (\omega_i t + \phi_i)$$

which looks like tone modulation at frequency f_i with AM modulation index $\mu = \rho$ and FM or PM modulation index $\beta = \rho$. At the other extreme, if $\rho \gg 1$ then

$$A_c(t) = A_c[1 + \rho^{-1} \cos (\omega_i t + \phi_i)]$$

$$\phi_c(t) = \omega_i t + \phi_i$$

so the envelope still has tone modulation but the phase corresponds to a shifted carrier frequency $f_c + f_i$ plus the constant ϕ_i.

Next we investigate what happens when $v(t)$ is applied to an ideal envelope, phase, or frequency demodulator with detection constant K_D. We’ll take the weak interference case ($\rho \ll 1$) and use the approximation in Eq. (3) with $\phi_i = 0$. Thus, the demodulated output is

$$y_D(t) = \begin{cases} K_D \left(1 + \rho \cos \omega_i t \right) & \text{AM} \\ K_D \rho \sin \omega_i t & \text{PM} \\ K_D \rho f_i \cos \omega_i t & \text{FM} \end{cases}$$

(4)

provided that $|f_i| \leq W$—otherwise, the lowpass filter at the output of the demodulator would reject $|f_i| > W$. The constant term in the AM result would be removed if the demodulator includes a DC block. As written, this result also holds for synchronous detection in DSB and SSB systems since we’ve assumed $\phi_i = 0$. The multiplicative factor f_i in the FM result comes from the instantaneous frequency deviation $\phi_v(t)/2\pi$.

Equation (4) reveals that weak interference in a linear modulation system or phase modulation system produces a spurious output tone with amplitude proportional
to $\rho = A_i / A_c$, independent of f_i. But the tone amplitude is proportional to ρf_i in an FM system. Consequently, FM will be less vulnerable to interference from a cochannel signal having the same carrier frequency, so $f_i \approx 0$, and more vulnerable to adjacent-channel interference ($f_i \neq 0$). Figure 5.4–2 illustrates this difference in the form of a plot of demodulated interference amplitude versus $|f_i|$. (The crossover point would correspond to $|f_i| = 1$ Hz if all three detector constants had the same numerical value.)

The analysis of demodulated interference becomes a much more difficult task with arbitrary values of ρ and/or modulated carriers. We’ll return to that problem after exploring the implications of Fig. 5.4–2.

EXERCISE 5.4–1

Let $A_i = A_c$ so $\rho = 1$ in Eq. (2). Take $\phi_i = 0$ and use trigonometric identities to show that

$$A_v(t) = 2A_c |\cos (\omega_t t/2)| \quad \phi_v(t) = \omega_t t/2$$

Then sketch the demodulated output waveform for envelope, phase, and frequency detection assuming $f_i \ll W$.

Deemphasis and Preemphasis Filtering

The fact that detected FM interference is most severe at large values of $|f_i|$ suggests a method for improving system performance with selective postdetection filtering, called deemphasis filtering. Suppose the demodulator is followed by a lowpass filter having an amplitude ratio that begins to decrease gradually below W; this will deemphasize the high-frequency portion of the message band and thereby reduce the more serious interference. A sharp-cutoff (ideal) lowpass filter is still required to remove any residual components above W, so the complete demodulator consists of a frequency detector, deemphasis filter, and lowpass filter, as in Fig. 5.4–3.

Obviously deemphasis filtering also attenuates the high-frequency components of the message itself, causing distortion of the output signal unless corrective measures are taken. But it’s a simple matter to compensate for deemphasis distortion by predistorting or preemphasizing the modulating signal at the transmitter before modulation. The preemphasis and deemphasis filter characteristics should be related by
We preemphasize the message before modulation (where the interference is absent) so we can deemphasize the interference relative to the message after demodulation.

Preemphasis/deemphasis filtering offers potential advantages whenever undesired contaminations tend to predominate at certain portions of the message band. For instance, the Dolby system for tape recording dynamically adjusts the amount of preemphasis/deemphasis in inverse proportion to the high-frequency signal content; see Stremler (1990, App. F) for details. However, little is gained from deemphasizing phase modulation or linear modulation because the demodulated interference amplitude does not depend on the frequency.

The FM deemphasis filter is usually a simple first-order network having

$$H_{de}(f) = \frac{1}{H_{de}(f)} |f| \leq W$$ \hspace{1cm} (5)

to yield net undistorted transmission. In essence,

Figure 5.4–3 Complete FM demodulator.

$$H_{pe}(f) = \left[1 + j \left(\frac{f}{B_{de}} \right) \right]^{-1} = \begin{cases} \frac{1}{B_{de}} & |f| \ll B_{de} \\ \frac{f}{|f|} & |f| \gg B_{de} \end{cases}$$ \hspace{1cm} (6)

where the 3 dB bandwidth B_{de} is considerably less than the message bandwidth W. Since the interference amplitude increases linearly with $|f_i|$ in the absence of filtering, the deemphasized interference response is $|H_{de}(f_i)| \times |f|$, as sketched in Fig. 5.4–4. Note that, like PM, this becomes constant for $|f| \gg B_{de}$. Therefore, FM can be superior to PM for both adjacent-channel and cochannel interference.

At the transmitting end, the corresponding preemphasis filter function should be

$$H_{pe}(f) = \left[1 + j \left(\frac{f}{B_{de}} \right) \right] = \begin{cases} \frac{1}{B_{de}} & |f| \ll B_{de} \\ \frac{f}{|f|} & |f| \gg B_{de} \end{cases}$$ \hspace{1cm} (7)

which has little effect on the lower message frequencies. At higher frequencies, however, the filter acts as a differentiator, the output spectrum being proportional to $fX(f)$ for $|f| \gg B_{de}$. But differentiating a signal before frequency modulation is equivalent to phase modulation! Hence, preemphasized FM is actually a combination of
FM and PM, combining the advantages of both with respect to interference. As might be expected, this turns out to be equally effective for reducing noise, as will be discussed in more detail in Chap. 10.

Referring to $H_{pe}(f)$ as given above, we see that the amplitude of the maximum modulating frequency is increased by a factor of W/B_{de}, which means that the frequency deviation is increased by this same factor. Generally speaking, the increased deviation requires a greater transmission bandwidth, so the preemphasis-deemphasis improvement is not without price. Fortunately, many modulating signals of interest, particularly audio signals, have relatively less energy in the high-frequency end of the message band, and therefore the higher frequency components do not generally develop maximum deviation, the transmission bandwidth being dictated by lower components of larger amplitude. Adding high-frequency preemphasis tends to equalize the message spectrum so that all components require the same bandwidth. Under this condition, the transmission bandwidth need not be increased.

Deemphasis and Preemphasis

Typical deemphasis and preemphasis networks for commercial FM in North America are shown in Fig. 5.4–5 along with their Bode diagrams. The RC time constant in both circuits equals 75 μs, so $B_{de} = 1/2\pi RC \approx 2.1$ kHz. The preemphasis filter has an upper break frequency at $f_u = (R + r)/2\pi RrC$, usually chosen to be well above the audio range, say $f_u \geq 30$ kHz.

Suppose an audio signal is modeled as a sum of tones with low-frequency amplitudes $A_m \leq 1$ for $f_m \leq 1$ kHz and high-frequency amplitudes $A_m \leq 1$ kHz/f_m for $f_m > 1$ kHz. Use Eqs. (1) and (2), Sect. 5.2 to estimate the bandwidth required for a single tone at $f_m = 15$ kHz whose amplitude has been preemphasized by $|H_{pe}(f)|$ given in Eq. (7) with $B_{de} = 2$ kHz. Assume $f_\Delta = 75$ kHz and compare your result with $B_T \approx 210$ kHz.

FM Capture Effect

Capture effect is a phenomenon that takes place in FM systems when two signals have nearly equal amplitudes at the receiver. Small variations of relative amplitude
then cause the stronger of the two to dominate the situation, suddenly displacing the other signal at the demodulated output. You may have heard the annoying results when listening to a distant FM station with co-channel interference.

For a reasonably tractable analysis of capture effect, we’ll consider an unmodulated carrier with modulated cochannel interference \(f_i(t) \). The resultant phase \(\phi_v(t) \) is then given by Eq. (2) with \(u_i(t) = f_i(t) \), where \(f_i(t) \) denotes the phase modulation of the interfering signal. Thus, if \(K_0 = 1 \) for simplicity, the demodulated signal becomes

\[
y_v(t) = \phi_{v_i}(t) = \frac{d}{dt} \left[\arctan \left(\frac{\rho \sin \phi_i(t)}{1 + \rho \cos \phi_i(t)} \right) \right] = \alpha(\rho, \phi_i) \phi_i(t)
\]

where

\[
\alpha(\rho, \phi_i) \triangleq \frac{\rho^2 + \rho \cos \phi_i}{1 + \rho^2 + 2\rho \cos \phi_i}
\]

The presence of \(\dot{\phi}_i(t) \) in Eq. (8a) indicates potentially intelligible interference (or crosstalk) to the extent that \(\alpha(\rho, \phi_i) \) remains constant with time. After all, if \(\rho \gg 1 \) then \(\alpha(\rho, \phi_i) = 1 \) and \(y_0(t) = f_i(t) \).

But capture effect occurs when \(A_i = A_c \), so \(\rho = 1 \) and Eq. (8b) does not immediately simplify. Instead, we note that

\[
\alpha(\rho, \phi_i) = \begin{cases}
\rho/(1 + \rho) & \phi_i = 0, \pm 2\pi, \ldots \\
\rho^2/(1 + \rho^2) & \phi_i = \pm \pi/2, \pm 3\pi/2, \ldots \\
-\rho/(1 - \rho) & \phi_i = \pm \pi, \pm 3\pi, \ldots
\end{cases}
\]

and we resort to plots of \(\alpha(\rho, \phi_i) \) versus \(\phi_i \) as shown in Fig. 5.4–6a. Except for the negative spikes, these plots approach \(\alpha(\rho, \phi_i) = 0.5 \) as \(\rho \to 1 \), and thus
For r/H_1, the strength of the demodulated interference essentially depends on the peak-to-peak value which is plotted versus r in Fig. 5.4–6. This knee-shaped curve reveals that if transmission fading causes r to vary around a nominal value of about 0.7, the interference almost disappears when $r/H_1 < 0.7$ whereas it takes over and “captures” the output when $r/H_1 > 0.7$ (the capture ratio being about 3 dB).

Panter (1965, Chap. 11) presents a detailed analysis of FM interference, including waveforms that result when both carriers are modulated.

5.5 QUESTIONS AND PROBLEMS

Questions

1. Why are there so many background “whistles” heard during nighttime AM broadcast reception? Describe all possible reasons.

2. Why would FM reception have a higher received signal power than a comparable AM reception? List all reasons.

3. Describe why FM is superior to linear modulation systems with respect to battery life and power efficiency.

4. What are the possible causes of power line interference?

5. What linear modulation scheme would result in less of the nighttime background “whistle” interference? Why?

6. At what distances would multipath cause interference to AM, DSB, or SSB, etc., communication?
7. Why is SSB and DSB preferred, and AM or NBFM signals, while legal, are discouraged for crowded Ham radio bands?

8. What linear modulation detection method is preferred for immunity to interference?

9. What is the main practical problem with implementing the slope and balanced discriminator?

10. Under what conditions will DSB give the same output as PSK?

11. List several reasons why FM has superior destination signal strength for the same transmitter output power as that of DSB or SSB.

12. Why is it possible to use nonlinear amplifiers such as class C to amplify FM signals?

13. If a class C amplifier is employed with an FM transmitter, what else is needed to ensure the output is confined to the assigned carrier frequency? Why?

14. You have a shortwave AM receiver that receives an NBFM voice signal at some carrier frequency \(f_c \). However, you notice that, while the signal strength is maximized when the receiver is tuned to the carrier frequency, the voice message is best received when you tune to some frequency a few kHz from \(f_c \). Explain why.

15. What is the purpose of the LPF in the FM detector in Fig. 5.3–7a?

Problems

5.1–1 Sketch and label \(\phi(t) \) and \(f(t) \) for PM and FM when \(x(t) = A \lambda (a/\tau) \). Take \(\phi(-\infty) = 0 \) in the FM case.

5.1–2 Do Prob. 5.1–1 with \(x(t) = A \cos(\pi b/\tau) I_1(b/2r) \).

5.1–3 Do Prob. 5.1–1 with \(x(t) = \frac{4At}{t^2 - 16} \) for \(t > 4 \).

5.1–4* A frequency-sweep generator produces a sinusoidal output whose instantaneous frequency increases linearly from \(f_1 \) at \(t = 0 \) to \(f_2 \) at \(t = T \). Write \(\theta(t) \) for \(0 \leq t \leq T \).

5.1–5 Besides PM and FM, two other possible forms of exponential modulation are phase-integral modulation, with \(\phi(t) = K \int x(\lambda) d\lambda \), and phase-acceleration modulation, with

\[
 f(t) = f_c + K \int x(\lambda) d\lambda
\]

Add these to Table 5.1–1 and find the maximum values of \(\phi(t) \) and \(f(t) \) for all four types when \(x(t) = \cos 2\pi f_m t \).

5.1–6 Use Eq. (16) to obtain Eq. (18a) from Eq. (15).

5.1–7* Derive Eq. (16) by finding the exponential Fourier series of the complex periodic function \(e^{j \beta \sin \omega_m t} \).
5.1–8 Tone modulation is applied simultaneously to a frequency modulator and a phase modulator and the two output spectra are identical. Describe how these two spectra will change when (a) the tone amplitude is increased or decreased; (b) the tone frequency is increased or decreased; (c) the tone amplitude and frequency are increased or decreased in the same proportion.

5.1–9 Consider a tone-modulated FM or PM wave with \(f_m = 10 \text{ kHz} \), \(\beta = 2.0 \), \(A_c = 100 \), and \(f_c = 30 \text{ kHz} \). (a) Write an expression for \(f(t) \). (b) Draw the line spectrum and show therefrom that \(S_T < A_c^2/2 \).

5.1–10* Do Prob. 5.1–9 with \(f_m = 20 \text{ kHz} \) and \(f_c = 40 \text{ kHz} \), in which case \(S_T > A_c^2/2 \).

5.1–11 Derive a mathematical expression to show how the information power of an FM signal is proportional to \(\frac{1}{2} A_c^2 f_c S_x \) and compare this to the information power of a DSB signal.

5.1–12 Show that the FM carrier’s amplitude is nonlinear with respect to message amplitude.

5.1–13 Construct phasor diagrams for tone-modulated FM with \(A_c = 10 \) and \(\beta = 0.5 \) when \(\omega_m t = 0, \pi/4, \) and \(\pi/2 \). Calculate \(A \) and \(\phi \) from each diagram and compare with the theoretical values.

5.1–14 Do Prob. 5.1–13 with \(\beta = 1.0 \).

5.1–15 A tone-modulated FM signal with \(\beta = 1.0 \) and \(f_m = 100 \text{ Hz} \) is applied to an ideal BPF with \(B = 250 \text{ Hz} \) centered at \(f_c = 500 \). Draw the line spectrum, phasor diagram, and envelope of the output signal.

5.1–16 Do Prob. 5.1–15 with \(\beta = 5.0 \).

5.1–17 One implementation of a music synthesizer exploits the harmonic structure of FM tone modulation. The violin note \(C_2 \) has a frequency of \(f_0 = 405 \text{ Hz} \) with harmonics at integer multiples of \(f_0 \) when played with a bow. Construct a system using FM tone modulation and frequency converters to synthesize this note with \(f_0 \) and three harmonics.

5.1–18 Consider FM with periodic square-wave modulation defined by \(x(t) = 1 \) for \(0 < t < T/2 \) and \(x(t) = -1 \) for \(-T/2 < t < 0 \). (a) Take \(\phi(0) = 0 \) and plot \(\phi(t) \) for \(-T/2 < t < T/2 \). Then use Eq. (20a) to obtain

\[
c_n = \frac{1}{2} e^{j\pi\beta} \left[\text{sinc} \left(\frac{n + \beta}{2} \right) e^{j\pi n/2} + \text{sinc} \left(\frac{n - \beta}{2} \right) e^{-j\pi n/2} \right]
\]

where \(\beta = f_x T_0 \). (b) Sketch the resulting magnitude line spectrum when \(\beta \) is a large integer.

5.2–1 A message has \(W = 15 \text{ kHz} \). Estimate the FM transmission bandwidth for \(f_x = 0.1, 0.5, 1, 5, 10, 50, 100, \) and \(500 \text{ kHz} \).

5.2–2 Do Prob. 5.2–1 with \(W = 5 \text{ kHz} \).
5.2–3 What is the maximum frequency deviation for a FM system where \(W = 3 \) kHz and \(B_T = 30 \) kHz?

5.2–4 Do Prob. 5.2–3 with \(B_T = 10 \) kHz?

5.2–5 An FM system has \(f_A = 10 \) kHz. Use Table 9.4–1 and Fig. 5.2–1 to estimate the bandwidth for: (a) barely intelligible voice transmission; (b) telephone-quality voice transmission; (c) high-fidelity audio transmission.

5.2–6 A video signal with \(W = 5 \) MHz is to be transmitted via FM with \(f_A = 25 \) MHz. Find the minimum carrier frequency consistent with fractional bandwidth considerations. Compare your results with transmission via DSB amplitude modulation.

5.2–7* Your new wireless headphones use infrared FM transmission and have a frequency response of 30–15,000 Hz. Find \(B_T \) and \(f_A \) consistent with fractional bandwidth considerations, assuming \(f_c = 5 \times 10^{14} \) Hz.

5.2–8 A commercial FM radio station alternates between music and talk show/call-in formats. The broadcasted CD music is bandlimited to 15 kHz based on convention. Assuming \(D = 5 \) is used for both music and voice, what percentage of the available transmission bandwidth is used during the talk show if we take \(W = 5 \) kHz for voice signals?

5.2–9 An FM system with \(f_A = 30 \) kHz has been designed for \(W = 10 \) kHz. Approximately what percentage of \(B_T \) is occupied when the modulating signal is a unit-amplitude tone at \(f_m = 0.1 \), 1.0, or 5.0 kHz? Repeat your calculations for a PM system with \(\phi_A = 3 \) rad.

5.2–10 Consider phase-integral and phase-acceleration modulation defined in Prob. 5.1–5. Investigate the bandwidth requirements for tone modulation, and obtain transmission bandwidth estimates. Discuss your results.

5.2–11* The transfer function of a single-tuned BPF is \(H(f) = 1/[1 + jQ(f - f_c)/f_c] \) over the positive-frequency passband. Use Eq. (10) to obtain an expression for the output signal and its instantaneous phase when the input is an NBPM signal.

5.2–12 Use Eq. (10) to obtain an expression for the output signal and its amplitude when an FM signal is distorted by a system having \(H(f) = K_0 - K_3(f - f_c)^3 \) over the positive-frequency passband.

5.2–13 Use Eq. (13) to obtain an expression for the output signal and its instantaneous frequency when an FM signal is distorted by a system having \(|H(f)| = 1 \) and \(\arg H(f) = \alpha_1(f - f_c) + \alpha_3(f - f_c)^3 \) over the positive-frequency passband.

5.2–14 An FM signal is applied to the BPF in Prob. 5.2–11. Let \(\alpha = 2Qf_A/f_c = \ll 1 \) and use Eq. (13) to obtain an approximate expression for the output signal and its instantaneous frequency.

5.2–15 Let the input to the system in Fig. 5.2–6a be an FM signal with \(D = f_A/W \) and spurious amplitude variations. Sketch the spectrum at the
output of the limiter and show that successful operation requires \(f_\Delta < (f_c - W)/2 \).

5.2–16 The input to the system in Fig. 5.2–6b is an FM signal with \(D = f_d/W \) and the BPF is centered at 3\(f_c \), corresponding to a frequency tripler. Sketch the spectrum at the filter’s input and obtain a condition on \(f_\Delta \) in terms of \(f_c \) and \(W \) that ensures successful operation.

5.2–17* Do Prob. 5.2–16 with the BPF centered at 4\(f_c \), corresponding to a frequency quadrupler.

5.3–1 The equivalent tuning capacitance in Fig. 5.3–1 is \(C(t) = C_1 + C_v(t) \) where \(C_v(t) = C_2/\sqrt{V_b} + x(t)/N \). Show that \(C(t) = C_0 - C_v(t) \) with 1 percent accuracy if \(NV_b \geq 300/4 \). Then show that the corresponding limitation on the frequency deviation is \(f_\Delta < f_c/300 \).

5.3–2 The direct FM generator in Fig. 5.3–2 is used for a remote-controlled toy car. Find the range of allowable values for \(W \) so that \(B_T \) satisfies the fractional bandwidth requirements, assuming the maximum frequency deviation of 150 kHz is used.

5.3–3 Confirm that \(x(t) = A_c \cos \theta(t) \) is a solution of the integro-differential equation \(\dot{x}(t) = -\dot{\theta}(t) \int \dot{\theta}(t) x(t) \, dt \). Then draw the block diagram of a direct FM generator based on this relationship.

5.3–4 Suppose an FM detector receives the transmitted signal that was generated by the phase modulator in Fig. 5.3–3. Describe the distortion in the output message signal. (Hint: Consider the relationship between the message signal amplitude and frequency, and the modulation index.)

5.3–5* An audio message signal is transmitted using frequency modulation. Describe the distortion on the output message signal if it is received by a PM detector. (Hint: Consider the relationship between the message signal amplitude and frequency, and the modulation index.)

5.3–6 Design a wireless stereo speaker system using indirect FM. Assuming \(W = 15 \text{ kHz}, D = 5, f_1 = 500 \text{ kHz}, f_c = 915 \text{ MHz}, \) and \(\phi_x/2\pi T < 20 \), determine the number of triplers needed in your multiplier stage, and find the value of \(f_\text{LO} \) needed to design your system.

5.3–7 The audio portion of a television transmitter is an indirect FM system having \(W = 10 \text{ kHz}, D = 2.5, \) and \(f_c = 4.5 \text{ MHz} \). Devise a block diagram of this system with \(\phi_x/2\pi T < 20 \text{ Hz} \) and \(f_c = 200 \text{ kHz} \). Use the shortest possible multiplier chain consisting of frequency triplers and doublers, and locate the down-converter such that no frequency exceeds 100 MHz.

5.3–8 A signal with \(W = 4 \text{ kHz} \) is transmitted using indirect FM with \(f_c = 1 \text{ MHz} \) and \(f_\Delta = 12 \text{ kHz} \). If \(\phi_x/2\pi T < 100 \) and \(f_1 = 10 \text{ kHz} \), how many doublers will be needed to achieve the desired output parameters? Draw the block diagram of the system indicating the value and location of the local oscillator such that no frequency exceeds 10 MHz.
5.3–9 Suppose the phase modulator in Fig. 5.3–5 is implemented as in Fig. 5.3–3. Take \(x(t) = A_m \cos \omega_m t \) and let \(\beta = (\phi_0/2\pi) (A_m/f_m) \).

(a) Show that if \(\beta \ll 1 \), then

\[
f_1(t) = f_c + \beta f_m [\cos \omega_m t + (\beta/2)^2 \cos 3\omega_m t]
\]

(b) Obtain a condition on \(\phi_0/2\pi T \) so the third-harmonic distortion does not exceed 1 percent when \(A_m \leq 1 \) and \(30 \text{ Hz} \leq f_m \leq 15 \text{ kHz} \), as in FM broadcasting.

5.3–10 Let the input to Fig. 5.3–7 be an FM signal with \(f_\Delta \ll f_c \) and let the differentiator be implemented by a tuned circuit with \(H(f) = 1/(1 + j(2Qf_0/f_c)) (f - f_0) \) for \(f = f_0 \). Use the quasi-static method to show that \(y_\Delta(t) = K_1 f_\Delta x(t) \) when \(f_\Delta = f_c + b \) provided that \(f_\Delta \ll b \ll f_c/2Q \).

5.3–11* Let the input to Fig. 5.3–7 be an FM signal with \(f_\Delta \ll f_c \) and let the differentiator be implemented by a first-order lowpass filter with \(B = f_c \). Use quasi-static analysis to show that \(y_\Delta(t) = -K_1 f_\Delta x(t) + K_2 f_\Delta^2 x^2(t) \).

Then take \(x(t) = \cos \omega_m t \) and obtain a condition on \(f_\Delta/f_c \) so the second-harmonic distortion is less than 1%.

5.3–12 The tuned circuits in Fig. 5.3–8 have transfer functions of the form \(H(f) = 1/[1 + j(2Qf_0/f_c)](f - f_0) \) for \(f = f_0 \). Let the two center frequencies be \(f_0 = f_c \pm b \) with \(f_\Delta \ll b \ll f_c \). Use quasi-static analysis to show that if both circuits have \((2Q/f_0)b = \alpha \ll 1 \), then \(y_\Delta(t) = K_1 x(t) - K_2 x^2(t) \) where \(K_2/K_1 \ll 1 \).

5.3–13 You have been given an NBFM exciter with \(f_c = 7 \text{ MHz} \), \(W = 2.5 \text{ kHz} \), and \(f_\Delta = 1.25 \text{ kHz} \). Using a series of frequency doublers and triplers and possibly a heterodyne stage, design a converter that will enable a WBFM signal with \(f_c = 220 \text{ MHz} \), and \(f_\Delta = 15 \text{ kHz} \). Justify your results.

5.3–14 Given a NBFM exciter with \(f_c = 8 \text{ MHz} \), \(W = 3 \text{ kHz} \), \(f_\Delta = 0.3 \text{ kHz} \), using frequency triplers and heterodyning units, design an FM system with \(f_c = 869–894 \text{ MHz} \) and \(B_f = 30 \text{ kHz} \).

5.4–1 Obtain an approximate expression for the output of an amplitude demodulator when the input is an AM signal with 100 percent modulation plus an interfering signal \(A_1[1 + x_1(t)] \cos [(\omega_c + \omega) t + \phi_1] \) with \(\rho = A_1/A_c \ll 1 \). Is the demodulated interference intelligible?

5.4–2 Obtain an approximate expression for the output of a phase demodulator when the input is an NBPM signal with 100 percent modulation plus an interfering signal \(A_1 \cos [(\omega_c + \omega) t + \phi_1(t)] \) with \(\rho = A_1/A_c \ll 1 \). Is the demodulated interference intelligible?

5.4–3 Investigate the performance of envelope detection versus synchronous detection of AM in the presence of multipath propagation, so that \(v(t) = x(t) + \alpha x_1(t - t_0) \) with \(\alpha^2 < 1 \). Consider the special cases \(\omega_c t_0 = \pi/2 \) and \(\omega_c t_0 = \pi \).
5.4–4 You are talking on your cordless phone, which uses amplitude modulation, when someone turns on a motorized appliance, causing static on the phone. You switch to your new FM cordless phone, and the call is clear. Explain.

5.4–5* In World War II they first used preemphasis/deemphasis in amplitude modulation for mobile communications to make the high-frequency portion of speech signals more intelligible. Assuming that the amplitude of the speech spectrum is bandlimited to 3.5 kHz and rolls off at about 6 dB per decade (factor of 10 on a log-frequency scale) above 500 Hz, draw the Bode diagrams of the preemphasis and deemphasis filters so that the message signal has a flattened spectrum prior to transmission. Discuss the impact on the transmitted power for DSB versus standard AM with \(\mu = 1 \).

5.4–6 Preemphasis filters can also be used in hearing aid applications. Suppose a child has a hearing loss that gets worse at high frequencies. A preemphasis filter can be designed to be the approximate inverse of the high-frequency deemphasis that takes place in the ear. In a noisy classroom it is often helpful to have the teacher speak into a microphone and have the signal transmitted by FM to a receiver that the child is wearing. Is it better to have the preemphasis filter at the microphone end prior to FM transmission or at the receiver worn by the child? Discuss your answer in terms of transmitted power, transmitted bandwidth, and susceptibility to interference.

5.4–7 A message signal \(x(t) \) has an energy or power spectrum that satisfies the condition

\[
G_x(f) \leq \left(\frac{B_{de}}{f} \right)^2 G_{\text{max}} \quad |f| > B_{de}
\]

where \(G_{\text{max}} \) is the maximum of \(G_x(f) \) in \(|f| < B_{de} \). If the preemphasis filter in Eq. (7) is applied to \(x(t) \) before FM transmission, will the transmitted bandwidth be increased?

5.4–8 Equation (8) also holds for the case of unmodulated adjacent-channel interference if we let \(\phi_i(t) = \omega_i t \). Sketch the resulting demodulated waveform when \(\rho = 0.4, 0.8, \) and 1.2.

5.4–9 If the amplitude of an interfering sinusoid and the amplitude of the sinusoid of interest are approximately equal, \(\rho = A_i/A_c = 1 \) and Eq. (8b) appears to reduce to \(\alpha(\rho, \phi_i) = 1/2 \) for all \(\phi_i \), resulting in cross talk. However, large spikes will appear at the demodulator output when \(\phi_i = \pm \pi \). Show that if \(\phi_i = \pi \) and \(\rho = 1 \pm \epsilon \), then \(\alpha(\rho, \pi) \to \pm \infty \) as \(\epsilon \to 0 \). Conversely, show that if \(\rho \) is slightly less than 1 and \(\phi_i = \pi \pm \epsilon \), then \(\alpha(\rho, \phi_i) \to -\infty \) as \(\epsilon \to 0 \).

5.4–10† Develop an expression for the demodulated signal when an FM signal with instantaneous phase \(\phi(t) \) has interference from an unmodulated adjacent-channel carrier. Write your result in terms of \(\phi(t) \), \(\rho = A/A_c \), and \(\theta_i(t) = \omega_i t + \phi_i \).
5.4–11* Given $f_c = 50$ MHz, what multipath distance(s) would cause the received signal to be attenuated by 10 dB? State any assumptions.

5.4–12 Do Prob. 5.4–11 for $f_c = 850$ MHz.

5.4–13 Given an indoor environment of no more than $10 \text{ m} \times 10 \text{ m} \times 3 \text{ m}$, what is the minimum or maximum carrier frequency required such that multipath interference will not exceed 3 dB?

5.4–14 A cell phone operating at 825 MHz has a power output of S_T. Due to multipath interference losses, it is received at the destination with a 6 dB power reduction. Let’s assume no other losses and the receiver and transmitter locations are fixed. (a) What is the relative time delay between the two paths? (b) To reduce the multipath loss, it has been decided to employ frequency diversity such that we periodically hop to a second carrier frequency of 850 MHz. What is the power of the 850 MHz received signal relative to its transmitted power? Is there any improvement?
Sampling and Pulse Modulation

CHAPTER OUTLINE

6.1 Sampling Theory and Practice
 - Chopper Sampling
 - Ideal Sampling and Reconstruction
 - Practical Sampling and Aliasing

6.2 Pulse-Amplitude Modulation
 - Flat-top Sampling and PAM

6.3 Pulse-Time Modulation
 - Pulse-Duration and Pulse-Position Modulation
 - PPM Spectral Analysis
6.1 SAMPLING THEORY AND PRACTICE

The theory of sampling presented here sets forth the conditions for signal sampling and reconstruction from sample values. We'll also examine practical implementation of the theory and some related applications.

Chopper Sampling

A simple but highly informative approach to sampling theory comes from the switching operation of Fig. 6.1–1a. The switch periodically shifts between two contacts at a rate of $f_s = 1/T_s$ Hz, dwelling on the input signal contact for τ seconds and...
on the grounded contact for the remainder of each period. The output $x_s(t)$ then consists of short segments for the input $x(t)$, as shown in Fig. 6.1–1b. Figure 6.1–1c is an electronic version of Fig. 6.1–1a; the output voltage equals the input voltage except when the clock signal forward-biases the diodes and thereby clamps the output to zero. This operation, variously called single-ended or unipolar chopping, is not instantaneous sampling in the strict sense. Nonetheless, $x_s(t)$ will be designated the sampled wave and f_s the sampling frequency.

We now ask: Are the sampled segments sufficient to describe the original input signal and, if so, how can $x(t)$ be retrieved from $x_s(t)$? The answer to this question lies in the frequency domain, in the spectrum of the sampled wave.

As a first step toward finding the spectrum, we introduce a switching function $s(t)$ such that

$$x_s(t) = x(t)s(t) \tag{1}$$

Thus the sampling operation becomes multiplication by $s(t)$, as indicated schematically in Fig. 6.1–2a, where $s(t)$ is nothing more than the periodic pulse train of Fig. 6.1–2b. Since $s(t)$ is periodic, it can be written as a Fourier series. Using the results of Example 2.1–1 we have

$$s(t) = \sum_{n=-\infty}^{\infty} f_s \tau \text{sinc} nf_s t e^{j2\pi nf_s t} = c_0 + \sum_{n=1}^{\infty} 2c_n \cos n\omega_s t \tag{2}$$

where

$$c_n = f_s \tau \text{sinc} nf_s \tau \quad \omega_s = 2\pi f_s$$

Figure 6.1–1 Switching sampler: (a) functional diagram; (b) waveforms; (c) circuit realization with diode bridge.
Combining Eq. (2) with Eq. (1) yields the term-by-term expansion

\[x_s(t) = c_0 x(t) + 2c_1 x(t) \cos \omega_s t + 2c_2 x(t) \cos 2\omega_s t + \cdots \]

(3)

Thus, if the input message spectrum is \(X(f) = \mathcal{F}[x(t)] \), the output spectrum is

\[
X_s(f) = c_0 X(f) + c_1 [X(f - f_s) + X(f + f_s)] \\
+ c_2 [X(f - 2f_s) + X(f + 2f_s)] \\
+ \cdots
\]

(4)

which follows directly from the modulation theorem.

While Eq. (4) appears rather messy, the spectrum of a sampled wave is readily sketched if the input signal is assumed to be bandlimited. Figure 6.1–3 shows a convenient \(X(f) \) and the corresponding \(X_s(f) \) for two cases, \(f_s > 2W \) and \(f_s < 2W \). This figure reveals something quite surprising: The sampling operation has left the message spectrum intact, merely repeating it periodically in the frequency domain with a spacing of \(f_s \). We also note that the first term of Eq. (4) is precisely the message spectrum, attenuated by the duty cycle \(c_0 = f_s \tau = \tau/T_s \).

If sampling preserves the message spectrum, it should be possible to recover or reconstruct \(x(t) \) from the sampled wave \(x_s(t) \). The reconstruction technique is not at all obvious from the time-domain relations in Eqs. (1) and (3). But referring again to Fig. 6.1–3, we see that \(X(f) \) can be separated from \(X_s(f) \) by lowpass filtering, provided that the spectral sidebands don’t overlap. And if \(X(f) \) alone is filtered from \(X_s(f) \), we have recovered \(x(t) \). Two conditions obviously are necessary to prevent overlapping spectral bands: the message must be bandlimited, and the sampling frequency must be sufficiently great that \(f_s - W \geq W \). Thus we require

\[X(f) = 0 \quad |f| > W \]

and

\[f_s \geq 2W \quad \text{or} \quad T_s \leq \frac{1}{2W} \]

(5a)

If the sampled signal is sinusoidal, its frequency spectrum will consist of impulses and equality of Eq. (5a) does not hold, and we thus require
The minimum sampling frequency \(f_s = 2W \), or in the case of sinusoidal signals \(f_s = 2W^- \), is called the **Nyquist rate**. To further make the point that the equality of Eq. (5a) does not hold, if sample frequency is \(f_s = 2W \) it is possible for the sine wave to be sampled at its zero crossings; thus, the samples would be equal to zero, and reconstruction would not be possible. When Eq. (5) is satisfied and \(x_s(t) \) is filtered by an ideal LPF, the output signal will be proportional to \(x(t) \); thus message reconstruction from the sampled signal has been achieved. The exact value of the filter bandwidth \(B \) is unimportant as long as

\[
W < B < f_s - W
\]

so the filter passes \(X(f) \) and rejects all higher components in Fig. 6.1–3b. Sampling at \(f_s > 2W \) creates a guard band into which the transition region of a practical LPF can be fitted. On the other hand, if we examine Fig. 6.1–3c, a signal that is undersampled will cause spectral overlapping of the message, or aliasing, and thus result in significant reconstruction errors.

Figure 6.1–3 Spectra for switching sampling: (a) message; (b) properly sampled message, \(f_s > 2W \); (c) undersampled aliased message, \(f_s < 2W \).
This analysis has shown that if a bandlimited signal is sampled at a frequency greater than the Nyquist rate, it can be completely reconstructed from the sampled wave. Reconstruction is accomplished by lowpass filtering. These conclusions may be difficult to believe at first exposure; they certainly test our faith in spectral analysis. Nonetheless, they are quite correct.

Finally, it should be pointed out that our results are independent of the sample-pulse duration, save as it appears in the duty cycle. If \(\tau \) is made very small, \(x_s(t) \) approaches a string of instantaneous sample points, which corresponds to ideal sampling. We’ll pursue ideal sampling theory after a brief look at the bipolar chopper, which has \(\tau = T_s/2 \).

EXAMPLE 6.1–1 Bipolar Choppers

Figure 6.1–4a depicts the circuit and waveforms for a bipolar chopper. The equivalent switching function is a square wave alternating between \(s(t) = 1 \) and \(-1 \). From the series expansion of \(s(t) \) we get

\[
x_s(t) = \frac{4}{\pi} x(t) \cos \omega_s t - \frac{4}{3\pi} x(t) \cos 3\omega_s t + \frac{4}{5\pi} x(t) \cos 5\omega_s t - \cdots \tag{7}
\]

whose spectrum is sketched in Fig. 6.1–4b for \(f \geq 0 \). Note that \(X_s(f) \) contains no DC component and only the odd harmonics of \(f_s \). Clearly, we can’t recover \(x(t) \) by lowpass filtering. Instead, the practical applications of bipolar choppers involve bandpass filtering.

If we apply \(x_s(t) \) to a BPF centered at some odd harmonic \(n f_s \), the output will be proportional to \(x(t) \cos n\omega_s t \)—a double-sideband suppressed-carrier waveform.

Figure 6.1–4 Bipolar chopper: (a) circuit and waveforms; (b) spectrum.
Thus, a bipolar chopper serves as a balanced modulator. It also serves as a synchronous detector when the input is a DSB or SSB signal and the output is lowpass filtered. These properties are combined in the **chopper-stabilized amplifier**, which makes possible DC and low-frequency amplification using a high-gain AC amplifier. Additionally, Prob. 6.1–4 indicates how a bipolar chopper can be modified to produce the baseband multiplexed signal for FM stereo.

Ideal Sampling and Reconstruction

By definition, ideal sampling is instantaneous sampling. The switching device of Fig. 6.1–1a yields instantaneous values only if \(\tau \to 0 \); but then \(f_s \tau \to 0 \), and so does \(x_s(t) \). Conceptually, we overcome this difficulty by multiplying \(x_s(t) \) by \(1/\tau \) so that, as \(\tau \to 0 \) and \(1/\tau \to \infty \), the sampled wave becomes a train of impulses whose areas equal the instantaneous sample values of the input signal. Formally, we write the rectangular pulse train as

\[
s(t) = \sum_{k=-\infty}^{\infty} \Pi \left(\frac{t - kT_s}{\tau} \right)
\]

from which we define the **ideal sampling function**

\[
s_{\delta}(t) \triangleq \lim_{\tau \to 0} \frac{1}{\tau} s(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_s) \tag{8}
\]

The **ideal sampled wave** is then

\[
x_{\delta}(t) \triangleq x(t) s_{\delta}(t) \tag{9a}
\]

\[
= x(t) \sum_{k=-\infty}^{\infty} \delta(t - kT_s)
\]

\[
= \sum_{k=-\infty}^{\infty} x(kT_s) \delta(t - kT_s) \tag{9b}
\]

since \(x(t) \delta(t - kT_s) = x(kT_s) \delta(t - kT_s) \).

To obtain the corresponding spectrum \(X_{\delta}(f) = \mathcal{F}[x_{\delta}(t)] \) we note that \((1/\tau)x_{\delta}(t) \to x_{\delta}(t) \) as \(\tau \to 0 \) and, likewise, \((1/\tau)X_{\delta}(f) \to X_{\delta}(f) \). But each coefficient in Eq. (4) has the property \(c_n/\tau = f_s \) sinc \(nf_\tau = f_s \) when \(\tau = 0 \). Therefore,

\[
X_{\delta}(f) = f_s X(f) + f_s[X(f - f_s) + X(f + f_s)] + \cdots
\]

\[
= f_s \sum_{n=-\infty}^{\infty} X(f - nf_s) \tag{10}
\]

which is illustrated in Fig. 6.1–5 for the message spectrum of Fig. 6.1–3a, taking \(f_s > 2W \). We see that \(X_{\delta}(f) \) is periodic in frequency with period \(f_s \), a crucial observation in the study of sampled-data systems.
Somewhat parenthetically, we can also develop an expression for $S_d(f) = \mathcal{F}\{s(t)\}$ as follows. From Eq. (9a) and the convolution theorem, $X_d(f) = X(f) * S_d(f)$ whereas Eq. (10) is equivalent to

$$X_d(f) = X(f) \left[\sum_{n=-\infty}^{\infty} f_s \delta(f - nf_s) \right]$$

Therefore, we conclude that

$$S_d(f) = f_s \sum_{n=-\infty}^{\infty} \delta(f - nf_s) \tag{11}$$

so the spectrum of a periodic string of unit-weight impulses in the time domain is a periodic string of impulses in the frequency domain with spacing $f_s = 1/T_s$; in both domains we have a function that looks like the uprights in a picket fence.

Returning to the main subject and Fig. 6.1–5, it's immediately apparent that if we invoke the same conditions as before—$x(t)$ bandlimited in W and $f_s \geq 2W$—then a filter of suitable bandwidth will reconstruct $x(t)$ from the ideal sampled wave. Specifically, for an ideal LPF of gain K, time delay t_d, and bandwidth B, the transfer function is

$$H(f) = K \prod \left(\frac{f}{2B} \right) e^{-j\omega t}$$

so filtering $x_d(t)$ produces the output spectrum

$$Y(f) = H(f)X_d(f) = K f_s X(f) e^{-j\omega t_d}$$

assuming B satisfies Eq. (6). The output time function is then

$$y(t) = \mathcal{F}^{-1}\{Y(f)\} = K f_s x(t - t_d) \tag{12}$$

which is the original signal amplified by Kf_s and delayed by t_d.

Further confidence in the sampling process can be gained by examining reconstruction in the time domain. The impulse response of the LPF is

$$h(t) = 2B K \text{sinc} 2B(t - t_d)$$
And since the input $x_d(t)$ is a train of weighted impulses, the output is a train of weighted impulse responses, namely,

$$y(t) = h(t) * x_d(t) = \sum_k x(kT_s) h(t - kT_s)$$ \hfill (13)

$$= 2BK \sum_{k=-\infty}^{\infty} x(kT_s) \text{sinc} 2B(t - t_d - kT_s)$$

Now suppose for simplicity that $B = f_s/2$, $K = 1/f_s$, and $t_d = 0$, so

$$y(t) = \sum_k x(kT_s) \text{sinc} (f_s t - k)$$

We can then carry out the reconstruction process graphically, as shown in Fig. 6.1–6. Clearly the correct values are reconstructed at the sampling instants $t = kT_s$, for all sinc functions are zero at these times save one, and that one yields $x(kT_s)$. Between sampling instants $x(t)$ is interpolated by summing the precursors and postcursors from all the sinc functions. For this reason the LPF is often called an interpolation filter, and its impulse response is called the interpolation function.

The above results are well summarized by stating the important theorem of uniform (periodic) sampling. While there are many variations of this theorem, the following form is best suited to our purposes.

If a signal contains no frequency components for $|f| \leq W$, it is completely described by instantaneous sample values uniformly spaced in time with period $T_s = 1/2W$. If a signal has been sampled at the Nyquist rate or greater ($f_s \geq 2W$) and the sample values are represented as weighted impulses, the signal can be exactly reconstructed from its samples by an ideal LPF of bandwidth B, where $W \leq B \leq f_s - W$.

Another way to express the theorem comes from Eqs. (12) and (13) with $K = T_s$ and $t_d = 0$. Then $y(t) = x(t)$ and

$$x(t) = 2BT_s \sum_{k=-\infty}^{\infty} x(kT_s) \text{sinc} 2B(t - kT_s)$$ \hfill (14)
provided $T_s \leq 1/2W$ and B satisfies Eq. (6). Therefore, just as a periodic signal is completely described by its Fourier series coefficients, a bandlimited signal is completely described by its instantaneous sample values whether or not the signal actually is sampled.

EXERCISE 6.1–1 Consider a sampling pulse train of the general form

$$s_p(t) = \sum_{k=-\infty}^{\infty} p(t - kT_s) \quad (15a)$$

whose pulse type $p(t)$ equals zero for $|t| > T_s/2$ but is otherwise arbitrary. Use an exponential Fourier series and Eq. (21), Sect. 2.2, to show that

$$S_p(f) = f_s \sum_{n=-\infty}^{\infty} P(nf_s) \delta(f - nf_s) \quad (15b)$$

where $P(f) = \mathcal{F}[p(t)]$. Then let $p(t) = \delta(t)$ to obtain Eq. (11).

Practical Sampling and Aliasing

Practical sampling differs from ideal sampling in three obvious aspects:

1. The sampled wave consists of pulses having finite amplitude and duration, rather than impulses.
2. Practical reconstruction filters are not ideal filters.
3. The messages to be sampled are timelimited signals whose spectra are not and cannot be strictly bandlimited.

The first two differences may present minor problems, while the third leads to the more troublesome effect known as **aliasing**.

Regarding pulse-shape effects, our investigation of the unipolar chopper and the results of Exercise 6.1–1 correctly imply that almost any pulse shape $p(t)$ will do when sampling takes the form of a multiplication operation $x(t)s_p(t)$. Another operation produces flat-top sampling described in the next section. This type of sampling may require equalization, but it does not alter our conclusion that pulse shapes are relatively inconsequential.

Regarding practical reconstruction filters, we consider the typical filter response superimposed in a sampled-wave spectrum in Fig. 6.1–7. As we said earlier, reconstruction can be done by interpolating between samples. The ideal LPF does a perfect interpolation. With practical systems, we can reconstruct the signal using a **zero-order hold (ZOH)** with

$$y(t) = \sum_k x(kT_s) \Pi \left(\frac{t - kT_s}{T_s} \right) \quad (16)$$
or a **first-order hold (FOH)** which performs a linear interpolation using

\[y(t) = \sum_{k} x(kT_s) A \left(\frac{t - kT_s}{T_s} \right) \]

(17)

The reconstruction process for each of these is shown in Fig. 6.1–8. Both the ZOH and FOH functions are lowpass filters with transfer function magnitudes of

\[|H_{ZOH}(f)| = |T_s \text{sinc}(fT_s)| \]

and

\[|H_{FOH}(f)| = |T_s \sqrt{1 + (2\pi fT_s)^2 \text{sinc}^2(fT_s)}| \], respectively. See Problems 6.1–11 and 6.1–12 for more insight.

If the filter is reasonably flat over the message band, its output will consist of \(x(t) \) plus spurious frequency components at \(|f| > f_s - W \) outside the message band. In audio systems, these components would sound like high-frequency hissing or “noise.” However, they are considerably attenuated and their strength is proportional to \(x(t) \), so they disappear when \(x(t) = 0 \). When \(x(t) \neq 0 \), the message tends to mask their presence and render them more tolerable. The combination of careful filter design and an adequate guard band created by taking \(f_s > 2W \) makes practical reconstruction filtering nearly equivalent to ideal reconstruction. In the case of ZOH and FOH reconstruction, their frequency response shape \(\text{sinc}(fT_s) \) and \(\text{sinc}^2(fT_s) \) will distort the spectra of \(x(t) \). We call this **aperture error**, which can be minimized by either increasing the sampling rate or compensating with the appropriate inverse filter.

![Figure 6.1–7](image-url)
Figure 6.1–7 Practical reconstruction filter.

![Figure 6.1–8](image-url)
Figure 6.1–8 Signal reconstruction from samples using (a) ZOH, (b) FOH.
Regarding the timelimited nature of real signals, a message spectrum like Fig. 6.1–9a may be viewed as a bandlimited spectrum if the frequency content above W is small and presumably unimportant for conveying the information. When such a message is sampled, there will be unavoidable overlapping of spectral components as shown in Fig. 6.1–9b. In reconstruction, frequencies originally outside the normal message band will appear at the filter output in the form of much lower frequencies. Thus, for example, $f_1 > W$ becomes $f_s - f_1 < W$, as indicated in the figure.

This phenomenon of downward frequency translation is given the descriptive name of **aliasing**. The aliasing effect is far more serious than spurious frequencies passed by nonideal reconstruction filters, for the latter fall outside the message band, whereas aliased components fall within the message band. Aliasing is combated by filtering the message as much as possible before sampling and, if necessary, sampling at higher than the Nyquist rate. This is often done when the antialiasing filter does not have a sharp cutoff characteristic, as is the case of RC filters. Let’s consider a broadband signal whose message content has a bandwidth of W but is corrupted by other frequency components such as noise. This signal is filtered using the simple first-order RC LPF antialiasing filter that has bandwidth $B = 1/2\pi RC$ with $W << B$ and is shown in Fig. 6.1–9a. It is then sampled to produce the spectra shown in Fig. 6.1–9b. The shaded area represents the aliased components that have spilled into the filter’s passband. Observe that the shaded area decreases if f_s increases or if we employ a more ideal LPF. Assuming reconstruction is done with the first-order Butterworth LPF, the maximum percent aliasing error in the passband is

![Figure 6.1–9](image_url)

Figure 6.1–9 Message spectrum: (a) output of RC filter; (b) after sampling. Shaded area represents aliasing spillover into passband.
with $f_a = f_s - B$ and the 0.707 factor is due to the filter’s gain at its half-power frequency, B. See Ifeachor and Jervis (1993).

Oversampling

When using VLSI technology for digital signal processing (DSP) of analog signals, we must first sample the signal. Because sharp analog filters are relatively expensive relative to digital filters, we use the most feasible RC LPF and then oversample the signal at several times its Nyquist rate. We follow with a digital filter to reduce frequency components above the information bandwidth W. We then reduce the effective sampling frequency to its Nyquist rate using a process called downsampling. Both the digital filtering and downsampling processes are readily done with VLSI technology.

Let’s say the maximum values of R and C we can put on a chip are $10 \, k\Omega$ and $100 \, pF$, respectively, and we want to sample a telephone quality voice such that the aliased components will be at least $30 \, dB$ below the desired signal. Using Eq. (18) with

$$B = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 10^4 \times 100^{-12}} = 159 \, kHz$$

we get

$$5\% = \left(\frac{1/0.707}{\sqrt{1 + (f_a/159 \, kHz)^2}}\right) \times 100\%.$$

Solving yields $f_a = 4.49 \, MHz$, and therefore the sampling frequency is $f_s = f_a + B = 4.65 \, MHz$. With our RC LPF, and $f_a = 4.49 \, MHz$, any aliased components at $159 \, kHz$ will be no more than 5 percent of the signal level at the half-power frequency. Of course the level of aliasing will be considerably less than 5 percent at frequencies below the telephone bandwidth of $3.2 \, kHz$.

Sampling Oscilloscopes

A practical application of aliasing occurs in the sampling oscilloscope, which exploits undersampling to display high-speed periodic waveforms that would otherwise be beyond the capability of the electronics. To illustrate the principle, consider the periodic waveform $x(t)$ with period $T_x = 1/f_s$ in Fig. 6.1–10a. If we use a sampling interval T_s slightly greater than T_x and interpolate the sample points, we get the expanded waveform $y(t) = x(\alpha t)$ shown as a dashed curve. The corresponding sampling frequency is

$$f_s = (1 - \alpha)f_x \quad 0 < \alpha < 1$$
Figure 6.1–10 (a) Periodic waveform with undersampling; (b) spectrum of \(x(t)\); (c) spectrum of \(y(t) = x(\alpha t)\), \(\alpha < 1\).

so \(f_s < f_x\) and even the fundamental frequency of \(x(t)\) will be undersampled. Now let's find out if and how this system actually works by going to the frequency domain.

We assume that \(x(t)\) has been prefiltered to remove any frequency components higher than the \(m\)th harmonic. Figure 6.1–10b shows a typical two-sided line spectrum of \(x(t)\), taking \(m = 2\) for simplicity. Since sampling translates all frequency components up and down by \(nf_s\), the fundamental will appear in the spectrum of the sampled signal at

\[
\pm f_x = \pm |f_x - f_y| = \pm \alpha f_x
\]

as well as at \(\pm f_x + nf_y = (1 + n)f_x \pm nf_y\). Similar translations applied to the DC component and second harmonic yield the spectrum in Fig. 6.1–10c, which contains a compressed image of the original spectrum centered at each multiple of \(f_x\). Therefore, a lowpass filter with \(B = f_y/2\) will construct \(y(t) = x(\alpha t)\) from \(x(t)\) provided that

\[
\alpha < \frac{1}{2m + 1}
\]

which prevents spectral overlap.
Demonstrate the aliasing effect for yourself by making a careful sketch of \(\cos 2\pi 10t \) and \(\cos 2\pi 70t \) for \(0 \leq t \leq \frac{1}{110} \). Put both sketches on the same set of axes and find the sample values at \(t = 0, \frac{1}{110}, \frac{2}{110}, \ldots, \frac{8}{110} \), which corresponds to \(f_s = 80 \). Also, convince yourself that no other waveform bandlimited in \(10 < W < 40 \) can be interpolated from the sample values of \(\cos 2\pi 10t \).

Exercise 6.1–2

Upsampling

It is sometimes the case with instrumentation and other systems that a signal cannot be sampled much above the Nyquist rate, and yet, in applications that use adaptive filter algorithms, we need more samples than are obtained by sampling at the Nyquist rate. Instead of going to the additional expense of increasing the sampling frequency, we obtain the additional samples by interpolating between the original samples. This process called **upsampling**. Upsampling by linear interpolation is shown in Fig. 6.1–11. Figure 6.1–11a shows the original sampled signal, and Figure 6.1–11b shows the upsampled version obtained by linearly interpolation between each set of samples, thus increasing the effective sampling rate by a factor of 2, or \(f_s' = 2f_s \). The following should be noted: (a) Since it is assumed that the original signal was sampled at the Nyquist rate, the upsampled signal obtained with ideal interpolation has no more or less information than the original sampled version. (b) New samples obtained by linear interpolation may have errors due to the non-ideal nature of linear interpolation, and therefore, higher order interpolation will give more accurate samples. Note the similarity of upsampling and reconstruction. See Oppenheim, Schafer, and Buck (1999) for more information on upsampling.

Exercise 6.1–3

Figure 6.1–11 Upsampling by linear interpolation: (a) original signal and its version sampled at \(f_s \); (b) upsampled version with effective sample rate of \(f_s' = 2f_s \).

Show how we can achieve ideal interpolation and thus errorless upsampling by taking the sampled signal’s DFT and zero padding in the discrete frequency domain. **Exercise 6.1–3**
6.2 PULSE-AMPLITUDE MODULATION

If a message waveform is adequately described by periodic sample values, it can be transmitted using analog pulse modulation wherein the sample values modulate the amplitude of a pulse train. This process is called pulse-amplitude modulation (PAM). An example of a message waveform and corresponding PAM signal are shown in Fig. 6.2–1.

As Fig. 6.2–1 indicates, the pulse amplitude varies in direct proportion to the sample values of \(x(t) \). For clarity, the pulses are shown as rectangular and their durations have been grossly exaggerated. Actual modulated waves would also be delayed slightly compared to the message because the pulses can’t be generated before the sampling instances.

It should be evident from the waveform that a PAM signal has significant DC content and that the bandwidth required to preserve the pulse shape far exceeds the message bandwidth. Consequently you seldom encounter a single-channel communication system with PAM or, for that matter, other analog pulse-modulated methods. Nevertheless, analog pulse modulation deserves attention for its major roles in time-division multiplexing, data telemetry, and instrumentation systems.

Flat-Top Sampling and PAM

Although a PAM wave could be obtained from a chopper circuit, a more popular method employs the sample-and-hold (S/H) technique. This operation produces flat-top pulses, as in Fig. 6.2–1, rather than curved-top chopper pulses. We therefore begin here with the properties of flat-top sampling, i.e., zero-order hold (ZOH) technique.

A rudimentary S/H circuit consists of two FET switches and a capacitor, connected as shown in Fig. 6.2–2a. A gate pulse at G1 briefly closes the sampling switch and the capacitor holds the sampled voltage until discharged by a pulse applied to G2. (Commercial integrated-circuit S/H units have further refinements, including isolating op-amps at input and output). Periodic gating of the sample-and-hold circuit generates the sampled wave

\[
x_p(t) = \sum_k x(kT_s)p(t - kT_s)
\]

(1)

![Figure 6.2–1](image) PAM waveform obtained by the S/H technique.
6.2 Pulse-Amplitude Modulation

illustrated by Fig. 6.2–2b. Note that each output pulse of duration τ represents a single instantaneous sample value.

To analyze flat-top sampling, we'll draw upon the relation $p(t - kT_s) = p(t) \ast \delta(t - kT_s)$ and write

$$x_p(t) = p(t) \ast \left[\sum_k x(kT_s) \delta(t - kT_s) \right] = p(t) \ast x_d(t)$$

Fourier transformation of this convolution operation yields

$$X_p(f) = P(f) \left[f_s \sum_n X(f - nf_s) \right] = P(f)X_d(f) \tag{2}$$

Figure 6.2–3 provides a graphical interpretation of Eq. (2), taking $X(f) = \Pi(f/2W)$. We see that flat-top sampling is equivalent to passing an ideal sampled wave through a network having the transfer function $P(f) = \mathcal{F}[p(t)]$.

$$|X_d(f)|$$

(a)

$$|X_p(f)|$$

(b)

Figure 6.2–3
(a) Spectrum for ideal sampling when $X(f) = \Pi(f/2W)$; (b) aperture effect in flat-top sampling.
The high-frequency rolloff characteristic of a typical $P(f)$ acts like a lowpass filter and attenuates the upper portion of the message spectrum. This loss of high-frequency content is called aperture effect. The larger the pulse duration or aperture τ, the larger the effect. Aperture effect can be corrected in reconstruction by including an equalizer with

$$H_{eq}(f) = K e^{-|\nu|/P(f)}$$

(3)

However, little if any equalization is needed when $\tau/T_s \ll 1$.

Now consider a unipolar flat-top PAM signal defined by

$$x_p(t) = \sum_k A_o[1 + \mu x(kT_s)] p(t - kT_s)$$

(4)

The constant A_0 equals the unmodulated pulse amplitude, and the modulation index μ controls the amount of amplitude variation. The condition

$$1 + \mu x(t) > 0$$

(5)

ensures a unipolar (single-polarity) waveform with no missing pulses. The resulting constant pulse rate f_s is particularly important for synchronization in time-division multiplexing.

Comparison of Eqs. (1) and (4) shows that a PAM signal can be obtained from a sample-and-hold circuit with input $A_0[1 + \mu x(t)]$. Correspondingly, the PAM spectrum will look like Fig. 6.2–3b with $X(f)$ replaced by

$$\mathcal{F}[A_o[1 + \mu x(t)]] = A_0[\delta(f) + \mu X(f)],$$

which results in spectral impulses at all harmonics of f_s and at $f = 0$. Reconstruction of $x(t)$ from $x_p(t)$ therefore requires a DC block as well as lowpass filtering and equalization.

Clearly, PAM has many similarities to AM CW modulation—modulation index, spectral impulses, and dc blocks. (In fact, an AM wave could be derived from PAM by bandpass filtering). But the PAM spectrum extends from DC up through several harmonics of f_s, and the estimate of required transmission bandwidth B_T must be based on time-domain considerations. For this purpose, we assume a small pulse duration τ compared to the time between pulses, so

$$\tau \ll T_s \leq \frac{1}{2W}$$

Adequate pulse resolution then requires

$$B_T \geq \frac{1}{2\tau} \gg W$$

(6)

Hence, practical applications of PAM are limited to those situations in which the advantages of a pulsed waveform outweigh the disadvantages of large bandwidth.
6.3 Pulse-Time Modulation

The sample values of a message can also modulate the time parameters of a pulse train, namely the pulse width or its position. The corresponding processes are designated as pulse-duration (PDM) and pulse-position modulation (PPM) and are illustrated in Fig. 6.3–1. PDM is also called pulse-width modulation (PWM). Note the pulse width or pulse position varies in direct proportion to the sample values of $x(t)$.

Pulse-Duration and Pulse-Position Modulation

We lump PDM and PPM together under one heading for two reasons. First, in both cases a time parameter of the pulse is being modulated, and the pulses have constant amplitude. Second, a close relationship exists between the modulation methods for PDM and PPM.

To demonstrate these points, Fig. 6.3–2 shows the block diagram and waveforms of a system that combines the sampling and modulation operations for either PDM or PPM. The system employs a comparator and a sawtooth-wave generator with period T_s. The output of the comparator is zero except when the message waveform $x(t)$ exceeds the sawtooth wave, in which case the output is a positive constant A. Hence, as seen in the figure, the comparator produces a PDM signal with trailing-edge modulation of the pulse duration. (Reversing the sawtooth results in leading-edge modulation while replacing the sawtooth with a triangular wave results in modulation on both edges.) Position modulation is obtained by applying the PDM signal to a monostable pulse generator that triggers on trailing edges at its input and produces short output pulses of fixed duration.

Consider PAM transmission of a voice signal with $W \approx 3$ kHz. Calculate B_T if $f_s = 8$ kHz and $\tau = 0.1 T_s$.

EXERCISE 6.2–1

Confirming Pages
Careful examination of Fig. 6.3–2b reveals that the modulated duration or position depends on the message value at the time location t_k of the pulse edge, rather than the apparent sample time kT_s. Thus, the sample values are nonuniformly spaced. Inserting a sample-and-hold circuit at the input of the system gives uniform sampling if desired, but there’s little difference between uniform and nonuniform sampling in the practical case of small amounts of time modulation such that $t_k - kT_s \ll T_s$.

If we assume nearly uniform sampling, the duration of the kth pulse in the PDM signal is

$$\tau_k = \tau_0 [1 + \mu x(kT_s)] \quad (1)$$

in which the unmodulated duration τ_0 represents $x(kT_s) = 0$ and the modulation index μ controls the amount of duration modulation. Our prior condition on μ in Eq. (5), Sect. 6.2, applies here to prevent missing pulses and “negative” durations when $x(kT_s) \leq 0$. The PPM pulses have fixed duration and amplitude so, unlike PAM and PDM, there’s no potential problem of missing pulses. The kth pulse in a PPM signal begins at time

$$t_k = kT_s + t_0 + t_0 x(kT_s) \quad (2)$$

in which the unmodulated position $kT_s + t_0$ represents $x(kT_s) = 0$ and the constant t_0 controls the displacement of the modulated pulse.
The variable time parameters in Eqs. (1) and (2) make the expressions for $x_p(t)$ rather awkward. However, an informative approximation for the PDM waveform is derived by taking rectangular pulses with amplitude A centered at $t = kT_s$ and assuming that τ_k varies slowly from pulse to pulse. Series expansion then yields

$$x_p(t) = Af_s \tau_0[1 + \mu x(t)] + \sum_{n=1}^{\infty} \frac{2A}{\pi n} \sin \phi(t) \cos \omega_n t \quad (3)$$

where $\phi(t) = \pi f_s \tau_0[1 + \mu x(t)]$. Without attempting to sketch the corresponding spectrum, we see from Eq. (3) that the PDM signal contains the message $x(t)$ plus a DC component and phase-modulated waves at the harmonics of f_s. The phase modulation has negligible overlap in the message band when $\tau_0 \ll T_s$, so $x(t)$ can be recovered by lowpass filtering with a DC block.

Another message reconstruction technique converts pulse-time modulation into pulse-amplitude modulation, and works for PDM and PPM. To illustrate this technique the middle waveform in Fig. 6.3–3 is produced by a ramp generator that starts at time kT_s, stops at t_k, restarts at $(k + 1)T_s$, and so forth. Both the start and stop commands can be extracted from the edges of a PDM pulse, whereas PPM reconstruction must have an auxiliary synchronization signal for the start command.

Regardless of the particular details, demodulation of PDM or PPM requires received pulses with short risetime in order to preserve accurate message information. For a specified risetime $t_r \ll T_s$, the transmission bandwidth must satisfy

$$B_T = \frac{1}{2 t_r} \quad (4)$$

which will be substantially greater than the PAM transmission bandwidth. In exchange for the extra bandwidth, we gain the benefit of constant-amplitude pulses that suffer no ill effects from nonlinear distortion in transmission since nonlinear distortion does not appreciably alter pulse duration or position.

Additionally, like PM and FM CW modulation, PDM and PPM have the potential for wideband noise reduction—a potential more fully realized by PPM than by PDM. To appreciate why this is so, recall that the information resides in the time

Figure 6.3–3 Conversion of PDM or PPM into PAM.
location of the pulse edges, not in the pulses themselves. Thus, somewhat like the carrier-frequency power of AM, the pulse power of pulse-time modulation is “wasted” power, and it would be more efficient to suppress the pulses and just transmit the edges! Of course we cannot transmit edges without transmitting pulses to define them. But we can send very short pulses indicating the position of the edges, a process equivalent to PPM. The reduced power required for PPM is a fundamental advantage over PDM, an advantage that becomes more apparent when we examine the signal-to-noise ratios. Thus PAM is somewhat similar to analog AM, whereas PDM and PWM correspond to FM.

EXERCISE 6.3–1 Derive Eq. (3) by the following procedure. First, assume constant pulse duration τ, and write $x_p(t) = A s(t)$ with $s(t)$ given by Eq. (2), Sect. 6.1. Then apply the quasi-static approximation $\tau \approx \tau_0 [1 + \mu x(t)]$.

PPM Spectral Analysis

Because PPM with nonuniform sampling is the most efficient type of analog pulse modulation for message transmission, we should take the time to analyze its spectrum. The analysis method itself is worthy of examination.

Let the kth pulse be centered at time t_k. If we ignore the constant time delay t_d in Eq. (2), nonuniform sampling extracts the sample value at t_k, rather than kT_s, so

$$t_k = kT_s + t_0 x(t_k) \quad (5)$$

By definition, the PPM wave is a summation of constant-amplitude position-modulated pulses, and can be written as

$$x_p(t) = \sum_k A p(t - t_k) = A p(t) * \left[\sum_k \delta(t - t_k) \right]$$

where A is the pulse amplitude and $p(t)$ the pulse shape. A simplification at this point is made possible by noting that $p(t)$ will (or should) have a very small duration compared to T_s. Hence, for our purposes, the pulse shape can be taken as impulsive, and

$$x_p(t) \approx A \sum_k \delta(t - t_k) \quad (6)$$

If desired, Eq. (6) can later be convolved with $p(t)$ to account for the nonimpulsive shape.

In their present form, Eqs. (5) and (6) are unsuited to further manipulation; the trouble is the position term t_k, which cannot be solved for explicitly. Fortunately, t_k can be eliminated entirely. Consider any function $g(t)$ having a single first-order zero
at \(t = \lambda \), such that \(g(\lambda) = 0 \), \(g(t) \neq 0 \) for \(t \neq \lambda \), and \(\dot{g}(t) \neq 0 \) at \(t = \lambda \). The distribution theory of impulses then shows that
\[
\delta(t - \lambda) = |g(t)| \delta(g(t))
\]
whose right-hand side is independent of \(\lambda \). Equation (7) can therefore be used to remove \(t_k \) from \(\delta(t - t_k) \) if we can find a function \(g(t) \) that satisfies \(g(t_k) = 0 \) and the other conditions but does not contain \(t_k \).

Suppose we take \(g(t) = t - kT - t_x(t) \), which is zero at \(t = kT + t_x(t) \). Now, for a given value of \(k \), there is only one PPM pulse, and it occurs at \(t_k = kT + t_x(t_k) \). Thus \(g(t_k) = t_k - kT - t_x(t_k) = 0 \), as desired. Inserting \(\lambda = t_k \), \(g(t) = 1 - t_0 \hat{x}(t) \), etc., into Eq. (7) gives
\[
\delta(t - t_k) = |1 - t_0 \hat{x}(t)| \delta(t - kT - t_0 x(t))
\]
and the PPM wave of Eq. (6) becomes
\[
x_p(t) = A[1 - t_0 \hat{x}(t)] \sum_k \delta(t - t_0 x(t) - kT)
\]
The absolute value is dropped since \(|t_0 \hat{x}(t)| < 1 \) for most signals of interest if \(t_0 \ll T \). We then convert the sum of impulses to a sum of exponentials via
\[
\sum_{k=-\infty}^{\infty} \delta(t - kT) = f_s \sum_{n=-\infty}^{\infty} e^{j\omega_n t}
\]
which is Poisson’s sum formula. Thus, we finally obtain
\[
x_p(t) = Af_s[1 - t_0 \hat{x}(t)] \sum_{n=-\infty}^{\infty} e^{j\omega_n [t - t_0 x(t)]}
\]
\[
= Af_s[1 - t_0 \hat{x}(t)] \left\{ 1 + \sum_{n=1}^{\infty} 2 \cos \left[n\omega_s t - n\omega_s t_0 x(t) \right] \right\}
\]
The derivation of Eq. (8) is considered in Prob. 6.3–6.

Interpreting Eq. (9), we see that PPM with nonuniform sampling is a combination of linear and exponential carrier modulation, for each harmonic of \(f_s \) is phase-modulated by the message \(x(t) \) and amplitude-modulated by the derivative \(\dot{x}(t) \). The spectrum therefore consists of AM and PM sidebands centered at all multiples of \(f_s \), plus a dc impulse and the spectrum of \(\dot{x}(t) \). Needless to say, sketching such a spectrum is a tedious exercise even for tone modulation. The leading term of Eq. (9) suggests that the message can be retrieved by lowpass filtering and integrating. However, the integration method does not take full advantage of the noise-reduction properties of PPM, so the usual procedure is conversion to PAM or PDM followed by lowpass filtering.
6.4 QUESTIONS AND PROBLEMS

Questions
1. Describe a system whereby we can adequately sample a modulated BP signal at some rate below the carrier frequency.

2. Why do many instrumentation systems that measure signals with high DC content, first modulate the signal prior to amplification and processing?

3. The front end of an EKG monitor has to be completely electrically isolated from ground, etc., such that the resistance between any input probe and ground or any input probe and a power circuit is in excess of 1 megaohm. Yet we need to amplify and display the signal. Describe a system that would accomplish this task.

4. List at least two reasons why we oversample.

5. Why is the \(f_s > 2W \) and not \(f_s \geq 2W \) for sampling a pure sine wave?

6. We have a sampled signal at slightly above the Nyquist rate and have \(N - 1 \) stored values. We would like to represent the signal's samples as if the signal were sampled at eight times the Nyquist rate. The only samples we have to work with are the original samples. Describe at least two means to increase the sample rate.

7. Describe a system(s) to demodulate a PAM, PWM, and PPM signals.

8. The period of an electrocardiogram (EKG) signal can vary from 20 beats per minute (bpm) to several hundred bpm. What would be the minimum sample rate needed to adequately acquire an EKG signal?

9. List and describe some alternate means to overcome aperture errors.

10. Under what conditions does the worst case of aperture error occur? Why would or wouldn't the worst case occur in musical recordings?

Problems

6.1–1 Consider the chopper-sampled waveform in Eq. (3) with \(\tau = T_s/2 \), \(f_s = 100 \) Hz, and \(x(t) = 2 + 2 \cos 2\pi 30t + \cos 2\pi 80t \). Draw and label the one-sided line spectrum of \(x_s(t) \) for \(0 \leq f \leq 300 \) Hz. Then find the output waveform when \(x_s(t) \) is applied to an ideal LPF with \(B = 75 \) Hz.

6.1–2 Do Prob. 6.1–1 with \(x(t) = 2 + 2 \cos 2\pi 30t + \cos 2\pi 140t \).

6.1–3 The usable frequency range of a certain amplifier is \(f_c \) to \(f_c + B \), with \(B \gg f_c \). Devise a system that employs bipolar choppers and allows the amplifier to handle signals having significant DC content and bandwidth \(W \ll B \).

6.1–4 The baseband signal for FM stereo is
A popular stereo decoder circuit employs transistor switches to generate
$$v_L(t) = \left[x_1(t) + x_2(t)\right] + \left[x_4(t) - x_3(t)\right] \cos \omega_L t + A \cos \omega_L t/2$$
with $f_s = 38$ kHz. The chopper system in Fig. P6.1–4 is intended to generate this signal. The LPF has gain K_1 for $|f| \leq 15$ kHz, gain K_2 for $23 \leq |f| \leq 53$ kHz, and rejects $|f| \geq 99$ kHz. Use a sketch to show that $x_1(t) = x_4(t)s(t) + x_3(t)[1 - s(t)]$, where $s(t)$ is a unipolar switching function with $\tau = T_s/2$. Then find the necessary values of K_1 and K_2.

6.1–5

A popular stereo decoder circuit employs transistor switches to generate $v_L(t) = x_1(t) - Kx_2(t)$ and $v_R(t) = x_3(t) - Kx_4(t)$ where K is a constant, $x_1(t) = x_2(t)s(t)$, $x_3(t) = x_4(t)[1 - s(t)]$, $x_4(t)$ is the FM stereo baseband signal in Prob. 6.1–4, and $s(t)$ is a unipolar switching function with $\tau = T_s/2$. (a) Determine K such that lowpass filtering of $v_L(t)$ and $v_R(t)$ yields the desired left- and right-channel signals. (b) What’s the disadvantage of a simpler switching circuit that has $K = 0$?

6.1–6

Derive Eq. (11) using Eq. (14), Sect. 2.5.

6.1–7

Suppose $x(t)$ has the spectrum in Fig. P6.1–7 with $f_s = 25$ kHz and $W = 10$ kHz. Sketch $X_\delta(f)$ for $f_s = 60$, 45, and 25 kHz. Comment in each case on the possible reconstruction of $x(t)$ from $X_\delta(t)$.

Figure P6.1–4

Figure P6.1–7
6.1–8 Consider the bandpass signal spectrum in Fig. P6.1–7 whose Nyquist rate is \(f_s = 2f_u \). However, the bandpass sampling theorem states that \(x(t) \) can be reconstructed from \(x_d(t) \) by bandpass filtering if \(f_s = 2f_u/m \) and the integer \(m \) satisfies \((f_u/W) - 1 < m \leq f_u/W \). (a) Find \(m \) and plot \(f_s/W \) versus \(f_u/W \) for \(0 < f_u/W \leq 5 \). (b) Check the theorem by plotting \(X_d(f) \) when \(f_u = 2.5W \) and \(f_s = 2.5W \). Also show that the higher rate \(f_s \) would not be acceptable.

6.1–9 The signal \(x(t) = \text{sinc}^2 5t \) is ideally sampled at \(t = 0, \pm 0.1, \pm 0.2, \ldots \), and reconstructed by an ideal LPF with \(B = 5 \), unit gain, and zero time delay. Carry out the reconstruction process graphically, as in Fig. 6.1–6 for \(|t| \leq 0.2 \).

6.1–10 A rectangular pulse with \(\tau = 2 \) is ideally sampled and reconstructed using an ideal LPF with \(B = f_s/2 \). Sketch the resulting output waveforms when \(T_s = 0.8 \) and 0.4, assuming one sample time is at the center of the pulse.

6.1–11 Suppose an ideally sampled wave is reconstructed using a zero-order hold with time delay \(T = T_s \). (a) Find and sketch \(y(t) \) to show that the reconstructed waveform is a staircase approximation of \(x(t) \). (b) Sketch \(|Y(f)| \) for \(X(f) = \Pi (f/2W) \) with \(W \ll f_s \). Comment on the significance of your result.

6.1–12‡ The reconstruction system in Fig. P6.1–12 is called a first-order hold. Each block labeled ZOH is a zero-order hold with time delay \(T = T_s \). (a) Find \(h(t) \) and sketch \(y(t) \) to interpret the reconstruction operation. (b) Show that \(H(f) = T_s(1 + j2\pi fT_s)(\text{sinc}^2 fT_s) \exp(-j2\pi ft_s) \). Then sketch \(|Y(f)| \) for \(X(f) = \Pi (f/2W) \) with \(W < f_s/2 \).

![Figure P6.1–12](image)

6.1–13‡ Use Parseval’s theorem and Eq. (14) with \(T_s = 1/2W \) and \(B = W \) to show that the energy of a bandlimited signal is related to its sample values by

\[
E = (1/2W) \sum_{k=-\infty}^{\infty} \left| x(k/2W) \right|^2
\]
6.1–14 The **frequency-domain sampling theorem** says that if \(x(t) \) is a timelimited signal, such that \(x(t) = 0 \) for \(|t| \geq T\), then \(X(f) \) is completely determined by its sample values \(X(nf_0) \) with \(f_0 \leq 1/2T\). Prove this theorem by writing the Fourier series for the periodic signal
\[v(t) = x(t) \ast \left[\sum_k \delta(t - kT_0) \right], \]
where \(T_0 \equiv 2T \), and using the fact that \(x(t) = v(t)\Pi(t/2T) \).

6.1–15* A signal with period \(T_x = 0.08 \mu s \) is to be displayed using a sampling oscilloscope whose internal high-frequency response cuts off at \(B = 6 \) MHz. Determine maximum values for the sampling frequency and the bandwidth of the presampling LPF.

6.1–16 Explain why the sampling oscilloscope in Prob. 6.1–15 will not provide a useful display when \(T_x < 1/3B \).

6.1–17* A \(W = 15 \) kHz signal has been sampled at 150 kHz. What will be the maximum percent aperture error if the signal is reconstructed using a (a) ZOH, (b) FOH?

6.1–18 A \(W = 15 \) kHz signal is sampled at 150 kHz with a first-order Butterworth antialiasing filter. What will be the maximum percent aliasing error in the passband?

6.1–19 Show that the equality in Eq. (5) of Sect. 6.1 does not hold for a sinusoidal signal.

6.1–20* What is the Nyquist rate to adequately sample the following signals: (a) \(\text{sinc} (100t) \), (b) \(\text{sinc}^2 (100t) \), (c) \(10 \cos^4(2\pi 10^3t) \)?

6.1–21 Repeat Example 6.1–2 such that aliased components will be least 40 dB below the signal level at the half-power frequency of 159 kHz.

6.1–22* What is the minimum required sampling rate needed to sample a gaussian waveform with \(\sigma = 4 \mu s \) such that the samples capture 98 percent of the waveform?

Hint: Use Table T.1, T.6 and Fig. 8.4–2

6.1–23 The music on a CD has \(W \leq 20 \) kHz and \(f_s = 44 \) kHz. What is the maximum percentage of aperture error for reconstruction using (a) ZOH and (b) FOH?

6.2–1 Sketch \(|X_{\text{eq}}(f)|\) and find \(H_{\text{eq}}(f)\) for flat-top sampling with \(\tau = T_s/2 \), \(f_s = 2.5W \), and \(\rho(t) = \Pi(v/\tau) \). Is equalization essential in this case?

6.2–2 Do Prob. 6.2–1 for \(\rho(t) = (\cos \pi v/\tau)\Pi(v/\tau) \).

6.2–3† Some sampling devices extract from \(x(t) \) its average value over the sampling duration, so \(x(kT) \) in Eq. (1) is replaced by

\[
\bar{x}(kT_s) \triangleq \frac{1}{\tau} \int_{kT_s-\tau}^{kT_s} x(\lambda) \, d\lambda
\]
(a) Devise a frequency-domain model of this process using an averaging filter, with input $x(t)$ and output $\bar{x}(t)$, followed by instantaneous flat-top sampling. Then obtain the impulse response of the averaging filter and write the resulting expression for $X_p(f)$. (b) Find the equalizer needed when $p(t)$ is a rectangular pulse.

6.2–4

Consider the PAM signal in Eq. (4). (a) Show that its spectrum is

$$X_p(f) = A_0 f_s P(f) \left\{ \sum_n \left[\delta(f - nf_s) + \mu x(f - nf_s) \right] \right\}$$

(b) Sketch $|X_p(f)|$ when $p(t) = \Pi(t/\tau)$ with $\tau = T_s/2$ and $\mu x(t) = \cos 2\pi f_m t$ with $f_m < f_s/2$.

6.2–5

Suppose the PAM signal in Eq. (4) is to be transmitted over a transformer-coupled channel, so the pulse shape is taken as $p(t) = \Pi((t - \tau)/\tau) - \Pi((t + \tau)/\tau)$ to eliminate the DC component of $x_p(t)$. (a) Use the expression in Prob. 6.2–4 to sketch $|X_p(f)|$ when $\tau = T_s/4$, $X(f) = \Pi(f/2W)$, and $f_s > 2W$. (b) Find an appropriate equalizer, assuming that $x(t)$ has negligible frequency content for $|f| < f_s < W$. Why is this assumption necessary?

6.2–6

Show how a PAM signal can be demodulated using a product detector. Be sure to describe frequency parameters for the LO and the LPF.

6.3–1*

Calculate the transmission bandwidth needed for voice PDM with $f_s = 8$ kHz, $|\mu x(t)| \leq 0.8$, and $\tau_0 = T_s/5$ when we want $t_c \leq 0.25\tau_{\text{min}}$.

6.3–2

A voice PDM signal with $f_s = 8$ kHz and $|\mu x(t)| \leq 0.8$ is to be transmitted over a channel having $B_T = 500$ kHz. Obtain bounds on τ_0 such that $\tau_{\text{max}} \leq T_s/3$ and $\tau_{\text{min}} \geq 3t_c$.

6.3–3

A pulse-modulated wave is generated by uniformly sampling the signal $x(t) = \cos 2\pi f/T_s$ at $t = kT_s$, where $T_s = T_m/3$. Sketch and label $x_p(t)$ when the modulation is: (a) PDM with $\mu = 0.8$, $\tau_0 = 0.4T_s$, and leading edges fixed at $t = kT_s$; (b) PPM with $t_0 = 0.5T_s$ and $t_0 = \tau = 0.2T_s$.

6.3–4

Do Prob. 6.3–3 with $T_s = T_m/6$.

6.3–5

Use Eq. (9) to devise a system that employs a PPM generator and produces narrowband phase modulation with $f_c = mf_s$.

6.3–6

Poisson’s sum formula states in general that

$$\sum_{n=-\infty}^{\infty} e^{j2\pi n/\lambda} = L \sum_{m=-\infty}^{\infty} \delta(\lambda - mL)$$
6.4 Questions and Problems

where λ is an independent variable and L is a constant. (a) Derive the time-domain version as given in Eq. (8) by taking \(\mathcal{F}^{-1}[S_0(f)] \). (b) Derive the frequency-domain version by taking \(\mathcal{F}[S_0(t)] \).

6.3–7‡

Let \(g(t) \) be any continuous function that monotonically increases or decreases over \(a \leq t \leq b \) and crosses zero at \(t = \lambda \) within this range. Justify Eq. (7) by making the change-of-variable \(v = g(t) \) in

\[
\int_a^b \delta[g(t)] \, dt
\]
Analog Communication Systems

CHAPTER OUTLINE

7.1 Receivers for CW Modulation
Superheterodyne Receivers Direct Conversion Receivers Special-Purpose Receivers Receiver Specifications Scanning Spectrum Analyzers

7.2 Multiplexing Systems
Frequency-Division Multiplexing Quadrature-Carrier Multiplexing Time-Division Multiplexing Crosstalk and Guard Times Comparison of TDM and FDM

7.3 Phase-Locked Loops
PLL Operation and Lock-In Synchronous Detection and Frequency Synthesizers Linearized PLL Models and FM Detection

7.4 Television Systems
Video Signals, Resolution, and Bandwidth Monochrome Transmitters and Receivers Color Television HDTV
Communication systems that employ linear or angle CW modulation may differ in many respects—type of modulation, carrier frequency, transmission medium, and so forth. But they have in common the property that a sinusoidal bandpass signal with time-varying envelope and/or phase conveys the message information. Consequently, generic hardware items such as oscillators, mixers, and bandpass filters are important building blocks for all CW modulation systems. Furthermore, many systems involve both linear- and angle-modulate CW techniques.

This chapter therefore takes a broader look at CW modulation systems and hardware, using concepts and results from Chaps. 4 through 6. Specific topics include CW receivers, frequency- and time-division multiplexing, phase-lock loops, and television systems.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Design, in block-diagram form, a superheterodyne receiver that satisfies stated specifications (Sect. 7.1).
2. Predict at what frequencies a superheterodyne is susceptible to spurious inputs (Sect. 7.1).
3. Draw the block diagram of either an FDM or TDM system, given the specifications, and calculate the various bandwidths (Sect. 7.2).
4. Identify the phase-locked loop structures used for pilot filtering, frequency synthesis, and FM detection (Sect. 7.3).
5. Analyze a simple phase-locked loop system and determine the condition for locked operation (Sect. 7.3).
6. Explain the following TV terms: scanning raster, field, frame, retrace, luminance, chrominance, and color compatibility (Sect. 7.4).
7. Estimate the bandwidth requirement for image transmission given the vertical resolution, active line time, and aspect ratio (Sect. 7.4).
8. Describe the significant performance differences of NTSC versus HDTV systems (Sect. 7.4).

7.1 RECEIVERS FOR CW MODULATION

All that is really essential in a CW receiver is some tuning mechanism, demodulation, and amplification. With a sufficiently strong received signal, you may even get by without amplification—witness the historic crystal radio set. However, most receivers operate on a more sophisticated superheterodyne principle, which we’ll discuss first. Then we’ll consider other types of receivers and the related scanning spectrum analyzer.

Superheterodyne Receivers

Beside demodulation, a typical broadcast receiver must perform three other operations: (1) carrier-frequency tuning to select the desired signal, (2) filtering to separate that signal from others received with it, and (3) amplification to compensate for transmission loss. And at least some of the amplification should be provided before demodulation to bring the signal up to a level useable by the demodulator circuitry. For example, if the demodulator is based on a diode envelope detector, the input signal must overcome the diode’s forward voltage drop. In theory, all of the foregoing
requirements could be met with a high-gain tunable bandpass amplifier. In practice, fractional-bandpass (i.e., a relatively low ratio of bandwidth to carrier center frequency) and stability problems make such an amplifier expensive and difficult to build. More specifically, with analog components it’s difficult and uneconomical to implement both a selective (i.e., high Q) filter that will reject adjacent channel signals and one that is tuneable (i.e., has variable center frequency). Armstrong devised the superheterodyne or “superhet” receiver to circumvent these problems.

The superhet principle calls for two distinct amplification and filtering sections prior to demodulation, as diagrammed in Fig. 7.1–1. The incoming signal $x_c(t)$ is first selected and amplified by a radio-frequency (RF) section tuned to the desired carrier frequency f_c. The amplifier has a relatively broad bandwidth B_{RF} that partially passes adjacent-channel signals along with $x_c(t)$. Next a frequency converter comprised of a mixer and local oscillator translates the RF output down to an intermediate-frequency (IF) at $f_{IF} < f_c$. The adjustable LO frequency tracks with the RF tuning such that

$$f_{LO} = f_c + f_{IF} \quad \text{or} \quad f_{LO} = f_c - f_{IF}$$ \hspace{1cm} (1)

and hence

$$|f_c - f_{LO}| = f_{IF}$$ \hspace{1cm} (2)

An IF section with bandwidth $B_{IF} = B_I$ now removes the adjacent-channel signals. This section is a fixed bandpass amplifier, called the IF strip, which provides most of the gain. Finally, the IF output goes to the demodulator for message recovery and baseband amplification. The parameters for commercial broadcast AM and FM receivers for North America are given in Table 7.1–1. Other nations have generally the same AM bands but somewhat different FM ranges.

<table>
<thead>
<tr>
<th>Table 7.1–1</th>
<th>Parameters of AM and FM radios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AM</td>
</tr>
<tr>
<td>Carrier frequency</td>
<td>540–1700 kHz</td>
</tr>
<tr>
<td>Carrier spacing</td>
<td>10 kHz</td>
</tr>
<tr>
<td>Intermediate frequency</td>
<td>455 kHz</td>
</tr>
<tr>
<td>IF bandwidth</td>
<td>6–10 kHz</td>
</tr>
<tr>
<td>Audio bandwidth</td>
<td>3–5 kHz</td>
</tr>
</tbody>
</table>

The spectral drawings of Fig. 7.1–2 help clarify the action of a superhet receiver. Here we assume a modulated signal with symmetric sidebands (as distinguished from SSB or VSB). We also assume high-side conversion whereby $f_{LO} > f_c$ (more about this later). Thus, we take $f_{LO} = f_c + f_{IF}$ so

$$f_c = f_{LO} - f_{IF}$$

The RF input spectrum in Fig. 7.1–2a includes our desired signal plus adjacent-channel signals on either side and another signal at the image frequency

$$f'_c = f_c + 2f_{IF} = f_{LO} + f_{IF}$$ \hspace{1cm} (3)
The main task of the RF section is to pass at least f_c/B_T while rejecting the image frequency signal. For f'_c to reach the mixer, it would be down-converted to

$$f'_c - f_{LO} = (f_{LO} + f_{IF}) - f_{LO} = f_{IF}$$

and the image frequency signal would produce an effect similar to cochannel interference. Hence, we want an RF response $|H_{RF}(f)|$ like the dashed line, with

$$B_T < B_{RF} < 2f_{IF}$$

Note also, as indicated in Fig 7.1–2, f_{LO} has to be outside the tunable front-end BPF to avoid blocking effects. You can also observe that, the higher the IF, the greater will be the image frequency, thus reducing the need for a narrowband BPF for the front

\[\text{Note also in the mixer stage:}\]

\[
\cos \alpha \cos \beta = \cos \beta \cos \alpha = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)] = \frac{1}{2} [\cos(\beta + \alpha) + \cos(\beta - \alpha)]
\]
end. It should also be pointed out that, while a selective IF-BPF is necessary to reject adjacent channel signals, it will not help in rejecting images. The filtered and down-converted spectrum at the IF input is shown in Fig 7.1–2. The indicated IF response $|H_{IF}(f)|$ with $B_{IF} = B_T$ completes the task of adjacent-channel rejection.

The superheterodyne structure results in several practical benefits. First, tuning takes place entirely in the “front” end so the rest of the circuitry, including the demodulator, requires no adjustment to change f_c. Second, the separation between f_c and f_{IF} eliminates potential instability due to stray feedback from the amplified output to the receiver’s inputs. Third, most of the gain and selectivity is concentrated in the fixed-frequency IF strip. Since f_{IF} is an internal design parameter, it can be chosen to obtain a reasonable fractional bandwidth B_{IF}/f_{IF} for ease of implementation. Taken together, these benefits make it possible to build superhets with extremely high gain—75 dB or more in the IF strip alone. We can also employ high-Q mechanical, ceramic, crystal, and SAW bandpass filters and thus achieve tremendous reductions in adjacent channel interference.

Additionally, when the receiver must cover a wide carrier-frequency range, the choice of $f_{LO} = f_c + f_{IF}$ (high-side conversion) may result in a smaller and more readily achieved LO tuning ratio. For example, with AM broadcast radios, where $540 < f_c < 1700$ kHz and $f_{IF} = 455$ kHz results in $995 < f_{LO} < 2155$ kHz and thus a LO tuning range of 2:1. On the other hand, if we chose $f_{LO} = f_c - f_{IF}$ (low-side conversion) then for the same IF and input frequency range, we get $85 < f_{LO} < 1245$ kHz or a LO tuning range of $\sim 13:1$. We should point out, moreover that taking $f_{LO} > f_c$ in an SSB superhet causes sideband reversal in the down-converted signal, so USSB at RF becomes LSSB at IF, and vice versa.

A major disadvantage of the superhet structure is its potential for spurious responses at frequencies beside f_c. Image-frequency response is the most obvious problem. The radio of Fig. 7.1–1 employs a tunable BPF for image rejection. Given today’s integrated electronics technology, high-Q tunable BPFs may not be economical and thus some other means of image rejection must be employed. Raising f_{IF} will increase the spacing between f_c and f_{IF} and thus reduce the requirements for the RF amplifier’s BPF. In fact, if we set f_{IF} high enough, we could use a more economical LPF for image rejection.

Unfortunately images are not the only problem superhets face with respect to spurious responses. Any distortion in the LO signal will generate harmonics that get mixed with a spurious input and be allowed to pass to the IF strip. That’s why the LO must be a “clean” sine wave. The nonsinusoidal shape of digital signals is loaded with harmonics and thus if a receiver contains digital circuitry, special care must be taken to prevent these signals from “leaking” into the mixer stage. Further problems come from signal feedthrough and nonlinearities. For example, when a strong signal frequency near $\frac{1}{2} f_{IF}$ gets to the IF input, its second harmonic may be produced if the first stage of the IF amplifier is nonlinear. This second harmonic, approximately f_{IF}, will then be amplified by later stages and appear at the detector input as interference.

Superheterodyne receivers usually contain an automatic gain control (AGC) such that the receiver’s gain is automatically adjusted according to the input signal level. AGC is accomplished by rectifying and heavily low-pass filtering the receiver’s
audio signal, thus calculating its average value. This DC value is then fed back to the IF or RF stage to increase or decrease the stage’s gain. The AGC in an AM radio is usually called an automatic volume control (AVC) and is implemented via feedback signal from the demodulator back to the IF, while an FM receiver often has an automatic frequency control (AFC) fed back to the LO to correct small frequency drifts.

EXAMPLE 7.1–1 **Superhets and Spurious Signal Response**

A superhet receiver with $f_{IF} = 500$ kHz and $3.5 < f_{LO} < 4.0$ MHz has a tuning dial calibrated to receive signals from 3 to 3.5 MHz. It is set to receive a 3.0 MHz signal. The receiver has a broadband RF amplifier, and it has been found that the LO has a significant third harmonic output. If a signal is heard, what are all its possible carrier frequencies? With $f_{LO} = 3.5$ MHz, $f_c = f_{LO} - f_{IF} = 3.5 - 0.5 = 3.0$ MHz, and the image frequency is $f'_c = f_c + 2f_{IF} = 4.0$ MHz. But the oscillator’s third harmonic is 10.5 MHz and thus $f''_c = 3f_{LO} - f_{IF} = 10.5 - 0.5 = 10.0$ MHz. The corresponding image frequency is then $f'''_c = f''_c + 2f_{IF} = 10 + 1 = 11$ MHz. Therefore, with this receiver, even though the dial states the station is transmitting at 3.0 MHz, it actually may also be 4, 10, or 11 MHz.

EXERCISE 7.1–1 **Determine the spurious frequencies for the receiver of Example 7.1–1 if $f_{IF} = 7.0$ MHz with $10 \leq f_{LO} \leq 10.5$ MHz and the local oscillator outputs a third harmonic. What would the minimum spurious input rejection be in dB, if the receiver’s input was preceded by a first-order Butterworth LPF with $B = 4$ MHz.**

Direct Conversion Receivers

Direct conversion receivers (DC) are a class of tuned-RF (TRF) receivers that consist of an RF amplifier followed by a product detector and suitable message amplification. They are often called homodyne or zero IF receivers. A DC receiver is diagrammed in Fig. 7.1–3. Adjacent-channel interference rejection is accomplished by the LPF after the mixer. The DC receiver does not suffer from the same image problem that affects the superhet and because of improved circuit technology, particularly with higher gain and more stable RF amplifiers, it is capable of good performance. The DC’s simplicity lends itself to subminiature wireless sensor applications.

The DC’s chief drawback is that it does not reject the image signal that is present in the opposite sideband and is thus more susceptible to noise and interference. Figure 7.1–4 illustrates the output from two single-tone SSB signals, one transmitting at the upper sideband, or $f_c + f_1$, and an interfering signal at the lower sideband, or $f_c - f_2$. Both f_1 and f_2 will appear at the receiver’s output. However, the system shown in Fig. 7.1–4, which was originally developed by Campbell (1993), eliminates the other sideband. If the nodes in Fig. 7.1–4 are studied, the receiver’s output only
contains the upper sideband $f_c + f_1$ signal. Converting the final summer to a subtractor will permit reception of the LSSB signal.

Special-Purpose Receivers

Other types of receivers used for special purposes include the heterodyne, the TRF, and the double-conversion structure. A **heterodyne receiver** is a superhet without the RF section, which raises potential image-frequency problems. Such receivers can be built at microwave frequencies with a diode mixer preceded by a fixed microwave filter to reject images. In addition to the DC TRF receiver, we can also have a TRF using a tunable RF amplifier and envelope detector. The classic crystal radio is the simplest TRF.
A **double-conversion receiver** in Fig. 7.1–5 takes the superhet principle one step further by including two frequency converters and two IF sections. The second IF is always fixed-tuned, while the first IF and second LO may be fixed or tunable. In either case, double conversion permits a larger value of \(f_{IF1} \) to improve image rejection in the RF section, and a smaller value of \(f_{IF2} \) to improve adjacent-channel rejection in the second IF. High-performance receivers for SSB and shortwave AM usually improve this design strategy.

Notice that a double-conversion SSB receiver with synchronous detection requires three stable oscillators plus automatic frequency control and synchronization circuitry. Fortunately IC technology has made the **frequency synthesizer** available for this application. We’ll discuss frequency synthesis using phase-locked loops in Sect. 7.3.

Receiver Specifications

We now want to consider several parameters that determine the ability of a receiver to successfully demodulate a radio signal. Receiver **sensitivity** is the minimum input voltage necessary to produce a specified signal-to-noise ratio (S/N) at the output of the IF section. A good-quality shortwave radio typically has sensitivity of 1 \(\mu \)V for a 40 dB SNR. **Dynamic range** (DR) is

\[
DR = \frac{P_{\text{max}}}{P_{\text{min}}} = \frac{V_{\text{max}}^2}{V_{\text{min}}^2}
\]

or in dB

\[
DR_{\text{dB}} = 10 \log_{10} \left(\frac{P_{\text{max}}}{P_{\text{min}}} \right) = 20 \log_{10} \left(\frac{V_{\text{max}}}{V_{\text{min}}} \right)
\]

DR is usually specified in decibels. DR is a measure of a receiver’s ability to retain its linearity over a wide range of signal powers. Let’s say we are listening to a weak AM broadcast signal, and a strong station transmitting at a significantly different frequency, but within the RF amplifier’s passband, goes on the air. The strong station can overload the RF amplifier and thus wipe out the weak signal. Overloading can also cause cross-modulation and other forms of distortion. In the case of software radio, as shown in Fig. 1.4–2, the DR of the analog-to-digital converter (ADC) is

\[
DR_{\text{dB}} = 20 \log_{10} 2^v
\]
where \(v \) is the number of bits to the ADC. **Selectivity** specifies a receiver’s ability to discriminate against adjacent channel signals. It is a function of the IF strip’s BPF or, in the case of a direct-conversion receiver, the bandwidth of the LPF. The **noise figure** indicates how much the receiver degrades the input signal’s \(S/N \) and is

\[
NF = \frac{(S/N)_{\text{input}}}{(S/N)_{\text{output}}}
\]

(6)

Typical noise figures are 5–10 dB. Finally, **image rejection** is

\[
IR = 10 \log |H_{RF}(f_c)/H_{RF}(f'_c)|^2 \text{ dB}
\]

(7)

A typical value of image rejection is 50 dB. This equation may apply to other types of spurious inputs as well.

Suppose a superhet’s RF section is a typical tuned circuit described by Eq. (17), Sect. 4.1, with \(f_o = f_c \) and \(Q = 50 \). Show that achieving \(IR = 60 \text{ dB} \) requires \(f'_c/f_c \approx 20 \) when \(f'_c = f_c + 2f_{IF} \). This requirement could easily be satisfied by a double conversion receiver with \(f_{IF - 1} \approx 9.5f_c \).

Scanning Spectrum Analyzers

If the LO in a superhet is replaced by a VCO, then the predetection portion acts like a voltage-tunable bandpass amplifier with center frequency \(f_0 = f_{LO} \pm f_{IF} \) and bandwidth \(B = B_{IF} \). This property is at the heart of the scanning spectrum analyzer in Fig. 7.1–6a—a useful laboratory instrument that displays the spectral magnitude of an input signal over some selected frequency range.

![Diagram](image)

Figure 7.1–6 Scanning spectrum analyzer: (a) block diagram; (b) amplitude response.

EXERCISE 7.1–2
The VCO is driven by a periodic ramp generator that sweeps the instantaneous frequency \(f_{0}(t) \) linearly from \(f_{1} \) to \(f_{2} \) in \(T \) seconds. The IF section has a narrow bandwidth \(B \), usually adjustable, and the IF output goes to an envelope detector. Hence, the system’s amplitude response at any instant \(t \) looks like Fig. 7.1–6b, where \(f_{0}(t) = f_{10}(t) - f_{f} \). A fixed BPF (or LPF) at the input passes \(f_{1} \leq f \leq f_{2} \) while rejecting the image at \(f_{0}(t) + 2f_{f} \).

As \(f_{0}(t) \) repeatedly scans past the frequency components of an input signal \(v(t) \), its spectrum is displayed by connecting the envelope detector and ramp generator to the vertical and horizontal deflections of an oscilloscope. Obviously, a transient signal would not yield a fixed display, so \(v(t) \) must be either a periodic or quasi-periodic signal or a stationary random signal over the time of observation. Correspondingly, the display represents the amplitude line spectrum or the power spectral density. (A square-law envelope detector would be used for the latter.)

Some of the operational subtleties of this system are best understood by assuming that \(v(t) \) consists of two or more sinusoids. To resolve one spectral line from the others, the IF bandwidth must be smaller than the line spacing. Hence, we call \(B \) the frequency resolution, and the maximum number of resolvable lines equals \((f_{2} - f_{1})/B \). The IF output produced by a single line takes the form of a bandpass pulse with time duration

\[
\tau = BT/(f_{2} - f_{1}) = B/f_{0}
\]

where \(f_{0} = (f_{2} - f_{1})/T \) represents the frequency sweep rate in hertz per second.

However, a rapid sweep rate may exceed the IF pulse response. Recall that our guideline for bandpass pulses requires \(B \geq 1/\tau = f_{0}/B \), or

\[
f_{0} = \frac{f_{2} - f_{1}}{T} \leq B^{2}
\]

This important relation shows that accurate resolution (small \(B \)) calls for a slow rate and correspondingly long observation time. Also note that Eq. (8) involves four parameters adjustable by the user. Some scanning spectrum analyzers have built-in hardware that prevents you from violating Eq. (8); others simply have a warning light.

The scanning spectrum analyzer is not the only way to determine the spectral content of a signal. If you recall from Sect. 2.6, if we digitize (sample and quantize) an incoming signal with an analog-to-digital converter (ADC), then calculate its DFT or FFT, we can obtain a signal’s spectrum. This is shown in Fig. 7.1–7. Note the last stage computes the spectrum’s magnitude or \(|V(k)\rangle/\langle V(k)\rangle^{2} \Rightarrow Y(k) = \sqrt{|V(k)|^{2}} \Rightarrow Y(f) \)

Section 12.1 has more information on ADCs.

![Figure 7.1–7](image-url) DFT/FFT spectrum analyzer.

\[
\begin{align*}
v(t) & \quad \text{RF Amp.} & \quad \text{ADC} & \quad v_{q}(t) & \quad \text{Calculate FFT} & \quad V(k) & \quad V(k)V^{*}(k) \Rightarrow Y(k) \Rightarrow Y(f)
\end{align*}
\]
Rewrite the MATLAB code in Example 2.6–1 so that the signal’s power spectrum would appear as it would on a spectrum analyzer.

7.2 MULTIPLEXING SYSTEMS

When several communication channels are needed between the same two points for either multiple access or channel diversity (i.e., message redundancy), significant economies may be realized by sending all the messages on one transmission facility—a process called multiplexing. Applications of multiplexing range from the telephone network to wireless cell phones, wireless networks, FM stereo, and space-probe telemetry systems. Three basic multiplexing techniques are frequency-division multiplexing (FDM), time-division multiplexing (TDM), and code-division multiplexing, treated in Chap. 15. An objective of these techniques is to enable multiple users to share a channel, and hence they are referred to as frequency-division multiple access (FDMA), time-division multiple access (TDMA), and code-division multiple access (CDMA). Variations of FDM are quadrature-carrier multiplexing and orthogonal frequency division multiplexing (OFDM). OFDM is covered in Chap. 14. A fourth multiple access method, spatial multiplexing, exists in wireless systems, whereby we separate signals based on the spatial or directional and polarization properties of the transmitter and receiver antennas. For example, signals sent via an antenna with horizontal polarization can be picked up only by an antenna with horizontal polarization. It is similar for signals sent using vertical, right-hand, and left-hand circular polarizations. With directional antennas, we can send different signals at the same time, frequency, etc., if the destinations are at different locations.

Multiplexing can serve two purposes: First, it enables several users to share a channel resource. Second, with the appropriate redundancy using frequency, code, time, or spatial diversity, we can improve the reliability of a message reaching its destination.

Frequency-Division Multiplexing

The principle of FDM is illustrated by Fig. 7.2–1a, where several input messages (three are shown) individually modulate the subcarriers \(f_1, f_2, \) and so forth, after passing through LPFs to limit the message bandwidths. We show the subcarrier modulation as SSB as it often is, but any of the CW modulation techniques could be employed, or a mixture of them. The modulated signals are then summed to produce the baseband signal, with spectrum \(X_b(f) \) as shown in Fig. 7.2–1b. (The designation “baseband” indicates that final carrier modulation has not yet taken place.) The baseband time function \(x_b(t) \) is left to the reader's imagination.
Assuming that the subcarrier frequencies are properly chosen, the multiplexing operation has assigned a slot in the frequency domain for each of the individual messages in modulated form, hence the name frequency-division multiplexing. The baseband signal may then be transmitted directly or used to modulate a transmitted carrier of frequency f_c. We are not particularly concerned here with the nature of the final carrier modulation, since the baseband spectrum tells the story.

Message recovery or demodulation of FDM is accomplished in three steps portrayed by Fig. 7.2–2. First, the carrier demodulator reproduces the baseband signal $x_b(t)$. Then the modulated subcarriers are separated by a bank of bandpass filters in parallel, following which the messages are individually detected.

The major practical problem of FDM is crosstalk, the unwanted coupling of one message into another. Intelligible crosstalk (cross-modulation) arises primarily because of nonlinearities in the system which cause one message signal to appear as
modulation on another subcarrier. Consequently, standard practice calls for negative feedback to minimize amplifier nonlinearity in FDM systems. (As a matter of historical fact, the FDM crosstalk problem was a primary motivator for the development of negative-feedback amplifiers.)

Unintelligible crosstalk may come from nonlinear effects or from imperfect spectral separation by the filter bank. To reduce the latter, the modulated message spectra are spaced out in frequency by guard bands into which the filter transition regions can be fitted. For example, the guard band marked in Fig. 7.2–1b is of width \(f_{c2} - (f_{c1} + W_1) \). The net baseband bandwidth is therefore the sum of the modulated message bandwidths plus the guard bands. But the scheme in Fig. 7.2–2 is not the only example of FDM. The commercial AM or FM broadcast bands are everyday examples of FDMA, where several broadcasters can transmit simultaneously in the same band, but at slightly different frequencies.

So far our discussion of FDM has applied to situations in which several users are assigned their own carrier frequency. However, it may be advantageous to have a given user’s message parsed and then have the pieces sent over different carrier frequencies to be transmitted at a lower rate. A system that transmits a message via multiple carriers is called multicarrier (MC) modulation; hence we have frequency diversity. For the case of frequency selective channel fading, frequency diversity in conjunction with the appropriate redundancy will increase the reliability of the transmission. Some examples of systems that employ frequency diversity will be described with the GSM phone system of Example 7.2–4, the orthogonal frequency division multiplexing of Sect. 14.5, and the frequency-hopping spread-spectrum of Sect. 15.2.

FDMA Satellite Systems

The Intelsat global network adds a third dimension to long-distance communication. Since a particular satellite links several ground stations in different countries, various access methods have been devised for international telephony. One scheme, known as frequency-division multiple access (FDMA), assigns a fixed number of voice
channels between pairs of ground stations. These channels are grouped with standard FDM hardware, and relayed through the satellite using FM carrier modulation.

For the sake of example, suppose a satellite over the Atlantic Ocean serves ground stations in the United States, Brazil, and France. Further suppose that 36 channels (three groups) are assigned to the U.S.–France route and 24 channels (two groups) to the U.S.–Brazil route. Figure 7.2–3 shows the arrangement of the U.S. transmitter and the receivers in Brazil and France. Not shown are the French and Brazilian transmitters and the U.S. receiver needed for two-way conversations. Additional transmitters and receivers at slightly different carrier frequencies would provide a Brazil–France route.

The FDMA scheme creates at the satellite a composite FDM signal assembled with the FM signals from all ground stations. The satellite equipment consists of a bank of transponders. Each transponder has 36 MHz bandwidth accommodating 336 to 900 voice channels, depending on the ground-pair assignments. More details and other satellite access schemes can be found in the literature.

EXERCISE 7.2–1

Suppose an FDM baseband amplifier has cubic-law nonlinearity which produces a baseband component proportional to $(v_1 \cos \omega_1 t)^2(v_2 \cos \omega_2 t)$, where f_1 and f_2 are two subcarrier frequencies. Show that AM subcarrier modulation with $v_1 = 1 + x_1(t)$ and $v_2 = 1 + x_2(t)$ results in both intelligible and unintelligible crosstalk on subcarrier f_1. Compare with the DSB case $v_1 = x(t)$ and $v_2 = x(t)$.

EXAMPLE 7.2–2

FM Stereo Multiplexing

Figure 7.2–4a diagrams the FDM system that generates the baseband signal for FM stereophonic broadcasting. The left-speaker and right-speaker signals are first matrixed and preemphasized to produce $x_L(t) + x_R(t)$ and $x_L(t) - x_R(t)$. The sum

![Figure 7.2–3 Simplified FDMA satellite system.](image-url)
signal is heard with a monophonic receiver; matrixing is required so the monaural listener will hear a fully balanced program and will not be subjected to sound gaps in program material having stereophonic ping-pong effects. The $x_L(t) + x_R(t)$ signal is then inserted directly into the baseband, while $x_L(t) - x_R(t)$ DSB modulates a 38 kHz subcarrier. Double-sideband modulation is employed to simplify decoding hardware and to preserve fidelity at low frequencies, and a 19 kHz pilot tone is added for receiver synchronization.

The resulting baseband spectrum is sketched in Fig. 7.2–4b. Also shown is another spectral component labeled SCA, which stands for Subsidiary Communication Authorization. The SCA signal has NBFM subcarrier modulation and is transmitted by some FM stations for the use of private subscribers who pay for commercial-free program material—the so-called background heard in stores and offices.

For stereo broadcasting without SCA, the pilot carrier is allocated 10 percent of the peak frequency deviation and the “seesaw” (interleaving) relationship between $L + R$ and $L - R$ component permits each to achieve nearly 90 percent deviation. The fact that the baseband spectrum extends to 53 kHz (or 75 kHz with SCA) does not appreciably increase the transmission bandwidth requirement because the higher frequencies produce smaller deviation ratios. High-fidelity stereo receivers typically have $B_{1f} = 250$ kHz.

The stereo demultiplexing or decoding system is diagrammed in Fig. 7.2–5. Notice how the pilot tone is used to actuate the stereo indicator as well as for synchronous detection. Integrated-circuit decoders employ switching circuits or phase-locked loops to carry out the functional operations.
CHAPTER 7 • Analog Communication Systems

Incidentally, on a historical note, discrete four-channel (quadrphonic) (“CD-4”) disk recording took a logical extension of the FM stereo strategy to multiplex four independent signals on the two channels of a stereophonic record. Let’s denote the four signals as LF, LR, RF, and RR (for left-front, left-rear, etc.). The matrixed signal LF + LR was recorded directly on one channel along with LF – LR multiplexed via frequency modulation of a 30-kHz subcarrier. The matrixed signals RF + RR and RF – RR were likewise multiplexed on the other channel. Because the resulting base-band spectrum went up to 45 kHz, discrete quadrphonic signals could be transmitted in full on stereo FM. Proposals for a full four-channel discrete FM signal format were actually developed but were never adopted for broadcasts due to their cost, complexity, and lower signal-to-noise ratio in transmission. Other quadrphonic systems (so-called “matrixed”) have only two independent channels and are thus compatible with FM stereo.

Quadrature-Carrier Multiplexing

Quadrature-carrier multiplexing, also known as quadrature amplitude modulation (QAM), utilizes carrier phase shifting and synchronous detection to permit two DSB signals to occupy the same frequency band. Figure 7.2–6 illustrates the multiplexing and demultiplexing arrangement. The transmitted signal is has the form

$$x_c(t) = A_c[x_1(t) \cos \omega_c t \pm x_2(t) \sin \omega_c t]$$ \hspace{1cm} (1)

This multiplexing method functions due to the fact that the two DSB signals are **orthogonal**. Since the modulated spectra overlap each other, this technique is more properly characterized as phase-domain rather than frequency-division multiplexing. The next exercise illustrates how we can concurrently send signals $x_1(t)$ and $x_2(t)$ over the same carrier frequency without interference.

From our prior study of synchronous detection for DSB and SSB, you should readily appreciate the fact that QAM involves more stringent synchronization than, say, an FDM system with SSB subcarrier modulation. Hence, QAM is limited to specialized applications, notably the “color” subcarriers in and of television and digital data transmission.
Show how the QAM scheme of Fig. 7.2–6 enables $x_1(t)$ or $x_2(t)$ to be transmitted over the same channel without interference.

EXERCISE 7.2–2

Figure 7.2–6 Quadrature-carrier multiplexing.

Time-Division Multiplexing

A sampled waveform is “off” most of the time, leaving the time between samples available for other purposes. In particular, sample values from several different signals can be interleaved into a single waveform. This is the principle of **time-division multiplexing** (TDM) discussed here.

The simplified system in Fig. 7.2–7 demonstrates the essential features of time-division multiplexing. Several input signals are prefiltered by the bank of input LPFs and sampled sequentially. The rotating sampling switch or commutator at the transmitter extracts one sample from each input per revolution. Hence, its output is a PAM waveform that contains the individual samples periodically interleaved in time. A similar rotary switch at the receiver, called a decommutator or distributor, separates the samples and distributes them to another bank of LPFs for reconstruction of the individual messages.

If all inputs have the same message bandwidth W, the commutator should rotate at the rate $f_s \geq 2W$ so that successive samples from any one input are spaced by $T_s = 1/f_s \leq 1/2W$. The time interval T_s containing one sample from each input is called a frame. If there are M input channels, the pulse-to-pulse spacing within a frame is $T_s/M = 1/Mf_s$. Thus, the total number of pulses per second will be

$$r = Mf_s \geq 2M W$$

which represents the pulse rate or signaling rate of the TDM signal.

Our primitive example system shows mechanical switching to generate multiplexed PAM, but almost all practical TDM systems employ electronic switching. Furthermore, other types of pulse modulation can be used instead of PAM. Therefore, a more generalized commutator might have the structure diagrammed in Fig. 7.2–8, where pulse-modulation gates process the individual inputs to form the
Figure 7.2–7 TDM system: (a) block diagram; (b) waveforms.

Figure 7.2–8 (a) Electronic commutator for TDM; (b) timing diagram.
TDM output. The gate control signals come from a flip-flop chain (a broken-ring a
Johnson counter) driven by a digital clock at frequency $M f_s$. The decommutator
would have a similar structure.

Regardless of the type of pulse modulation, TDM systems require careful
synchronization between commutator and decommutator. Synchronization is a criti-
cal consideration in TDM, because each pulse must be distributed to the correct output line at the appropriate time. A popular brute-force synchronization technique
devotes one time slot per frame to a distinctive marker pulse or nonpulse, as illus-
trated in Fig. 7.2–9. These markers establish the frame frequency f_s at the receiver,
but the number of signal channels is reduced to $M - 1$. Other synchronization meth-
ods involve auxiliary pilot tones or the statistical properties of the TDM signal itself.

Radio-frequency transmission of TDM necessitates the additional step of CW
modulation to obtain a bandpass waveform. For instance, a TDM signal composed
of duration or position-modulated pulses could be applied to an AM transmitter with
100 percent modulation, thereby producing a train of constant-amplitude RF pulses.
The compound process would be designated PDM/AM or PPM/AM, and the
required transmission bandwidth would be twice that of the baseband TDM signal.
The relative simplicity of this technique suits low-speed multichannel applications
such as radio control for model airplanes.

More sophisticated TDM systems may use PAM/SSB for bandwidth conserva-
tion or PAM/FM for wideband noise reduction. The complete transmitter diagram in
Fig. 7.2–10a now includes a lowpass baseband filter with bandwidth

$$B_b = \frac{1}{2}r = \frac{1}{2}M f_s$$ \hspace{1cm} (3)

Baseband filtering prior to CW modulation produces a smooth modulating wave-
form $x_b(t)$ having the property that it passes through the individual sample values at
the corresponding sample times, as portrayed in Fig. 7.2–10b. Since the interleaved
sample spacing equals $1/M f_s$, the baseband filter constructs $x_b(t)$ in the same way that
an LPF with $B = f_s/2$ would reconstruct a waveform $x(t)$ from its periodic samples
$x(kT_s)$ with $T_s = 1/f_s$.

\[x_{M-1} \quad \text{Marker} \quad x_1 \quad x_2 \quad x_{M-1} \quad \text{Marker} \quad x_1\]

\[\text{PAM} \quad \text{PDM} \quad \text{PPM}\]

\[t \quad t \quad t\]

Frame

\[\text{Figure 7.2–9} \quad \text{TDM synchronization markers.}\]
If baseband filtering is employed, and if the sampling frequency is close to the Nyquist rate $f_{s_{\text{min}}} = 2W$ for the individual inputs, then the transmission bandwidth for PAM/SSB becomes

$$B_T = \frac{1}{2}M \times 2W = MW$$

Under these conditions, TDM approaches the theoretical minimum bandwidth of frequency-division multiplexing with SSB subcarrier modulation.

Although we’ve assumed so far that all input signals have the same bandwidth, this restriction is not essential and, moreover, would be unrealistic for the important case of analog data telemetry. The purpose of a telemetry system is to combine and transmit physical measurement data from different sources at some remote location. The sampling frequency required for a particular measurement depends on the physical process involved and can range from a fraction of a hertz up to several kilohertz. A typical telemetry system has a main multiplexer plus submultiplexers arranged to handle 100 or more data channels with various sampling rates.

EXAMPLE 7.2–3 TDM Telemetry

For the sake of illustration, suppose we need five data channels with minimum sampling rates of 3000, 700, 600, 300, and 200 Hz. If we used a five-channel multiplexer with $f_s = 3000$ Hz for all channels, the TDM signaling rate would be $r = 5 \times 3000 = 15$ kHz—not including synchronization markers. A more efficient scheme involves an eight-channel main multiplexer with $f_s = 750$ Hz and a two-channel submultiplexer with $f_s = 375$ Hz connected as shown in Fig. 7.2–11.

The two lowest-rate signals $x_4(t)$ and $x_5(t)$ are combined by the submultiplexer to create a pulse rate of $2 \times 375 = 750$ Hz for insertion into one channel of the main multiplexer. Hence, the samples of $x_4(t)$ and $x_5(t)$ will appear in alternate frames.
On the other hand, the highest-rate signal $x_1(t)$ is applied to four inputs on the main multiplexer. Consequently, its samples appear in four equispaced slots within each frame, for an equivalent sampling rate of $4 \times 750 = 3000$ Hz. The total output signaling rate, including a marker, is $r = 8 \times 750$ Hz = 6 kHz. Baseband filtering would yield a smoothed signal whose bandwidth $B_b = 3$ kHz fits nicely into a voice telephone channel!

Suppose the output in Fig. 7.2–11 is an unfiltered PAM signal with 50 percent duty cycle. Sketch the waveform for two successive frames, labeling each pulse with its source signal. Then calculate the required transmission bandwidth B_T from Eq. (6), Sect. 6.2.

Crosstalk and Guard Times

When a TDM system includes baseband filtering, the filter design must be done with extreme care to avoid interchannel crosstalk from one sample value to the next in the frame. Digital signals suffer a similar problem called intersymbol interference, and we defer the treatment of baseband waveform shaping to Sect. 11.3.

A TDM signal without baseband filtering also has crosstalk if the transmission channel results in pulses whose tails or postcursors overlap into the next time slot of the frame. Pulse overlap is controlled by establishing guard times between pulses, analogous to the guard bands between channels in an FDM system. Practical TDM systems have both guard times and guard bands, the former to suppress crosstalk, the latter to facilitate message reconstruction with nonideal filters.

For a quantitative estimate of crosstalk, let’s assume that the transmission channel acts like a first-order lowpass filter with 3 dB bandwidth B. The response to a rectangular pulse then decays exponentially, as sketched in Fig. 7.2–12. The guard time T_g represents the minimum pulse spacing, so the pulse tail decays to a value no larger
than \(A_{ct} = Ae^{-2\pi BT_g} \) by the time the next pulse arrives. Accordingly, we define the crosstalk reduction factor.

\[
k_{ct} \triangleq 10 \log \left(\frac{A_{ct}}{A} \right)^2 = -54.5 \text{ BT}_g \quad \text{dB}
\]

(4)

Keeping the crosstalk below \(-30 \text{ dB}\) calls for \(T_g > 1/2B \).

Guard times are especially important in TDM with pulse-duration or pulse-position modulation because the pulse edges move around within their frame slots. Consider the PPM case in Fig. 7.2–13: here, one pulse has been position-modulated forward by an amount \(t_0 \) and the next pulse backward by the same amount. The allowance for guard time \(T_g \) requires that \(T_g + 2t_0 + 2(\tau/2) \leq \frac{T_s}{M} \) or

\[
t_0 \leq \frac{1}{2} \left(\frac{T_s}{M} - \tau - T_g \right)
\]

(5)

A similar modulation limit applies in the case of PDM.

Figure 7.2–13 TDM/PPM with guard time.
Nine voice signals plus a marker are to be transmitted via PPM on a channel having \(B = 400 \text{ kHz} \). Calculate \(T_g \) such that \(k_{\text{ct}} \approx -60 \text{ dB} \). Then find the maximum permitted value of \(t_0 \) if \(f_s = 8 \text{ kHz} \) and \(\tau = \frac{1}{5}(T_g/M) \).

Comparison of TDM and FDM

Time-division and frequency-division multiplexing accomplish the same end by different means. Indeed, they may be classified as dual techniques. Individual TDM channels are assigned to distinct time slots but jumbled together in the frequency domain; conversely, individual FDM channels are assigned to distinct frequency slots but united together in the time domain. What advantages then does each offer over the other?

Many of the TDM advantages are technology driven. TDM is readily implemented with high-density VLSI circuitry where digital switches are extremely economical. Recall that the traditional FDM described so far requires an analog subcarrier, bandpass filter, and demodulator for every message channel. These are relatively expensive to implement in VLSI. However, all of these are replaced by a TDM commutator and decommutator switching circuits, easily put on a chip. However, as will be described in Chap. 14, the OFDM version of FDM is readily implemented in digital hardware.

Second, TDM is invulnerable to the usual causes of crosstalk in FDM, namely, imperfect bandpass filtering and nonlinear cross-modulation. However, TDM crosstalk immunity does depend on the transmission bandwidth and the absence of delay distortion.

Third, the use of submultiplexers as per Example 7.2–3 allows a TDM system to accommodate different signals whose bandwidths or pulse rates may differ by more than an order of magnitude. This flexibility has particular value for multiplexing digital signals, as we’ll see in Sect. 12.5.

Finally, TDM may or may not be advantageous when the transmission medium is subject to fading. Rapid wideband fading might strike only occasional pulses in a given TDM channel, whereas all FDM channels would be affected. Slow narrowband fading wipes out all TDM channels, whereas it might hurt only one FDM channel. To minimize the time of being in that one channel that gets wiped out, we can employ the frequency-hopping concept used by GSM systems, or some other type of multicarrier modulation.

For the most part, most multiple access systems are hybrids of FDMA and/or TDMA. GSM, satellite relay, and the CDMA phone system described in Chap. 15 are examples of such hybrid systems.

Group Special Mobile (GSM)

GSM is a second-generation (2G) digital telephone standard that uses FDMA and TDMA and was originally developed in Europe to replace various national analog wireless cell-phone systems. Although it’s being superseded by 2.5G, it has some
interesting design features to consider. In Europe, handset (cell phone) to base (tower) uses the 890–915 MHz portion of the spectrum, and the tower to handset is from 935 to 960 MHz. As shown in Fig. 7.2–14, each 25 MHz portion is divided up into 125 carrier frequencies or channels, with each channel having a bandwidth of about 200 kHz and with 8 users/channel, thus allowing up to 1,000 possible users. Further examination of Fig. 7.2–14 shows that each user transmits a data burst every 4.615 ms (216.7 kHz), with each burst having duration of 576.92 μs to accommodate 156.25 bits. This includes two sets of user data at 57 bits each, and 26 bits are allocated to measure the path characteristics. The few remaining bits are used for control, etc. Like the system in Fig. 7.2–7, each frame consists of TDM’d data from several users. Again, note each GSM frame contains two bursts of data of 57 bits each; this allows for data other than voice. In order to provide for frequency diversity.
to combat frequency selective narrowband fading, GSM also employs pseudorandom frequency hopping, such that each the carrier frequency changes at a rate of 217 hops per second. Section 15.2 discusses in detail frequency hopping in spread-spectrum systems.

7.3 Phase-Locked Loops

The phase-locked loop (PLL) is undoubtedly the most versatile building block available for CW modulation systems. PLLs are found in modulators, demodulators, frequency synthesizers, multiplexers, and a variety of signal processors. We’ll illustrate some of these applications after discussing PLL operation and lock-in conditions. Our introductory study provides a useful working knowledge of PLLs but does not go into detailed analysis of nonlinear behavior and transients. Treatments of these advanced topics are given in Blanchard (1976), Gardner (1979), Meyr and Ascheid (1990), and Lindsey (1972).

PLL Operation and Lock-In

The basic aim of a PLL is to lock or synchronize the instantaneous angle (i.e., phase and frequency) of a VCO output to the instantaneous angle of an external bandpass signal that may have some type of CW modulation. For this purpose, the PLL must perform phase comparison. We therefore begin with a brief look at phase comparators.

The system in Fig. 7.3–1a is an analog phase comparator. It produces an output \(y(t) \) that depends on the instantaneous angular difference between two bandpass input signals, \(x_c(t) = A_c \cos \theta_c(t) \) and \(v(t) = A_v \cos \theta_v(t) \). Specifically, if

\[
\theta_v(t) = \theta_c(t) - \epsilon(t) + 90^\circ
\]

and if the LPF simply extracts the difference-frequency term from the product \(x_c(t)v(t) \), then

\[
y(t) = \frac{1}{2} A_c A_v \cos[\theta_c(t) - \theta_v(t)]
\]

\[
= \frac{1}{2} A_c A_v \cos[\epsilon(t) - 90^\circ] = \frac{1}{2} A_c A_v \sin \epsilon(t)
\]

We interpret \(\epsilon(t) \) as the angular error, and the plot of \(y \) versus \(\epsilon \) emphasizes that \(y(t) = 0 \) when \(\epsilon(t) = 0 \). Had we omitted the \(90^\circ \) shift in Eq. (1), we would get \(y(t) = 0 \) at \(\epsilon(t) = \pm 90^\circ \). Thus, zero output from the phase comparator corresponds to a quadrature phase relationship.

Also note that \(y(t) \) depends on \(A_c A_v \) when \(\epsilon(t) \neq 0 \), which could cause problems if the input signals vary in magnitude or have amplitude modulation. These problems are eliminated by the digital phase comparator in Fig. 7.3–1b, where hard limiters convert input sinusoids to square waves applied to a switching circuit. The resulting plot of \(y \) versus \(\epsilon \) has a triangular or sawtooth shape, depending on the switching circuit details. However, all three phase-comparison curves are essentially the same (except for gain) when \(|\epsilon(t)| \ll 90^\circ \)—the intended operating condition in a PLL.
Hereafter, we’ll work with the analog PLL structure in Fig. 7.3–2. We assume for convenience that the external input signal has constant amplitude \(A_c = 2\) so that

\[
x_c(t) = 2 \cos \theta_c(t)
\]

where, as usual,

\[
\theta_c(t) = \theta_e(t) - \epsilon(t) + 90^\circ
\]

We also assume a unit-amplitude VCO output \(v(t) = \cos \theta_v(t)\) and a loop amplifier with gain \(K_a\). Hence,

\[
y(t) = K_a \sin \epsilon(t)
\]

which is fed back for the control voltage to the VCO.

Since the VCO’s free-running frequency with \(y(t) = 0\) may not necessarily equal \(f_c\), we’ll write it as \(f_v = f_c - \Delta f\) where \(\Delta f\) stands for the frequency error. Application of the control voltage produces the instantaneous angle

\[
\theta_v(t) = 2 \pi (f_c - \Delta f) t + \phi_v(t) + 90^\circ
\]
with
\[\phi_k(t) = 2\pi K_v \int_1 y(\lambda) \, d\lambda \quad (4b) \]
when \(K_v \) equals the frequency-deviation constant. The angular error is then
\[e(t) = \theta(t) - \theta(t) + 90^\circ = 2\pi \Delta f + \phi(t) - \phi(t) \]
and differentiation with respect to \(t \) gives
\[\dot{e}(t) = 2\pi \Delta f + \dot{\phi}(t) - 2\pi K_v y(t) \]
Upon combining this expression with Eq. (3) we obtain the nonlinear differential equation.
\[\dot{\phi}(t) + 2\pi K \sin e(t) = 2\pi \Delta f + \dot{\phi}(t) \quad (5) \]
in which we’ve introduced the loop gain
\[K = K_v K_a \]
This gain is measured in hertz (sec\(^{-1}\)) and turns out to be a critical parameter.

Equation (5) governs the dynamic operation of a PLL, but it does not yield a closed-form solution with an arbitrary \(\phi(t) \). To get a sense of PLL behavior and lock-in conditions, consider the case of a constant input phase \(f = f_0 \) starting at \(t = 0 \). Then \(\phi(t) = 0 \) and we rewrite Eq. (5) as
\[\frac{1}{2\pi K} \ddot{e}(t) + \sin e(t) = \frac{\Delta f}{K} \quad t \geq 0 \quad (6) \]
Lock-in with a constant phase implies that the loop attains a steady state with \(\dot{e}(t) = 0 \) and \(e(t) = e_{ss} \). Hence, \(\sin e_{ss} = \Delta f/K \) at lock-in, and it follows that
\[e_{ss} = \arcsin \left(\frac{\Delta f}{K} \right) \quad (7a) \]
\[y_{ss} = K_a \sin e_{ss} = \frac{\Delta f}{K_v} \quad (7b) \]
\[v_{ss}(t) = \cos (\omega_c t + \phi_0 - e_{ss} + 90^\circ) \quad (7c) \]
Note that the nonzero value of \(y_{ss} \) cancels out the VCO frequency error, and \(v_{ss}(t) \) is locked to the frequency of the input signal \(x(t) \). The phase error \(e_{ss} \) will be negligible if \(|\Delta f/K| \ll 1 \).

However, Eq. (6) has no steady-state solution and \(e_{ss} \) in Eq. (7a) is undefined when \(|\Delta f/K| > 1 \). Therefore, lock-in requires the condition
\[K \geq |\Delta f| \quad (8) \]
Stated another way, a PLL will lock to any constant input frequency within the range ± K hertz of the VCO’s free-running frequency \(f_v \).

Additional information regarding PLL behavior comes from Eq. (6) when we require sufficient loop gain that \(\epsilon_{ss} \approx 0 \). Then, after some instant \(t_0 > 0 \), \(\epsilon(t) \) will be small enough to justify the approximation \(\sin \epsilon(t) \approx \epsilon(t) \) and

\[
\frac{1}{2\pi K} \dot{\epsilon}(t) + \epsilon(t) = 0 \quad t \geq t_0
\]

This linear equation yields the well-known solution

\[
\epsilon(t) = \epsilon(t_0) e^{-2\pi K (t-t_0)} \quad t \geq t_0
\]

a transient error that virtually disappears after five time constants have elapsed, that is, \(\epsilon(t) \approx 0 \) for \(t > t_0 + 5/(2\pi K) \). We thus infer that if the input \(x_c(t) \) has a time-varying phase \(\phi(t) \) whose variations are slow compared to \(1/(2\pi K) \), and if the instantaneous frequency \(f_c + \dot{\phi}(t)/2\pi \) does not exceed the range of \(f_v \pm K \), then the PLL will stay in lock and track \(\phi(t) \) with negligible error—provided that the LPF in the phase comparator passes the variations of \(\phi(t) \) on to the VCO.

EXERCISE 7.3–1 The phase-plane plot of \(\dot{\epsilon} \) versus \(\epsilon \) is defined by rewriting Eq. (6) in the form

\[
\dot{\epsilon} = 2\pi(\Delta f - K \sin \epsilon)
\]

(a) Sketch \(\dot{\epsilon} \) versus \(\epsilon \) for \(K = 2 \Delta f \) and show that an arbitrary initial value \(\epsilon(0) \) must go to \(\epsilon_{ss} = 30^\circ \pm m \cdot 360^\circ \) where \(m \) is an integer. Hint: \(\dot{\epsilon}(t) \) increases when \(\dot{\epsilon}(t) > 0 \) and decreases when \(\dot{\epsilon}(t) < 0 \). (b) Now sketch the phase-plane plot for \(K < \Delta f \) to show that \(|\dot{\epsilon}(t)| > 0 \) for any \(\epsilon(t) \) and, consequently, \(\epsilon_{ss} \) does not exist.

Synchronous Detection and Frequency Synthesizers

The lock-in ability of a PLL makes it ideally suited to systems that have a pilot carrier for synchronous detection. Rather than attempting to filter the pilot out of the accompanying modulated waveform, the augmented PLL circuit in Fig. 7.3–3 can be
used to generate a sinusoid synchronized with the pilot. To minimize clutter here, we’ve lumped the phase comparator, lowpass filter, and amplifier into a phase discriminator (PD) and we’ve assumed unity sinusoidal amplitudes throughout.

Initial adjustment of the tuning voltage brings the VCO frequency close to \(f_c \) and \(\epsilon_{ss} \approx 0 \), a condition sensed by the quadrature phase discriminator and displayed by the lock-in indicator. Thereafter, the PLL automatically tracks any phase or frequency drift in the pilot, and the phase-shifted VCO output provides the LO signal needed for the synchronous detector. Thus, the whole unit acts as a narrowband pilot filter with a virtually noiseless output.

Incidentally, a setup like Fig. 7.3–3 can be used to search for a signal at some unknown frequency. You disconnect the VCO control voltage and apply a ramp generator to sweep the VCO frequency until the lock-in indicator shows that a signal has been found. Some radio scanners employ an automated version of this procedure.

For synchronous detection of DSB without a transmitted pilot, Costas invented the PLL system in Fig. 7.3–4. The modulated DSB waveform \(x(t) \cos \omega_1 t \) with bandwidth \(2W \) is applied to a pair of phase discriminators whose outputs are proportional to \(x(t) \sin \epsilon_{ss} \) and \(x(t) \cos \epsilon_{ss} \). Multiplication and integration over \(T \gg 1/W \) produces the VCO control voltage

\[
y_{ss} = \frac{T}{2} \left(x^2(t) \sin \epsilon_{ss} \cos \epsilon_{ss} = \frac{T}{2} S_x \sin 2\epsilon_{ss}
\]

If \(\Delta f \approx 0 \), the PLL locks with \(\epsilon_{ss} \approx 0 \) and the output of the quadrature discriminator is proportional to the demodulated message \(x(t) \). Of course the loop loses lock if \(x(t) = 0 \) for an extended interval.

The frequency-offset loop in Fig. 7.3–5 translates the input frequency (and phase) by an amount equal to that of an auxiliary oscillator. The intended output frequency is now \(f_c + f_1 \), so the free-running frequency of the VCO must be

\[
f_o = (f_c + f_1) - \Delta f = f_c + f_1
\]

The oscillator and VCO outputs are mixed and filtered to obtain the difference-frequency signal \(\cos \left(\theta(t) - (\omega_1 t + \phi_1) \right) \) applied to the phase discriminator. Under locked conditions with \(\epsilon_{ss} \approx 0 \), the instantaneous angles at the input to the discriminator will differ by 90°. Hence, \(\theta(t) - (\omega_1 t + \phi_1) = \omega_2 t + \phi_0 + 90^\circ \), and the VCO produces \(\cos \left(\omega_2 t + \omega_1 t + \phi_0 + \phi_1 + 90^0 \right) \).

![Figure 7.3-4](image-url)
Costas PLL system for synchronous detection.
By likewise equating instantaneous angles, you can confirm that Fig. 7.3–6 performs frequency multiplication. Like the frequency multiplier discussed in Sect. 5.2, this unit multiplies the instantaneous angle of the input by a factor of n. However, it does so with the help of a frequency divider which is easily implemented using a digital counter. Commercially available divide-by-n counters allow you to select any integer value for n from 1 to 10 or even higher. When such a counter is inserted in a PLL, you have an adjustable frequency multiplier.

A frequency synthesizer starts with the output of one crystal-controlled master oscillator; various other frequencies are synthesized therefrom by combinations of frequency division, multiplication, and translation. Thus, all resulting frequencies are stabilized by and synchronized with the master oscillator. General-purpose laboratory synthesizers incorporate additional refinements and have rather complicated diagrams, so we’ll illustrate the principles of frequency synthesis by an example.

EXAMPLE 7.3–1
Adjustable Local Oscillator Using a Frequency Synthesizer

Suppose a double-conversion SSB receiver needs fixed LO frequencies at 100 kHz (for synchronous detection) and 1.6 MHz (for the second mixer), and an adjustable LO that covers 9.90–9.99 MHz in steps of 0.01 MHz (for RF tuning). The custom-tailored synthesizer in Fig. 7.3–7 provides all the required frequencies by dividing down, multiplying up, and mixing with the output of a 10 MHz oscillator. You can quickly check out the system by putting a frequency-multiplication block in place of each PLL with a divider.

Figure 7.3–5
Frequency-offset loop.

Figure 7.3–6
PLL frequency multiplier.
Observe here that all output frequencies are less than the master-oscillator frequency. This ensures that any absolute frequency drift will be reduced rather than increased by the synthesis operations; however, the proportional drift remains the same.

Draw the block diagram of a PLL system that synthesizes the output frequency nf_c/m from a master-oscillator frequency f_c. State the condition for locked operation in terms of the loop gain K and the VCO free-running frequency f_v.

EXERCISE 7.3–2

Linearized PLL Models and FM Detection

Suppose that a PLL has been tuned to lock with the input frequency f_c, so $\Delta f = 0$. Suppose further that the PLL has sufficient loop gain to track the input phase $\phi(t)$ within a small error $\epsilon(t)$, so $\sin \epsilon(t) = \epsilon(t) = \phi(t) - \phi_v(t)$. These suppositions constitute the basis for the linearized PLL model in Fig. 7.3–8a, where the LPF has been represented by its impulse response $h(t)$.

Since we’ll now focus on the phase variations, we view $\phi(t)$ as the input “signal” which is compared with the feedback “signal”

$$\phi_v(t) = 2\pi K_v \int_0^t y(\lambda) \, d\lambda$$

to produce the output $y(t)$. We emphasize that viewpoint by redrawing the linearized model as a negative feedback system, Fig. 7.3–8b. Note that the VCO becomes an integrator with gain $2\pi K_v$, while phase comparison becomes subtraction.
Fourier transformation finally takes us to the frequency-domain model in Fig. 7.3–8c, where \(\Phi(f) = \mathcal{F}[\phi(t)] \), \(H(f) = \mathcal{F}[h(t)] \), and so forth. Routine analysis yields

\[
Y(f) = \frac{K_v H(f)}{1 + K_v H(f)(K_vjf/K)} \Phi(f) = \frac{1}{K_v jf + KH(f)} \Phi(f) \tag{10}
\]

which expresses the frequency-domain relationship between the input phase and output voltage.

Now let \(x(t) \) be an FM wave with \(\phi(t) = 2\pi f \Delta X(t) \) and, accordingly,

\[
\Phi(f) = 2\pi f \Delta X(f)/(j2\pi f) = (f \Delta/jf) X(f)
\]

Substituting for \(\Phi(f) \) in Eq. (10) gives

\[
Y(f) = \frac{f \Delta}{K_v H_L(f)} X(f) \tag{11a}
\]

where

\[
H_L(f) = \frac{H(f)}{H(f) + j(f/K)} \tag{11b}
\]
which we interpret as the equivalent loop transfer function. If \(X(f) \) has message bandwidth \(W \) and if

\[
H(f) = 1 \quad |f| \leq W \tag{12a}
\]

then \(H_L(f) \) takes the form of a first-order lowpass filter with 3 dB bandwidth \(K \), namely

\[
H_L(f) = \frac{1}{1 + j(f/K)} \quad |f| \leq W \tag{12b}
\]

Thus, \(Y(f) = (f_A/K_v)X(f) \) when \(K \geq W \) so

\[
y(t) = \frac{f_A}{K_v} x(t) \tag{13}
\]

Under these conditions, the PLL recovers the message \(x(t) \) from \(x_c(t) \) and thereby serves as an FM detector.

A disadvantage of the first-order PLL with \(H(f) = 1 \) is that the loop gain \(K \) determines both the bandwidth of \(H_L(f) \) and the lock-in frequency range. In order to track the instantaneous input frequency \(f(t) = f_c + f_A x(t) \) we must have \(K \geq f_A \). The large bandwidth of \(H_L(f) \) may then result in excessive interference and noise at the demodulated output. For this reason, and other considerations, \(H_L(f) \) is usually a more sophisticated second-order function in practical PLL FM detectors.

7.4 Television Systems

The message transmitted by a television is a two-dimensional image with motion, and therefore a function of two spatial variables as well as time. This section introduces the theory and practice of analog image transmission via an electrical signal. Our initial discussion of monochrome (black and white) video signals and bandwidth requirements also applies to facsimile systems which transmit only still pictures. Then we’ll describe TV transmitters, in block-diagram form, and the modifications needed for color television.

There are several types of television systems with numerous variations found in different countries. We’ll concentrate on the NTSC (National Television Systems Committee) system used in North America, South America, and Japan and its digital replacement, the HDTV (high-definition television system). More details about HDTV are given by Whitaker (1999), and ATSC (1995).

Video Signals, Resolution, and Bandwidth

To start with the simplest case, consider a motion-free monochrome intensity pattern \(I(h, v) \), where \(h \) and \(v \) are the horizontal and vertical coordinates. Converting \(I(h, v) \) to a signal \(x(t) \)—and vice versa—requires a discontinuous mapping process such as the scanning raster diagrammed in Fig. 7.4–1. The scanning device, which produces a voltage or current proportional to intensity, starts at point \(A \) and moves with
constant but unequal rates in the horizontal and vertical directions, following the path AB. Thus, if s_h and s_v are the horizontal and vertical scanning speeds, the output of the scanner is the video signal

$$x(t) = l(s_h, t, s_v, t)$$

since $h = s_h t$, and so forth. Upon reaching point B, the scanning spot quickly flies back to C (the horizontal retrace) and proceeds similarly to point D, where facsimile scanning would end.

In standard TV, however, image motion must be accommodated, so the spot retraces vertically to E and follows an interlaced pattern ending at F. The process is then repeated starting again at A. The two sets of lines are called the first and second fields; together they constitute one complete picture or frame. The frame rate is just rapid enough (25 to 30 per second) to create the illusion of continuous motion, while the field rate (twice the frame rate) makes the flickering imperceptible to the human eye. Hence, interlaced scanning allows the lowest possible picture repetition rate without visible flicker. Non-interlaced (or progressive scanning) is reserved for computer graphics, faxes, and modern digital TV systems.

Two modifications are made to the video signal after scanning: blanking pulses are inserted during the retrace intervals to blank out retrace lines on the receiving picture tube; and synchronizing pulses are added on top of the blanking pulses to synchronize the receiver’s horizontal and vertical sweep circuits. Figure 7.4–2 shows the waveform for one complete line, with amplitude levels and durations corresponding to NTSC standards. Other parameters are listed in Table 7.4–1 along with some comparable values for the European CCIR (International Radio Consultative Committee) system and the high-definition (HDTV) system.

Analyzing the spectrum of the video signal in absence of motion is relatively easy with the aid of Fig. 7.4–3 where, instead of retraced scanning, the image has been periodically repeated in both directions so the equivalent scanning path is unbroken (noninterlaced or progressive scanning). Now any periodic function of two variables may be expanded as a two-dimensional Fourier series by straightforward extension of the one-dimensional series. For the case at hand with H and V
representing the horizontal and vertical periods (including retrace allowance), the image intensity is

\[I(h, v) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} c_{mn} \exp \left[j2\pi \left(\frac{mh}{H} + \frac{nv}{V} \right) \right] \] \label{2}

where

\[c_{mn} = \frac{1}{HV} \int_0^H \int_0^V I(h, v) \exp \left[-j2\pi \left(\frac{mh}{H} + \frac{nv}{V} \right) \right] dh \, dv \] \label{3}

Therefore, letting

\[f_h = \frac{S_h}{H}, \quad f_v = \frac{S_v}{V} \]

Table 7.4–1 Television system parameters

<table>
<thead>
<tr>
<th></th>
<th>NTSC</th>
<th>CCIR</th>
<th>HDTV/USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect ratio, horizontal/vertical</td>
<td>4/3</td>
<td>4/3</td>
<td>16/9</td>
</tr>
<tr>
<td>Total of lines per frame</td>
<td>525</td>
<td>625</td>
<td>1125</td>
</tr>
<tr>
<td>Field frequency, Hz</td>
<td>60</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Line frequency, kHz</td>
<td>15.75</td>
<td>15.625</td>
<td>33.75</td>
</tr>
<tr>
<td>Line time, (\mu)s</td>
<td>63.5</td>
<td>64</td>
<td>29.63</td>
</tr>
<tr>
<td>Video bandwidth, MHz</td>
<td>4.2</td>
<td>5.0</td>
<td>24.9</td>
</tr>
<tr>
<td>Optimal viewing distance</td>
<td>7H</td>
<td>7H</td>
<td>3H</td>
</tr>
<tr>
<td>Sound</td>
<td>Mono/Stereo output</td>
<td>Mono/Stereo output</td>
<td>6 channel Dolby Digital Surround</td>
</tr>
<tr>
<td>Horizontal retrace time, (\mu)s</td>
<td>10</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Vertical retrace, lines/field</td>
<td>21</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
and using Eqs. (1) and (2), we obtain

$$x(t) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} c_{mn} e^{j2\pi(fm_0 + nf_v)t}$$

(4)

This expression represents a doubly periodic signal containing all harmonics of the line frequency f_h and the field frequency f_v, plus their sums and differences. Since $f_h \gg f_v$ and since $|c_{mn}|$ generally decreases as the product mn increases, the amplitude spectrum has the form shown in Fig. 7.4–4, where the spectral lines cluster around the harmonics of f_h and there are large gaps between clusters.

Equation (4) and Fig. 7.4–4 are exact for a still picture, as in facsimile systems. When the image has motion, the spectral lines merge into continuous clumps around
the harmonics of f_h. Even so, the spectrum remains mostly “empty” everywhere else, a property used to advantage in the subsequent development of color TV. Despite the gaps in Fig. 7.4–4, the video spectrum theoretically extends indefinitely—similar to an FM line spectrum. Determining the bandwidth required for a video signal thus involves additional considerations.

Two basic facts stand in the way of perfect image reproduction: (1) There can be only a finite number of lines in the scanning raster, which limits the image clarity or resolution in the vertical direction; and (2) the video signal must be transmitted with a finite bandwidth, which limits horizontal resolution. Quantitatively, we measure resolution in terms of the maximum number of discrete image lines that can be distinguished in each direction, say n_h and n_v. In other words, the most detailed image that can be resolved is taken to be a checkerboard pattern having n_h columns and n_v rows. We usually desire equal horizontal and vertical resolution in lines per unit distance, so $n_h/H = n_v/V$ and

$$\frac{n_h}{n_v} = \frac{H}{V}$$

which is called the aspect ratio.

Clearly, vertical resolution is related to the total number of raster lines N; indeed, n_v equals N if all scanning lines are active in image formation (as in facsimile but not TV) and the raster aligns perfectly with the rows of the image. Experimental studies show that arbitrary raster alignment reduces the effective resolution by a factor of about 70 percent, called the Kerr factor, so

$$n_v = 0.7(N - N_{vr})$$

where N_{vr} is the number of raster lines lost during vertical retrace.

Horizontal resolution is determined by the baseband bandwidth B allotted to the video signal. If the video signal is a sinusoid at frequency $f_{\text{max}} = B$, the resulting picture will be a sequence of alternating dark and light spots spaced by one-half cycle in the horizontal direction. It then follows that

$$n_h = 2B(T_{\text{line}} - T_{hr})$$

Where T_{line} is the total duration of one line and T_{hr} is the horizontal retrace time. Solving Eq. (7) for B and using Eqs. (5) and (6) yields

$$B = \frac{(H/V)n_v}{2(T_{\text{line}} - T_{hr})} = 0.35(H/V) \frac{N - N_{vr}}{T_{\text{line}} - T_{hr}}$$

Another, more versatile bandwidth expression is obtained by multiplying both sides of Eq. (8) by the frame time $T_{\text{frame}} = NT_{\text{line}}$ and explicitly showing the desired resolution. Since $N = n_v/0.7(1 - N_{vr}/N)$, this results in

$$BT_{\text{frame}} = \frac{0.714n_p}{\left(1 - \frac{N_{vr}}{N}\right)\left(1 - \frac{T_{hr}}{T_{\text{line}}}\right)}$$
where

\[n_p = \frac{H}{V} n_v^2 = n_h n_v \] \hspace{1cm} (9b)

The parameter \(n_p \) represents the number of picture elements or pixels. Equation (9) brings out the fact that the bandwidth (or frame time) requirement increases in proportion to the number of pixels or as the square of the vertical resolution.

EXAMPLE 7.4–1 Video Bandwidth

The NTSC system has \(N = 525 \) and \(N_{vr} = 2 \times 21 = 42 \) so there are 483 active lines. The line time is \(T_{line} = 1/f_h = 63.5 \ \mu s \) and \(T_{hr} = 10 \ \mu s \), leaving an active line time of 53.5 \ \mu s. Therefore, using Eq. (8) with \(H/V = 4/3 \), we get the video bandwidth

\[B = 0.35 \times \frac{4}{3} \times \frac{483}{53.5 \times 10^{-6}} \approx 4.2 \text{ MHz} \]

This bandwidth is sufficiently large to reproduce the 5-\(\mu s \) sync pulses with reasonably square corners.

EXERCISE 7.4–1

Facsimile systems require no vertical retrace and the horizontal retrace time is negligible. Calculate the time \(T_{frame} \) needed for facsimile transmission of a newspaper page, 37 by 59 cm, with a resolution of 40 lines/cm using a voice telephone channel with \(B \approx 3.2 \text{ kHz} \).

Monochrome Transmitters and Receivers

The large bandwidth and significant low-frequency content of the video signal, together with the desired simplicity of envelope detection, have led to the selection of VSB + C (as described in Sect. 4.4) for TV broadcasting in the United States. However, since precise vestigial sideband shaping is more easily carried out at the receiver where the power levels are small, the actual modulated-signal spectrum is as indicated in Fig. 7.4–5a. The half-power frequency of the upper sideband is about 4.2 MHz above the video carrier \(f_{cv} \) while the lower sideband has a roughly 1 MHz bandwidth. Figure 7.4–5b shows the frequency shaping at the receiver.

The monaural audio signal is frequency-modulated on a separate carrier \(f_{ca} = f_{cv} + f_a \), with \(f_a = 4.5 \text{ MHz} \) and frequency deviation \(f_d = 25 \text{ kHz} \). Thus, assuming an audio bandwidth of 10 kHz, \(D = 2.5 \) and the modulated audio occupies about 80 kHz. TV channels are spaced by 6 MHz, leaving a 250 kHz guard band. Carrier frequencies are assigned in the VHF ranges 54–72, 76–88, and 174–216 MHz, and in the UHF range 470–806 MHz.
The essential parts of a TV transmitter are block-diagrammed in Fig. 7.4–6. The synchronizing generator controls the scanning raster and supplies blanking and sync pulses for the video signal. The DC restorer and white clipper working together ensure that the amplified video signal levels are in proportion. The video modulator is of the high-level AM type with \(\mu = 0.875 \), and a filter following the power amplifier removes the lower portion of the lower sideband.

A filter-based or “balanced-bridge” diplexer network combines the outputs of the audio and video transmitters so that they are radiated by the same antenna without interfering with each other. The transmitted audio power is 10 to 20 percent of the video carrier power.

As indicated in Fig. 7.4–7, a TV receiver is of the superheterodyne type. The main IF amplifier has \(f_{\text{IF}} \) in the 41 to 46 MHz range and provides the vestigial shaping per Fig. 7.4–5b. Note that the modulated audio signal is also passed by this amplifier, but with substantially less gain. Thus, drawing upon Eq. (11), Sect. 4.4, the total signal at the input to the envelope detector is
\[y(t) = A_c \left[1 + \mu x(t) \right] \cos \omega_c t - A_c \mu x_d(t) \sin \omega_c t \\
+ A_a \cos \left[(\omega_c + \omega_a) t + \phi(t) \right] \]

where \(x(t) \) is the video signal, \(\phi(t) \) is the FM audio, and \(\omega_a = 2\pi f_a \). Since \(|\mu x_d(t)| \ll 1 \) and \(A_a \ll A_c \), the resulting envelope is approximately

\[A_y(t) = A_c \left[1 + \mu x(t) \right] + A_a \cos \left[\omega_a t + \phi(t) \right] \]

which gives the signal at the output of the envelope detector.

The video amplifier has a lowpass filter that removes the audio component from \(A_y(t) \) as well as a DC restorer that electronically clamps the blanking pulses and thereby restores the correct DC level to the video signal. The amplified and DC-restored video signal is applied to the picture tube and to a sync-pulse separator that provides synchronization for the sweep generators. The “brightness” control permits manual adjustment of the DC level while the “contrast” control adjusts the gain of the IF and/or video amplifier.

Equation (11) shows that the envelope detector output also includes the modulated audio. This component is picked out and amplified by another IF amplifier tuned to 4.5 MHz. FM detection and amplification then yields the audio signal.

Observe that, although the transmitted composite audio and video signal is a type of frequency-division multiplexing, separate frequency conversion is not required for the audio. This is because the video carrier acts like a local oscillator for the audio in the envelope-detection process, an arrangement called the intercarrier-sound system having the advantageous feature that the audio and video are always tuned in together. Successful operation depends on the fact that the video component is large compared to the audio at the envelope detector input, as made possible by the white clipper at the transmitter (which prevents the modulated video signal from becoming too small) and the relative attenuation of the audio by the receiver’s IF response.

Some additional features not shown on our transmitter and receiver diagrams relate to the vertical retrace interval. The NTSC system allots 21 lines per field to vertical retracing, or about 1.3 ms every 1/60 sec. The first 9 lines carry control...
pulses, but the remaining 12 may be utilized for other purposes while the retrace goes on. Applications of these available lines include: the vertical-interval test signal (VITS) for checking transmission quality; the vertical-interval reference (VIR) for receiver servicing and/or automatic adjustments; and digital signals that generate the closed-captioning characters on special receivers for the hearing-impaired.

Use a phasor diagram to derive Eq. (11) from Eq. (10).

Color Television

Any color can be synthesized from a mixture of the three additive primary colors, red, green, and blue. Accordingly, a brute-force approach to color TV would involve direct transmission of three video signals, say \(x_R(t) \), \(x_G(t) \), and \(x_B(t) \)—one for each primary. But, aside from the increased bandwidth requirement, this method would not be compatible with existing monochrome systems. A fully compatible color TV signal that fits into the monochrome channel was developed in 1954 by the NTSC, largely based on developments by RCA (Radio Corporation of America), drawing upon certain characteristics of human color perception. The salient features of that system are outlined here.

To begin with, the three primary color signals can be uniquely represented by any three other signals that are independent linear combinations of \(x_R(t) \), \(x_G(t) \), and \(x_B(t) \). In addition, by proper choice of coefficients, one of the linear combinations can be made the same as the intensity or luminance signal of monochrome TV. In particular, it turns out that if

\[
 x_Y(t) = 0.30x_R(t) + 0.59x_G(t) + 0.11x_B(t) \tag{12a}
\]

then \(x_Y(t) \) is virtually identical to the conventional video signal previously symbolized by \(x(t) \). The remaining two signals, called the chrominance signals, are taken as

\[
 x_i(t) = 0.60x_R(t) - 0.28x_G(t) - 0.32x_B(t) \tag{12b}
\]

\[
 x_Q(t) = 0.21x_R(t) - 0.52x_G(t) + 0.31x_B(t) \tag{12c}
\]

Here, the color signals are normalized such that \(0 \leq x_R(t) \leq 1 \), and so forth, so the luminance signal is never negative while the chrominance signals are bipolar.

Understanding the chrominance signals is enhanced by introducing the color vector

\[
 x_C(t) = x_i(t) + jx_Q(t) \tag{13}
\]

whose magnitude \(|x_C(t)| \) is the color intensity or saturation and whose angle \(\arg x_C(t) \) is the hue. Figure 7.4–8 shows the vector positions of the saturated primary colors in the \(IQ \) plane. A partially saturated (pastel) blue-green, for instance, might have \(x_R = 0 \) and \(x_B = x_G = 0.5 \), so \(x_C = -0.300 - j0.105 \) \(|x_C| = 0.318 \), and \(\arg x_C = -160^\circ \). Since the origin of the \(IQ \) plane represents the absence of color, the luminance signal may be viewed as a vector perpendicular to this plane.
Because \(x_Y(t) \) serves as the monochrome signal, it must be allotted the entire 4.2 MHz baseband bandwidth to provide adequate horizontal resolution. Consequently, there would seem to be no room for the chrominance signals. Recall, however, that the spectrum of \(x_Y(t) \) has periodic gaps between the harmonics of the line frequency \(f_h \)—and the same holds for the chrominance signals. Moreover, subjective tests have shown that the human eye is less perceptive of chrominance resolution than luminance resolution, so that \(x_I(t) \) and \(x_Q(t) \) can be restricted to about 1.5 MHz and 0.5 MHz, respectively, without significant visible degradation of the color picture. Combining these factors permits multiplexing the chrominance signals in an interleaved fashion in the baseband spectrum of the luminance signal.

The chrominance signals are multiplexed on a color subcarrier whose frequency falls exactly halfway between the 227th and 228th harmonic of \(f_h \), namely,

\[
\begin{align*}
 f_{cc} &= \frac{455}{2} f_h = 3.58 \text{ MHz}
\end{align*}
\]

Therefore, by extension of Fig. 7.4–3, the luminance and chrominance frequency components are interleaved as indicated in Fig. 7.4–9a, and there is 0.6 MHz between \(f_{cc} \) and the upper end of the baseband channel. The subcarrier modulation will be described shortly, after we examine frequency interleaving and compatibility.

What happens when a color signal is applied to a monochrome picture tube? Nothing, surprisingly, as far as the viewer sees. True, the color subcarrier and its sidebands produce sinusoidal variations on top of the luminance signal. But because all of these sinusoids are exactly an odd multiple of one-half the line frequency, they reverse in phase from line to line and from field to field—illustrated by Fig. 7.4–9b. This produces flickering in small areas that averages out over time and space to the correct luminance value and goes essentially unnoticed by the viewer. Thus, the NTSC color system is reverse compatible with monochrome TVs.

By means of this averaging effect, frequency interleaving renders the color signal compatible with an unmodified monochrome receiver. It also simplifies the
design of color receivers since, reversing the above argument, the luminance signal does not visibly interfere with the chrominance signals. There is a minor interference problem caused by the difference frequency $f_a - f_{cc}$ between the audio and color sub-carriers. That problem was solved by slightly changing the line frequency to $f_h = f_a/286 = 15.73426$ kHz giving $f_a - f_{cc} = 4500 - 3,579.545 = 920.455$ kHz = $(107/2)f_h$ which is an “invisible” frequency. (As a result of this change, the field rate is actually 59.94 Hz rather than 60 Hz!)

A modified version of quadrature-carrier multiplexing puts both chrominance signals on the color subcarrier. Figure 7.4–10 shows how the luminance and chrominance signals are combined to form the baseband signal $x_b(t)$ in a color transmitter. Not shown is the nonlinear gamma correction introduced at the camera output to compensate for the brightness distortion of color picture tubes.

The gamma-corrected color signals are first matrixed to obtain $x_y(t)$, $x_i(t)$, and $x_q(t)$ in accordance with Eq. (12). Next, the chrominance signals are lowpass filtered (with different bandwidths) and applied to the subcarrier modulators. Subsequent bandpass filtering produces conventional DSB modulation for the Q channel and modified VSB for the I channel—for example, DSB for baseband frequencies of $x_i(t)$ below 0.5 MHz and LSSB for $0.5 < |f| < 1.5$ MHz. The latter keeps the modulated chrominance signals as high as possible in the baseband spectrum, thereby confining
the flicker to small areas, while still allowing enough bandwidth for proper resolution of $x_i(t)$. Total sideband suppression cannot be used owing to the significant low-frequency content in $x_i(t)$ and $x_q(t)$.

Including $x_y(t)$, the entire baseband signal becomes

$$x_b(t) = x_i(t) + x_q(t) \sin \omega_{cc} t + x_i(t) \cos \omega_{cc} t + \hat{x}_{ih}(t) \sin \omega_{cc} t$$

where $\hat{x}_{ih}(t)$ is the Hilbert transform of the high-frequency portion of $x_i(t)$ and accounts for the asymmetric sidebands. This baseband signal takes the place of the monochrome video signal in Fig. 7.4–6. Additionally, an 8-cycle piece of the color subcarrier known as the color burst is put on the trailing portion or “back porch” of the blanking pulses for purposes of synchronization in the receiver.

Demultiplexing is accomplished in a color TV receiver after the envelope detector, as laid out in Fig. 7.4–11. Since the luminance signal is at baseband here, it requires no further processing save for amplification and a 3.58-MHz trap or rejection filter to eliminate the major flicker component; the chrominance sidebands need not be removed, thanks to frequency interleaving. The chrominance signals pass through a bandpass amplifier and are applied to a pair of synchronous detectors whose local oscillator is the VCO in a PLL synchronized by phase comparison with the received color burst. Manual controls usually labeled “color level” (i.e., saturation) and “tint” (i.e., hue) are provided to adjust the gain of the chrominance amplifier and the phase of the VCO; their effect on the picture is readily explained in terms of the color vector and Fig. 7.4–8.
Assuming good synchronization, it follows from Eq. (15) that the detected but unfiltered I- and Q-channel signals are proportional to

\[
\begin{align*}
 v_I(t) &= x_I(t) + 2x_{\gamma H}(t) \cos \omega c t + x_I(t) \cos 2\omega c t \\
 &+ [x_Q(t) + \dot{x}_{I H}(t)] \sin 2\omega c t \\
 v_Q(t) &= x_Q(t) + \dot{x}_{I H}(t) + 2x_{\gamma H}(t) \sin \omega c t + x_I(t) \sin 2\omega c t \\
 &- [x_Q(t) + \dot{x}_{I H}(t)] \cos 2\omega c t
\end{align*}
\]

where \(x_{\gamma H}(t)\) represents the luminance frequency components in the 2.1 to 4.1 MHz range. Clearly, lowpass filtering will remove the double-frequency terms, while the terms involving \(x_{\gamma H}(t)\) are “invisible” frequencies. Furthermore, \(\dot{x}_{I H}(t)\) in Eq. (16b) has no components less than 0.5 MHz, so it is rejected by the LPF in the Q channel. (Imperfect filtering here results in a bothersome effect called quadrature color crosstalk). Therefore, ignoring the invisible-frequency terms, \(x_I(t)\) and \(x_Q(t)\) have been recovered and can then be matrixed with \(x_Y(t)\) to generate the color signals for the picture tube. Specifically, by inversion of Eq. (12),

\[
\begin{align*}
 x_{\delta}(t) &= x_I(t) + 0.95x_I(t) + 0.62x_Q(t) \\
 x_{\sigma}(t) &= x_I(t) - 0.28x_I(t) - 0.64x_Q(t) \\
 x_{\theta}(t) &= x_I(t) - 1.10x_I(t) + 1.70x_Q(t)
\end{align*}
\]
If the received signal happens to be monochrome, then the three color signals will be equal and the reproduced picture will be an accurate rendition of the original black-and-white transmission. This is termed reverse compatibility with the monochrome signal.

The NTSC color system described here certainly ranks high as an extraordinary engineering achievement! It solved the problems of color reproduction with direct and reverse monochrome compatibility while staying within the confines of the existing 6 MHz channel allocation.

HDTV†

The tremendous advances in digital technology combined with consumer demand for better picture and sound quality, plus computer compatibility, has motivated television manufacturers to develop a new US color TV standard: high-definition television (HDTV). A digital standard provides multimedia options such as special effects, editing, and so forth, and better computer interfacing. The HDTV standard supports at least 18 different formats and is a significant advancement over NTSC with respect to TV quality. One of the HDTV standards is shown in Table 7.4–1. First, with respect to the NTSC system, the number of vertical and horizontal lines has doubled, and thus the picture resolution is four times greater. Second, the aspect ratio has been changed from 4/3 to 16/9. Third, as Figs. 7.4–12 and 7.4–13 indicate, HDTV has improved scene capture and viewing angle features. For example, with H equal to the TV screen height and with a viewing distance of 10 feet (7H) in the NTSC system, the viewing angle is approximately 10 degrees. Whereas with HDTV, the same 10 foot viewing distance (3H) yields a viewing angle of approximately 20 degrees.

HDTV has also adopted the AC-3 surround sound system instead of monophonic two-channel or stereo sound. This system has six channels: right, right surround, left, left surround, center, and low-frequency effects (LFE). The LFE channel has only a bandwidth of 120 Hz, effectively providing only 5.1 channels.

HDTV can achieve a given signal-to-noise ratio with 12 dB less radiated power than NTSC-TV. Thus, for the same transmitter power, reception that was marginal with NTSC broadcasts will be greatly improved with HDTV.

Although there was no attempt to make HDTV broadcast signals compatible with existing NTSC TV receivers, by Feb 2009 the FCC will require that only digital signals (DTV) be broadcast, of which HDTV is one kind. Thus, in order to receive TV broadcasts, existing TV sets will have to be replaced or augmented by some type of analog-to-DTV converter.

The system for encoding and transmitting HDTV signals is shown in Fig. 7.4–14. The transmitter consists of several stages. First, the 24.9 MHz video signal and corresponding audio signals are compressed, so they will fit into the allocated 6 MHz channel bandwidth. The compressed audio and video data is then combined with ancillary data that includes control data, closed captioning, and so forth.

† João O. P. Pinto drafted this section.
using a multiplexer. The multiplexer then formats the data into packets. Next, the packetized data is scrambled to remove any undesirable discrete frequency components, and is channel encoded. During channel coding the data is encoded with check or parity symbols using Reed-Solomon coding to enable error correction at the receiver. The symbols are interleaved to minimize the effects of burst-type errors where noise in the channel can cause successive symbols to be corrupted. Finally, the symbols are Trellis-Code Modulated (TCM). TCM, which will be discussed in Chap. 14, combines coding and modulation and makes it possible to increase the symbol transmission rate without an increase in error probability. The encoded data is combined with synchronization signals and is then 8-VSB modulated. 8-VSB is a VSB technique where an 8-level baseband code is VSB modulated onto a given carrier frequency.

The HDTV receiver shown in Fig. 7.4–15 reverses the above process. As broadcasters and listeners make the transition from NTSC-TV to HDTV, they will be allowed to transmit both signals simultaneously. To overcome potential interference, the HDTV receiver uses the NTSC rejection filter to reject NTSC signals. A channel equalizer/ghost canceller stage, not shown, performs ghost cancellation and channel equalization. The phase tracker minimizes the effects of phase noise caused by the system’s PLL.

Figure 7.4–12 Scene capabilities of conventional NTSC system and HDTV.
Figure 7.4–13 Viewing angles as a function of distance: (a) conventional NTSC; (b) HDTV.

Figure 7.4–14 HDTV transmitter block diagram.
When optimal digitized, the 24.9 MHz composite video signal has a bit rate of 1 Gbps, whereas a 6-MHz television channel can only accommodate ~ 20 Mbps. Therefore a compression ratio of more than 50:1 is required. The raw video signal obtained by the scanning process contains significant temporal and spatial redundancies. These are used to advantage during the compression process. During the transmission of each frame, only those parts in the scene that move or change are actually transmitted. The specific compression process is the MPEG-2 (Motion Picture Expert Group-2), which uses the Discrete Cosine Transform (DCT). See Gonzalez and Woods (1992) for more information on the DCT. The MPEG-2 signals are readily interfaced to computers for multimedia capability.

Figure 7.4-15 HDTV receiver block diagram.

7.5 Questions and Problems

Questions

1. Why would an FM broadcast radios have an IF of 10.7 MHz instead of 10.0 MHz?

2. How would you determine what FM radio station your neighbor was listening to without going inside his house?
3. Describe various means to synchronize your receiver’s local oscillator without the transmitter’s having to send a pilot carrier or the receiver’s having to use phase-locked loop methods.

4. Describe some reasons why AM radio sets have a relatively low IF.

5. Describe why digital TV takes less comparative bandwidth than standard TV.

6. Why would it be easier to implement without complicated test equipment, a PLL instead of a discriminator for an FM detector? Why?

7. A cosine waveform has been displayed on a spectrum analyzer, but instead of it being an impulse, it takes on a sinc appearance. Why?

8. Describe a method to transmit a message to your neighbor’s radio or TV such that no matter what station they select, your message will be heard.

9. List the various ways we can have a variable frequency oscillator, and describe the pros and cons of each one.

10. How can we mitigate the effects of carrier frequency drift while detecting an AM or DSB signal?

11. Why does a traditional superhet have $f_{l_0} > f_c$?

12. What are the potential problems associated with double-conversion superhets?

13. List and describe at least two adverse consequences of receiver images.

14. How should we specify and design a superhet in order to minimize its response to images?

15. What are the disadvantages of DC receivers as compared to superhets?

16. Why does an AGC for DSB/SSB signals differ from one for AM signals?

17. What two components of a software radio system affect DR?

18. List ways to increase DR for a receiver system (analog and digital).

19. What types of filter designs/components provide good selectivity?

20. Why are AM broadcast receivers (or most other receivers for that matter) superhets versus tuned-RF designs?

21. A superhet radio listener is subject to interference such that, no matter what the dial setting is, the interference persists. After some investigation it is found out that the interfering source is transmitting only on their assigned frequency and doesn’t appear to cause problems to other radio listeners. What is a likely cause of the problem?

22. Television reception can be subject to ghost images due to multipath. Describe one way to eliminate or reduce the multipath component(s).

23. Why would TV reception on a channel near the transmitting antenna be distorted?

24. What is at least one advantage of a scanning spectrum analyzer over the newer FFT spectrum analyzers?
25. Describe and include a block diagram for a system whereby you can quickly determine the frequency response of a network using a spectrum analyzer.

26. One benefit of HDTV versus conventional TV is that, as the transmitter and receiver distance increases, there is a “graceful degradation” of the picture quality in that the HDTV the resolution merely decreases. In contrast, with analog TV, the picture becomes “snowy.” Why is this so?

27. Describe two ways in which two users can share a channel when each one is transmitting exactly at the same time, same frequency, and, if using spread-spectrum, the same code?

28. What practical implementation problem does the PLL overcome for detection of FM signals?

29. Consider two broadcasters operating nearby at 99.1 and 99.3 MHz. The 99.1 MHz has $S_T = 1$ kW. A listener at 99.1 MHz has a receiver with an IF strip that has an adjacent channel rejection of -30 dB. “How much power is required for the 99.3 MHz broadcaster in order to significantly interfere with the 99.1 MHz broadcaster?

30. What factor affects the upper limit on TDM capacity? How can this be mitigated?

31. List and briefly describe some practical filter implementations.

Problems

7.1–1* Suppose a commercial AM superhet has been designed such that the image frequency always falls above the broadcast band. Find the minimum value of f_{IF}, the corresponding range of f_{LO}, and the bounds on B_{RF}.

7.1–2 Suppose a commercial FM superhet has been designed such that the image frequency always falls below the broadcast band. Find the minimum value of f_{IF}, the corresponding range of f_{LO}, and the bounds on B_{RF}.

7.1–3* Suppose a commercial AM superhet has $f_{IF} = 455$ kHz and $f_{LO} = 1/2\pi \sqrt{LC}$, where $L = 1$ μH and C is a variable capacitor for tuning. Find the range of C when $f_{LO} = f_c + f_{IF}$ and when $f_{LO} = f_c - f_{IF}$.

7.1–4 Suppose the RF stage of a commercial AM superhet is a tuned circuit like Fig. 4.1–8 with $L = 1$ μH and variable C for tuning. Find the range of C and the corresponding bounds on R.

7.1–5 Design a system such that, no matter what station your neighbor tunes his FM radio to, he or she will hear your broadcast.

7.1–6 Consider a superhet intended for USB modulation with $W = 4$ kHz and $f_c = 3.57–3.63$ MHz. Take $f_{LO} = f_c + f_{IF}$ and choose the receiver parameters so that all bandpass stages have $B/f_0 = 0.02$. Then sketch $|H_{RF}(f)|$ to show that the RF stage can be fixed-tuned. Also sketch $|H_{IF}(f)|$, accounting for sideband reversal.
Do Prob. 7.1–6 for LSSB modulation with \(W = 6 \) kHz and \(f_c = 7.14–7.26 \) MHz.

Sketch the spectrum of \(x_c(t) \cos 2\pi f_{LO}t \) to demonstrate the sideband-reversal effect in an SSB superhet when \(f_{LO} = f_c + f_f \).

For automatic frequency control in an FM superhet, the LO is replaced by a VCO that generates \(A_{LO} \cos \theta(t) \) with \(\theta(t) = 2\pi[f_c - f_f + K\nu(t) + \epsilon(t)] \) where \(\epsilon(t) \) is a slow and random frequency drift. The control voltage \(\nu(t) \) is derived by applying the demodulated signal to an LPF with \(B \ll W \). The demodulated signal is \(\gamma_0(t) = K_0 \phi_{IF}(t)/2\pi \) where \(\phi_{IF}(t) \) is the instantaneous phase at the IF output. Analyze this AFC system by finding \(\gamma_0(t) \) in terms of \(x(t) \) and \(\epsilon(t) \).

Consider a superhet that receives signals in the 50–54 MHz range with \(f_{LO} = f_c + f_f \). Assuming there is little filtering prior to the mixer, what range of input signals will be received if the \(f_f \) is (a) 455 kHz, (b) 7 MHz?

Design a receiver that will receive USSB signals in the 50–54 MHz range where \(f_f = 100 \) MHz and does not exhibit sideband reversal. Assume there is little filtering prior to the mixer. Specify \(f_{LO} \), the product detector oscillator frequency, the center frequency of the IF bandpass filter, and any image frequencies that will be received.

Consider a superhet with \(f_{LO} = f_c + f_f \), \(f_f = 455 \) kHz, and \(f_c = 2 \) MHz. The RF amplifier is preceded by a first-order RLC bandpass filter with \(f_0 = 2 \) MHz and \(B = 0.5 \) MHz. Assume the IF-BPF is nearly ideal and that the mixer has unity gain. What is the minimum spurious frequency input rejection ratio in dB?

Suppose the receiver in Prob. 7.1–12 has a LO with a second harmonic whose voltage level is half that of the fundamental component. (a) What input frequencies will be accepted, and at what power level in dB as compared to the correct input? (b) Discuss all ways to minimize these interfering inputs.

Consider a superhet that receives signals in the 7.0 to 8.0 MHz range with \(f_{LO} = f_c + f_f \), and \(f_f = 455 \) kHz. The receiver’s RF amplifier has a passband of 2 MHz, and its IF-BPF is nearly ideal and has a bandwidth of 3 kHz. Design a frequency converter that has a fixed LO frequency that will enable the reception of 50.0- to 51.0-MHz signals. Assume the converter’s RF amplifier is relatively wideband. (a) If the incoming frequency is supposed to be \(f_c = 50 \) MHz, what other spurious frequencies will this receiver respond to? (b) Describe how to minimize these spurious responses.

What is the minimum value of \(f_f \) for a 825–850 MHz cell phone receiver such that images from other cell phone signals would not be a problem and thus a variable BPF at the front end would not be needed?
7.1–16 Repeat Prob. 7.1–15 for a 1850–1990 MHz cell phone receiver.

7.1–17 What is the image rejection performance of a single conversion superhet receiver that receives signals in the 50–54 MHz range, \(f_{LO} > f_c \), and has an RF amplifier that includes a fixed frequency RLC-BPF with \(B = 4 \) MHz with (a) \(f_{IF} = 20 \) MHz, (b) \(f_{IF} = 100 \) MHz?

7.1–18 Design a superhet receiver for a dual-mode cellular phone system that will accept either 850 MHz analog cellular signals or 1900 MHz digital personal communications systems (PCS) signals. Specify the \(f_{LO} \), \(f_{IF} \), and image frequencies.

7.1–19 Find suitable parameters of a double-conversion receiver having \(|R| = 60 \) dB and intended for DSB modulation with \(W = 10 \) kHz and \(f_c = 4 \) MHz.

7.1–20 A double conversion receiver designed for \(f_c = 300 \) MHz has \(f_{IF -1} = 30 \) MHz and \(f_{IF -2} = 3 \) MHz, and each LO frequency is set at the higher of the two possible values. Insufficient filtering by the RF and first IF stages results in interference from three image frequencies. What are they?

7.1–21 Do Prob. 7.1–20 with each LO frequency set at the lower of the two possible values.

7.1–22* For software radio system of Fig. 1.4–2, how many bits are needed in order for the “front end” to handle levels that span from 1 microvolt to 1 picovolt?

7.1–23 What is the dynamic range for a 12-bit software radio system?

7.1–24 What is the sampling rate and number of FFT bins required to obtain a 100 Hz resolution on a FFT spectrum analyzer whose highest frequency is 100 MHz?

7.1–25 Specify the settings on a scanning spectrum analyzer to display the spectrum up to the 10th harmonic of a signal with a 50 ms period.

7.1–26 Specify the settings on a scanning spectrum analyzer to display the spectrum of a tone-modulated FM signal with \(f_c = 100 \) kHz, \(f_m = 1 \) kHz, and \(\beta = 5 \).

7.1–27‡ The magnitude spectrum of an energy signal \(v(t) \) can be displayed by multiplying \(v(t) \) with the swept-frequency wave \(\cos (\omega_0 t - \alpha t^2) \) and applying the product to a bandpass filter having \(h_{eq}(t) = \cos (\omega_0 t + \alpha t^2) \). Use equivalent lowpass time-domain analysis to show that \(h_{eq}(t) = \frac{1}{2} e^{\alpha t^2} \) and that the envelope of the bandpass output is proportional to \(|V(f)| \) with \(f = \alpha u/\pi \).

7.2–1 Four signals, each having \(W = 3 \) kHz, are to be multiplexed with 1-kHz guard bands between channels. The subcarrier modulation is USSB, except for the lowest channel which is unmodulated, and the carrier modulation is AM. Sketch the spectrum of the baseband and transmitted signal, and calculate the transmission bandwidth.
CHAPTER 7 • Analog Communication Systems

7.2–2 Do Prob. 7.2–1 with AM subcarrier modulation.

7.2–3 Let \(f_i \) be an arbitrary carrier in an FDM signal. Use frequency-translation sketches to show that the BPFs in Fig. 7.2–2 are not necessary if the subcarrier modulation is DSB and the detector includes an LPF. Then show that the BPFs are needed, in general, for SSB subcarrier modulation.

7.2–4* Ten signals with bandwidth \(W \) are to be multiplexed using SSB subcarrier modulation and a guard band \(B_g \) between channels. The BPFs at the receiver have \(H(f) = \exp \{ -[1.2(f - f_0)/W]^2 \} \), where \(f_0 \) equals the center frequency for each subcarrier signal. Find \(B_g \) so that the adjacent-channel response satisfies \(|H(f)| < 0.1 \). Then calculate the resulting transmission bandwidth of the FDM signal.

7.2–5 Design an FDMA system to accommodate the maximum number of users on a 25 MHz channel with \(W = 3 \) kHz and with crosstalk less than 30 dB. Assume that second-order Butterworth low-pass filters are used.

7.2–6 Suppose the voice channels in a group signal have \(B_g = 1 \) kHz and are separated at the receiver using BPFs with \(H(f) = \{ 1 + [(f - f_0)/B]^2 \}^{-1/2} \). Make a careful sketch of three adjacent channels in the group spectrum, taking account of the fact that a baseband voice signal has negligible content outside 200 < \(|f| < 3200 \) Hz. Use your sketch to determine values for \(B, f_0, \) and \(n \) so that \(|H(f)| < 0.1 \) outside the desired passband.

7.2–7 Some FDM telemetry systems employ proportional bandwidth FM subcarrier modulation when the signals to be multiplexed have different bandwidths. All subcarrier signals have the same deviation ratio but the \(i \)th subcarrier frequency and message bandwidth are related by \(f_i = W_i/\alpha \) where \(\alpha \) is a constant. (a) Show that the subcarrier signal bandwidth \(B_i \) is proportional to \(f_i \) and obtain an expression for \(f_i + 1 \) in terms of \(f_i \) to provide a guard band \(B_g \) between channels. (b) Calculate the next three subcarrier frequencies when \(f_1 = 2 \) kHz, \(B_1 = 800 \) Hz, and \(B_g = 400 \) Hz.

7.2–8 Find the output signals of the quadrature-carrier system in Fig. 7.2–6 when the receiver local oscillator has a phase error \(\phi \).

7.2–9 In one proposed system for FM quadraphonic multiplexing, the baseband signal in Fig. 7.2–4 is modified as follows: The unmodulated signal is \(x_0(t) = L_F + L_R + R_F + R_R \) (for monophonic compatibility), the 38-kHz subcarrier has quadrature-carrier multiplexing with modulating signals \(x_1(t) \) and \(x_2(t) \), and the SCA signal is replaced by a 76-kHz subcarrier with DSB modulation by \(x_3(t) = L_F - L_R + R_F - R_R \). What should be the components of \(x_1(t) \) for stereophonic compatibility? Now consider \(x_1(t) \pm x_2(t) \pm x_3(t) \) to determine the components of \(x_4(t) \). Draw a block diagram of the corresponding transmitter and quadraphonic receiver.

7.2–10† Suppose the transmission channel in Fig. 7.2–6 has linear distortion represented by the transfer function \(H_C(f) \). Find the resulting spectrum at the
7.5 Questions and Problems

lower output and show that the condition for no crosstalk is
\[H_C(f - f_c) = H_C(f + f_c) \text{ for } |f| \leq W. \] If this condition holds, what must be
done to recover \(x(t) \)?

7.2–11* Twenty-four voice signals are to be transmitted via multiplexed PAM
with a marker pulse for frame synchronization. The sampling frequency
is 8 kHz and the TDM signal has a 50 percent duty cycle. Calculate the
signaling rate, pulse duration, and minimum transmission bandwidth.

7.2–12* Do Prob. 7.2–11 with a 6 kHz sampling frequency and 30 percent duty
cycle.

7.2–13 Twenty signals, each with \(W = 4 \) kHz, are sampled at a rate that allows
a 2 kHz guard band for reconstruction filtering. The multiplexed samples
are transmitted on a CW carrier. Calculate the required transmission
bandwidth when the modulation is (a) PAM/AM with 25 percent duty
cycle; (b) PAM/SSB with baseband filtering.

7.2–14* Ten signals, each with \(W = 2 \) kHz, are sampled at a rate that allows a 1
kHz guard band for reconstruction filtering. The multiplexed samples
are transmitted on a CW carrier. Calculate the required transmission
bandwidth when the modulation is: (a) PPM/AM with 20 percent duty
cycle; (b) PAM/FM with baseband filtering and \(f_\Delta = 75 \) kHz.

7.2–15 Given a six-channel main multiplexer with \(f_s = 8 \) kHz, devise a telemetry system similar to Fig. 7.2–11 (including a marker) that accommodates six input signals having the following bandwidths: 8.0, 3.5, 2.0, 1.8, 1.5, and 1.2 kHz. Make sure that successive samples of each input signal are equispaced in time. Calculate the resulting baseband bandwidth and compare with the minimum transmission bandwidth for an FDM-SSB system.

7.2–16 Do Prob. 7.2–15 for seven input signals having the following bandwidths: 12.0, 4.0, 1.0, 0.9, 0.8, 0.5, and 0.3 kHz.

7.2–17 Do Prob. 7.2–15 for eight input signals having the following bandwidths: 12.0, 3.5, 2.0, 0.5, 0.4, 0.3, 0.2, and 0.1 kHz.

7.2–18 Calculate the bandwidth required so the crosstalk does not exceed \(-40 \) dB when 25 voice signals are transmitted via PPM-TDM with \(f_s = 8 \) kHz and \(t_0 = \tau = 0.2(T_s/M) \).

7.2–19* Find the maximum number of voice signals that can be transmitted via
TDM-PPM with \(f_s = 8 \) kHz and \(t_0 = \tau = 0.25(T_s/M) \) when the channel
has \(B = 500 \) kHz and the crosstalk is to be kept below \(-30 \) dB.

7.2–20 Crosstalk also occurs when a transmission system has inadequate low-
frequency response, usually as a result of transformer coupling or blocking
capacitors. Demonstrate this effect by sketching the pulse response of
a high-pass filter whose step response is \(g(t) = \exp(-2\pi f_c t) u(t) \).
Consider the extreme cases \(f_c\tau \ll 1 \) and \(f_c\tau \gg 1 \).
7.3–1 For one implementation of digital phase comparison, the switching circuit in Fig. 7.3–1b has a set–reset flip-flop whose output becomes \(s(t) = +\bar{A} \) after a positive-going zero-crossing of \(x_c(t) \) and \(s(t) = -\bar{A} \) after a positive-going zero-crossing of \(v(t) \). (a) Take \(x_c(t) = A \cos (\omega_c t + \phi_v) \) and \(v(t) = \cos (\omega_c t - \phi_v) \) and sketch one period of \(s(t) \) for \(f_v = 45, 135, 180, 225, \) and \(315^\circ \). (b) Now plot \(y \) versus \(\phi_v \) assuming that \(y(t) = \langle s(t) \rangle \). Note that this implementation requires \(\pm 180^\circ \) phase difference between the inputs for \(y = 0 \).

7.3–2 Do part (a) of Prob. 7.3–1 for a digital phase comparator with a switch controlled by \(v(t) \) so its output is \(s(t) = A \text{sgn} x_c(t) \) when \(v(t) > 0 \) and \(s(t) = 0 \) when \(v(t) < 0 \). Now plot \(y \) versus \(\phi_v - 90^\circ \) assuming that \(y(t) = \langle s(t) \rangle \).

7.3–3 Consider a PLL in the steady state with \(\varepsilon_{ss} \ll 1 \) for \(t < 0 \). The input frequency has a step change at \(t = 0 \), so \(\phi(t) = 2\pi f_1 t \) for \(t > 0 \). Solve Eq. (5) to find and sketch \(s(t) \), assuming that \(K \gg |\Delta f + f_1| \).

7.3–4 Explain why the Costas PLL system in Fig. 7.3–4 cannot be used for synchronous detection of SSB or VSB.

7.3–5* Consider a PLL in steady-state locked conditions. If the external input is \(x_c(t) = A_c \cos (\omega_c t + \phi_0) \), then the feedback signal to the phase comparator must be proportional to \(\cos (\omega_c t + \phi_0 + 90^\circ - \varepsilon_{ss}) \). Use this property to find the VCO output in Fig. 7.3–5 when \(\varepsilon_{ss} \neq 0 \).

7.3–6 Use the property stated in Prob. 7.3–5 to find the VCO output in Fig. 7.3–6 when \(\varepsilon_{ss} \neq 0 \).

7.3–7 Modify the FM stereo receiver in Fig. 7.2–5 to incorporate a PLL with \(f_v = 38 \) kHz for the subcarrier. Also include a dc stereo indicator.

7.3–8* Given a 100 kHz master oscillator and two adjustable divide-by-\(n \) counters with \(n = 1 \) to 10, devise a system that synthesizes any frequency from 1 kHz to 99 kHz in steps of 1 kHz. Specify the nominal free-running frequency of each VCO.

7.3–9 Referring to Table 7.1–1, devise a frequency synthesizer to generate \(f_{LO} = f_c + f_{IF} \) for an FM radio. Assume you have available a master oscillator at 120.0 MHz and adjustable divide-by-\(n \) counters with \(n = 1 \) to 1000.

7.3–10 Referring to Table 7.1–1, devise a frequency synthesizer to generate \(f_{LO} = f_c + f_{IF} \) for an AM radio. Assume you have available a master oscillator at 2105 kHz and adjustable divide-by-\(n \) counters with \(n = 1 \) to 1000.

7.3–11 The linearized PLL in Fig. 7.3–8 becomes a phase demodulator if we add an ideal integrator to get

\[
z(t) = \int_{0}^{t} y(\lambda) \, d\lambda
\]

Find \(Z(f)/X(f) \) when the input is a PM signal. Compare with Eq. (11).
7.5 Questions and Problems

7.3–12* Consider the PLL model in Fig. 7.3–8c, where \(E(f) = \Phi(f) - \Phi_e(f) \). (a) Find \(E(f)/\Phi(f) \) and derive Eq. (10) therefrom. (b) Show that if the input is an FM signal, then \(E(f) = (f/\Delta K) H e(f)X(f) \) with \(H e(f) = I[H(f) + j(f/2K)] \).

7.3–13* Suppose an FM detector is a linearized first-order PLL with \(H(f) = 1 \). Let the input signal be modulated by \(x(t) = A_m \cos 2\pi f_m t \) where \(A_m \leq 1 \) and \(0 \leq f_m \leq W \). (a) Use the relationship in Prob. 7.3–12b to find the steady-state amplitude of \(e(t) \). (b) Since linear operation requires \(|e(t)| \leq 0.5 \text{ rad} \), so \(\sin e = e \), show that the minimum loop gain is \(K = 2f_{\Delta} \).

7.3–14‡ Consider the second-order PLL with loop gain \(K \) and \(H(f) = 1 + K/2f \). Let the input signal be modulated by \(x(t) = A_m \cos 2\pi f_m t \) where \(A_m \leq 1 \) and \(0 \leq f_m \leq W \). (a) Use the relationship in Prob. 7.3–12b to show that the steady-state amplitude of \(e(t) \) is maximum when \(f_m = K/\sqrt{2} \) if \(K/\sqrt{2} \leq W \) and \(f_{\Delta} > W \). Since linear operation requires \(|e(t)| \leq 0.5 \text{ rad} \), so \(\sin e = e \), show that the minimum loop gain is \(K = 2\sqrt{f_{\Delta} W} \).

7.3–15‡ Consider the second-order PLL in Prob. 7.3–14. (a) Show that \(H_L(f) \) becomes a second-order LPF with \(|H_L| \) maximum at \(f = 0.556K \) and 3 dB bandwidth \(B = 1.14K \). (b) Use the loop-gain conditions in Probs. 7.3–13 and 7.3–14 to compare the minimum 3 dB bandwidths of a first-order and second-order PLL FM detector when \(f_d/W = 2, 5 \), and 10.

7.4–1 Explain the following statements: (a) A TV frame should have an odd number of lines. (b) The waveform that drives the scanning path should be a sawtooth, rather than a sinusoid or triangle.

7.4–2 Consider a scanning raster with very small slope and retrace time. Sketch the video signal and its spectrum, without using Eq. (4), when the image consists of: (a) alternating black and white vertical bars of width \(H/4 \); (b) alternating black and white horizontal bars of height \(V/4 \).

7.4–3 Consider an image that’s entirely black (\(l = 0 \)) except for a centered white rectangle (\(l = 1.0 \)) of width \(aH \) and height \(\beta V \). (a) Show that \(|c_{mn}| = a\beta \sin a\sin \beta \). (b) Sketch the resulting line spectrum when \(a = 1/2, \beta = 1/4 \), and \(f_d = f_d/100 \).

7.4–4* Calculate the number of pixels and the video bandwidth requirement for a low-resolution TV system with a square image, 230 active lines, and 100-\(\mu \)s active line time.

7.4–5 Calculate the number of pixels and the video bandwidth requirement for the HDTV system in Table 7.4–1 if \(N_{cr} \ll N \) and \(T_{hr} = 0.2T_{line} \).

7.4–6* Calculate the number of pixels and the video bandwidth requirement for the CCIR system in Table 7.4–1 if \(N_{cr} = 48 \) and \(T_{hr} = 10 \ \mu s \).

7.4–7 Horizontal aperture effect arises when the scanning process in a TV camera produces the output.
\[
\hat{x}(t) = \int_{t-\tau}^{t} x(\lambda) \, d\lambda
\]
where \(x(t)\) is the desired video signal and \(\tau \ll T_{\text{line}}\). (a) Describe the resulting TV picture. (b) Find an equalizer that will improve the picture quality.

7.4–8 Describe what happens to a color TV picture when (a) the gain of the chrominance amplifier is too high or too low; (b) the phase adjustment of the color subcarrier is in error by \(\pm 90\) or \(180^\circ\).

7.4–9 Carry out the details leading from Eq. (15) to Eq. (16).

7.4–10 Obtain expressions equivalent to Eqs. (15) and (16) when all the filters in the \(x_Q\) channel (at transmitter and receiver) are the same as the \(x_I\) channel. Discuss your results.
Probability and Random Variables

CHAPTER OUTLINE

8.1 Probability and Sample Space
 Probabilities and Events Sample Space and Probability Theory
 Conditional Probability and Statistical Independence

8.2 Random Variables and Probability Functions
 Discrete Random Variables and CDFs Continuous Random Variables and PDFs
 Transformations of Random Variables Joint and Conditional PDFs

8.3 Statistical Averages
 Means, Moments, and Expectation Standard Deviation and Chebyshev’s Inequality
 Multivariate Expectations Characteristic Functions

8.4 Probability Models
 Binomial Distribution Poisson Distribution Gaussian PDF Rayleigh PDF
 Bivariate Gaussian Distribution Central Limit Theorem
Chapters 2 through 7 dealt entirely with deterministic signals, for when we write an explicit time function \(v(t) \) we presume that the behavior of the signal is known or determined for all time. In Chapter 9 we’ll deal with random signals whose exact behavior cannot be described in advance. Random signals occur in communication both as unwanted noise and as desired information-bearing waveforms. Lacking detailed knowledge of the time variation of a random signal, we must speak instead in terms of probabilities and statistical properties. This chapter therefore presents the groundwork for the description of random signals.

The major topics include probabilities, random variables, statistical averages, and important probability models. We direct our coverage specifically toward those aspects used in later chapters and rely heavily on intuitive reasoning rather than mathematical rigor.

If you’ve previously studied probability and statistics, then you can skim over this chapter and go to Chap. 9. (However, be alert for possible differences of notation and emphasis.) If you want to pursue the subject in greater detail, you’ll find a wealth of material in texts devoted to the subject.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Calculate event probabilities using frequency of occurrence and the relationships for mutually exclusive, joint, conditional, and statistically independent events (Sect. 8.1).
2. Define and state the properties of the probability functions of discrete and continuous random variables (Sect. 8.2).
3. Write an expression for the probability of a numerical-valued event, given a frequency function, CDF, or PDF (Sect. 8.2).
4. Find the mean, mean-square, and variance of a random variable, given its frequency function or PDF (Sect. 8.3).
5. Define and manipulate the expectation operation (Sect. 8.3).
6. Describe applications of the binomial, Poisson, gaussian, and Rayleigh probability models (Sect. 8.4).
7. Write probabilities for a gaussian random variable in terms of the \(Q \) function (Sect. 8.4).

8.1 PROBABILITY AND SAMPLE SPACE

Probability theory establishes a mathematical framework for the study of random phenomena. The theory does not deal with the nature of random processes per se, but rather with their experimentally observable manifestations. Accordingly, we’ll discuss probability here in terms of events associated with the outcomes of experiments. Then we’ll introduce sample space to develop probability theory and to obtain the probabilities of various types of events.

Probabilities and Events

Consider an experiment involving some element of chance, so the outcome varies unpredictably from trial to trial. Tossing a coin is such an experiment, since a trial toss could result in the coin landing heads up or tails up. Although we cannot predict the
outcome of a single trial, we may be able to draw useful conclusions about the results of a large number of trials.

For this purpose, let’s identify a specific event A as something that might be observed on any trial of a chance experiment. We repeat the experiment N times and record N_A, the number of times A occurs. The ratio N_A/N then equals the relative frequency of occurrence of the event A for that sequence of trials.

The experiment obeys the empirical law of large numbers if N_A/N approaches a definite limit as N becomes very large and if every sequence of trials yields the same limiting value. Under these conditions we take the probability of A to be

$$P(A) = \frac{N_A}{N} \quad N \to \infty$$

(1)

The functional notation $P(A)$ emphasizes that the value of the probability depends upon the event in question. Nonetheless, every probability is a nonnegative number bounded by

$$0 \leq P(A) \leq 1$$

since $0 \leq N_A \leq N$ for any event A.

Our interpretation of probability as frequency of occurrence agrees with intuition and common experience in the following sense: You can’t predict the specific result of a single trial of a chance experiment, but you expect that the number of times A occurs in $N \gg 1$ trials will be $N_A \approx N P(A)$. Probability therefore has meaning only in relation to a large number of trials.

By the same token, Eq. (1) implies the need for an infinite number of trials to measure an exact probability value. Fortunately, many experiments of interest possess inherent symmetry that allows us to deduce probabilities by logical reasoning, without resorting to actual experimentation. We feel certain, for instance, that an honest coin would come up heads half the time in a large number of trial tosses, so the probability of heads equals $\frac{1}{2}$. Probability derived from intuition and logical reasoning, is referred to as a priori probability, whereas probability derived after the experiment is performed is a posteriori probability.

Suppose, however, that you seek the probability of getting two heads in three tosses of an honest coin. Or perhaps you know that there were two heads in three tosses and you want the probability that the first two tosses match. Although such problems could be tackled using relative frequencies, formal probability theory provides a more satisfactory mathematical approach as discussed next.

Sample Space and Probability Theory

A typical experiment may have several possible outcomes, and there may be various ways of characterizing the associated events. To construct a systematic model of a chance experiment let the sample space S denote the set of outcomes, and let S be partitioned into sample points s_1, s_2, \ldots corresponding to the specific outcomes. Thus, in set notation,

$$S = \{s_1, s_2, \ldots\}$$
Although the partitioning of S is not unique, the sample points are subject to two requirements:

1. The set $\{s_1, s_2, \ldots\}$ must be **exhaustive**, so that S consists of all possible outcomes of the experiment in question.
2. The outcomes s_1, s_2, \ldots must be **mutually exclusive**, so that one and only one of them occurs on a given trial.

Consequently, any events of interest can be described by subsets of S containing zero, one, or more than one sample points.

By way of example, consider the experiment of tossing a coin three times and observing the sequence of heads (H) and tails (T). The sample space then contains $2 \times 2 \times 2 = 8$ distinct sequences, namely,

$$S = \{HHH, HTH, HHT, THH, THT, TTH, HTT, TTT\}$$

where the order of the listing is unimportant. What is important is that the eight sample-point sequences are exhaustive and mutually exclusive. The event $A = \text{“two heads”}$ can therefore be expressed as the subset

$$A = \{HTH, HHT, THH\}$$

Likewise, the events $B = \text{“second toss differs from the other two”}$ and $C = \text{“first two tosses match”}$ are expressed as

$$B = \{HTH, THT\} \quad C = \{HHH, HHT, TTH, TTT\}$$

Figure 8.1–1 depicts the sample space and the relationships between A, B, and C in the form of a **Venn diagram**, with curves enclosing the sample points for each event. This diagram brings out the fact that B and C happen to be mutually exclusive events, having no common sample points, whereas A contains one point in common with B and another point in common with C.
Other events may be described by particular combinations of event subsets, as follows:

- The **union event** \(A + B \) (also symbolized by \(A \cup B \)) stands for the occurrence of \(A \) or \(B \) or both, so its subset consists of all \(s_i \) in either \(A \) or \(B \).
- The **intersection event** \(AB \) (also symbolized by \(A \cap B \)) stands for the occurrence of \(A \) and \(B \), so its subset consists only of those \(s_i \) in both \(A \) and \(B \).

For instance, in Fig. 8.1–1 we see that

\[
A + B = \{ HTH, HHT, THH, THT \} \quad \text{and} \quad AB = \{ HTH \}
\]

But since \(B \) and \(C \) are mutually exclusive and have no common sample points,

\[
BC = \emptyset
\]

where \(\emptyset \) denotes the **empty set**.

Probability theory starts with the assumption that a probability \(P(s_i) \) has been assigned to each point \(s_i \) in the sample space \(S \) for a given experiment. The theory says nothing about those probabilities except that they must be chosen to satisfy three fundamental axioms:

1. \(P(A) \geq 0 \) for any event \(A \) in \(S \)
2. \(P(S) = 1 \)
3. \(P(A_1 + A_2) = P(A_1) + P(A_2) \) if \(A_1A_2 = \emptyset \)

These axioms form the basis of probability theory, even though they make no mention of frequency of occurrence. Nonetheless, axiom (2a) clearly agrees with Eq. (1), and so does axiom (2b) because one of the outcomes in \(S \) must occur on every trial. To interpret axiom (2c) we note that if \(A_1 \) occurs \(N_1 \) times in \(N \) trials and \(A_2 \) occurs \(N_2 \) times, then the event “\(A_1 \) or \(A_2 \)” occurs \(N_1 + N_2 \) times since the stipulation \(A_1A_2 = \emptyset \) means that they are mutually exclusive. Hence, as \(N \) becomes large,

\[
P(A_1 + A_2) = \frac{N_1 + N_2}{N} = \left(\frac{N_1}{N} \right) + \left(\frac{N_2}{N} \right) = P(A_1) + P(A_2)
\]

Now suppose that we somehow know all the sample-point probabilities \(P(s_i) \) for a particular experiment. We can then use the three axioms to obtain relationships for the probability of any event of interest. To this end, we'll next state several important general relations that stem from the axioms. The omitted derivations are exercises in elementary set theory, and the relations themselves are consistent with our interpretation of probability as relative frequency of occurrence.

Axiom (2c) immediately generalizes for **three or more mutually exclusive events**. For if

\[
A_1A_2 = A_1A_3 = A_2A_3 = A_1A_2A_3, \ldots = \emptyset
\]

then

\[
P(A_1 + A_2 + A_3 + \ldots) = P(A_1) + P(A_2) + P(A_3) + \ldots
\]
Furthermore, if \(M \) mutually exclusive events have the exhaustive property
\[A_1 + A_2 + \ldots + A_M = S \]
then, from axioms (2c) and (2b),
\[P(A_1 + A_2 + \cdots + A_M) = \sum_{i=1}^{M} P(A_i) = 1 \tag{4} \]
Note also that Eq. (4) applies to the sample-point probabilities \(P(\xi) \).

Equation (4) takes on special importance when the \(M \) events happen to be equally likely, meaning that they have equal probabilities. The sum of the probabilities in this case reduces to \(M/100 \), and hence
\[P(A_i) = 1/M \quad i = 1, 2, \ldots, M \tag{5} \]
This result allows you to calculate probabilities when you can identify all possible outcomes of an experiment in terms of mutually exclusive, equally likely events. The hypothesis of equal likelihood might be based on experimental data or symmetry considerations—as in coin tossing and other honest games of chance.

Sometimes we’ll be concerned with the nonoccurrence of an event. The event “not \(A \)” is called the complement of \(A \), symbolized by \(A^c \) (also written \(\bar{A} \)). The probability of \(A^c \) is
\[P(A^c) = 1 - P(A) \tag{6} \]
since \(A + A^c = S \) and \(AA^c = \emptyset \).

Finally, consider events \(A \) and \(B \) that are not mutually exclusive, so axiom (2c) does not apply. The probability of the union event \(A + B \) is then given by
\[P(A + B) = P(A) + P(B) - P(AB) \tag{7a} \]
in which \(P(AB) \) is the probability of the intersection or joint event \(AB \). We call \(P(AB) \) the joint probability and interpret it as
\[P(AB) = N_{AB}/N \quad N \to \infty \]
where \(N_{AB} \) stands for the number of times \(A \) and \(B \) occur together in \(N \) trials. Equation (7) reduces to the form of axiom (2c) when \(AB = \emptyset \), so \(A \) and \(B \) cannot occur together and \(P(AB) = 0 \).

Equation (7a) can be generalized to
\[P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC) \tag{7b} \]
equally likely to occur on each toss, the eight sample-point sequences back in Fig. 8.1–1 must also be equally likely. We therefore use Eq. (5) with \(M = 8 \) to get

\[
P(s_i) = \frac{1}{8} \quad i = 1, 2, \ldots, 8
\]

The probabilities of the events \(A, B, \) and \(C \) are now calculated by noting that \(A \) contains three sample points, \(B \) contains two, and \(C \) contains four, so Eq. (3) yields

\[
P(A) = \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{3}{8} \\
P(B) = \frac{2}{8} \\
P(C) = \frac{4}{8}
\]

Similarly, the joint-event subsets \(AB \) and \(AC \) each contain just one sample point, so

\[
P(AB) = P(AC) = \frac{1}{8}
\]

whereas \(P(BC) = 0 \) since \(B \) and \(C \) are mutually exclusive.

The probability of the complementary event \(A^C \) is found from Eq. (6) to be

\[
P(A^C) = 1 - \frac{3}{8} = \frac{5}{8}
\]

The probability of the union event \(A + B \) is given by Eq. (7) as

\[
P(A + B) = \frac{3}{8} + \frac{2}{8} - \frac{1}{8} = \frac{4}{8}
\]

Our results for \(P(A^C) \) and \(P(A + B) \) agree with the facts that the subset \(A^C \) contains five sample points and \(A + B \) contains four.

EXERCISE 8.1–1

A certain honest wheel of chance is divided into three equal segments colored green (\(G \)), red (\(R \)), and yellow (\(Y \)), respectively. You spin the wheel twice and take the outcome to be the resulting color sequence—\(GR, RG, \) and so forth. Let \(A = \) “neither color is yellow” and let \(B = \) “matching colors.” Draw the Venn diagram and calculate \(P(A), P(B), P(AB), \) and \(P(A + B) \).

Conditional Probability and Statistical Independence

Sometimes an event \(B \) depends in some way on another event \(A \) having \(P(A) \neq 0 \). Accordingly, the probability of \(B \) should be adjusted when you know that \(A \) has occurred. Mutually exclusive events are an extreme example of dependence, for if you know that \(A \) has occurred, then you can be sure that \(B \) did not occur on the same trial. Conditional probabilities are introduced here to account for event dependence and also to define statistical independence.

We measure the dependence of \(B \) on \(A \) in terms of the **conditional probability**

\[
P(B | A) \triangleq \frac{P(AB)}{P(A)}
\]

The notation \(B | A \) stands for the event \(B \) given \(A \), and \(P(B | A) \) represents the probability of \(B \) conditioned by the knowledge that \(A \) has occurred. If the events happen to be mutually exclusive, then \(P(AB) = 0 \) and Eq. (8) confirms that \(P(B | A) = 0 \) as
expected. With \(P(AB) \neq 0 \), we interpret Eq. (8) in terms of relative frequency by inserting \(P(AB) = \frac{N_{AB}}{N} \) and \(P(A) = \frac{N_A}{N} \) as \(N \to \infty \). Thus,

\[
P(B|A) = \frac{P(AB)}{P(A)} = \frac{\frac{N_{AB}}{N_A}}{\frac{N_A}{N}} = \frac{N_{AB}}{N_A}
\]

which says that \(P(B|A) \) equals the relative frequency of \(A \) and \(B \) together in the \(N_A \) trials where \(A \) occurred with or without \(B \).

Interchanging \(B \) and \(A \) in Eq. (8) yields \(P(A|B) = \frac{P(AB)}{P(B)} \), and we thereby obtain two relations for the joint probability, namely,

\[
P(AB) = P(A|B)P(B) = P(B|A)P(A) \tag{9}
\]

Or we could eliminate \(P(AB) \) to get Bayes’s theorem

\[
P(B|A) = \frac{P(B)P(A|B)}{P(A)} \tag{10}
\]

This theorem plays an important role in statistical decision theory because it allows us to reverse the conditioning event. Another useful expression is the total probability

\[
P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i) \tag{11}
\]

where the conditioning events \(A_1, A_2, \ldots, A_M \) must be mutually exclusive and exhaustive.

Combining Eq. (10) and (11) gives

\[
P(A|B) = \frac{P(B)P(A|B)}{\sum_{i=1}^{M} P(B|A_i)P(A_i)} \tag{12}
\]

Events \(A \) and \(B \) are said to be statistically independent when they do not depend on each other, as indicated by

\[
P(B|A) = P(B) \quad P(A|B) = P(A) \tag{13}
\]

Inserting Eq. (13) into Eq. (9) then gives

\[
P(AB) = P(A)P(B)
\]

so the joint probability of statistically independent events equals the product of the individual event probabilities. Furthermore, if three or more events are all independent of each other, then

\[
P(ABC \ldots) = P(A)P(B)P(C) \ldots \tag{14}
\]

in addition to pairwise independence.

As a rule of thumb, physical independence is a sufficient condition for statistical independence. We may thus apply Eq. (13) to situations in which events have no physical connection. For instance, successive coin tosses are physically independent,
and a sequence such as TTH may be viewed as a joint event. Invoking the equally likely argument for each toss alone, we have \(P(H) = P(T) = \frac{1}{2} \) and
\[
P(TTH) = P(T)P(T)P(H) = \left(\frac{1}{2}\right)^3 = \frac{1}{8} \]
—in agreement with our conclusion in Example 8.1–1 that \(P(TTH) = \frac{1}{8} \) for any three-toss sequence.

Conditional Probability

In Example 8.1–1 we calculated the probabilities \(P(A) = \frac{3}{8}, P(B) = \frac{5}{8}, \) and
\(P(AB) = \frac{1}{8} \). We’ll now use these values to investigate the dependence of events \(A \) and \(B \).

Since \(P(A)P(B) = \frac{15}{64} \neq P(AB) \), we immediately conclude that \(A \) and \(B \) are not statistically independent. The dependence is reflected in the conditional probabilities

\[
P(B|A) = \frac{P(AB)}{P(A)} = \frac{1/8}{3/8} = \frac{1}{3} \quad P(A|B) = \frac{P(AB)}{P(B)} = \frac{1/8}{2/8} = \frac{1}{2}
\]

so \(P(B|A) \neq P(B) \) and \(P(A|B) \neq P(A) \).

Reexamination of Fig. 8.1–1 reveals why \(P(B|A) > P(B) \). Event \(A \) corresponds to any one of three equally likely outcomes, and one of those outcomes also corresponds to event \(B \). Hence, \(B \) occurs with frequency \(N_{AB}/N_A = \frac{1}{3} \) of the \(N_A \) trials in which \(A \) occurs—as contrasted with \(P(B) = N_B/N = \frac{5}{8} \) for all \(N \) trials. Similar reasoning justifies the value of \(P(A|B) \).

Statistical Independence

The resistance \(R \) of a resistor drawn randomly from a large batch has five possible values, all in the range 40–60 \(\Omega \). Table 8.1–1 gives the specific values and their probabilities.

| Table 8.1–1 Resistor values and their probability of occurrence |
|------------------|---|---|---|---|---|
| \(R \): | 40 | 45 | 50 | 55 | 60 |
| \(P_R(R) \): | 0.1| 0.2| 0.4| 0.2| 0.1|

Let the event \(A \) be “\(R \leq 50 \Omega \) so
\[
P(A) = P(R = 40 \text{ or } R = 45 \text{ or } R = 50) = P_R(40) + P_R(45) + P_R(50) = 0.7
\]

Similarly, the event \(B = 45 \Omega \leq R \leq 55 \Omega \) has

\[
P(B) = P_R(45) + P_R(50) + P_R(55) = 0.8
\]

The events \(A \) and \(B \) are not independent since

\[
P(AB) = P_R(45) + P_R(50) = 0.6
\]
which does not equal the product \(P(A)P(B) \). Then, using Eqs. (7) and (9),

\[
P(A + B) = 0.7 + 0.8 - 0.6 = 0.9 \quad P(B|A) = \frac{0.6}{0.7} = 0.857 \quad P(A|B) = \frac{0.6}{0.8} = 0.75
\]

The value of \(P(A + B) \) is easily confirmed from Table 8.1–1, but the conditional probabilities are most easily calculated from Eq. (9).

EXERCISE 8.1–2

Referring to Fig. 8.1–1, let

\[
D = \{THT, TTH, HTT, TTT\}
\]

which expresses the event “two or three tails.” Confirm that \(B \) and \(D \) are statistically independent by showing that \(P(B|D) = P(B) \), \(P(D|B) = P(D) \), and \(P(B)P(D) = P(BD) \).

EXAMPLE 8.1–4

Error Probability For a Noisy Channel

Consider a noisy binary communication channel where the probability of the transmitter sending a 0 is 0.4, the probability of receiving a 0 when the sender is transmitting a 1 is 0.2, and the probability of receiving a 1 when the sender is sending a 0 is 0.25. Let \(X_0 \) and \(X_1 \) be the respective transmitted 0 and 1 symbols and \(Y_0 \) and \(Y_1 \) be the respective received 0 and 1 symbols. Thus,

\[
P(X_0) = 0.4 \Rightarrow P(X_1) = 1 - P(X_0) = 0.6,
\]

\[
P(Y_0|X_1) = 0.2 \Rightarrow P(Y_0|X_0) = 1 - P(Y_0|X_1) = 0.8,
\]

and

\[
P(Y_1|X_0) = 0.25 \Rightarrow P(Y_1|X_1) = 1 - P(Y_1|X_0) = 0.75.
\]

Thus using Eq. (11) we have \(P(Y_0) = P(Y_0|X_0)P(X_0) + P(Y_0|X_1)P(X_1) = 0.8 \times 0.4 + 0.2 \times 0.6 = 0.44 \). Error probabilities can be stated as \(P(e|0) = P_{e0} = P(Y_1|X_0) \) and \(P(e|1) = P_{e1} = P(Y_0|X_1) \). Thus the total error probability is

\[
P(e) = P(e|X_1)P(X_1) + P(e|X_0)P(X_0) = 0.8 \times 0.6 + 0.25 \times 0.4 = 0.58
\]

8.2 RANDOM VARIABLES AND PROBABILITY FUNCTIONS

Coin tossing and other games of chance are natural and fascinating subjects for probability calculations. But communication engineers are more concerned with random processes that produce numerical outcomes—the instantaneous value of a noise voltage, the number of errors in a digital message, and so on. We handle such problems by defining an appropriate random variable, or RV for short.

Despite the name, a random variable is actually neither random nor a variable. Instead, it’s a function that generates numbers from the outcomes of a chance experiment. Specifically,
A random variable is a rule or relationship, denoted by X, that assigns a real number $X(s)$ to every point in the sample space S.

Almost any relationship may serve as an RV, provided that X is real and single-valued and that

$$P(X = -\infty) = P(X = \infty) = 0$$

The essential property is that X maps the outcomes in S into numbers along the real line $-\infty < x < \infty$. (More advanced presentations deal with complex numbers.)

We’ll distinguish between discrete and continuous RVs, and we’ll develop probability functions for the analysis of numerical-valued random events.

Discrete Random Variables and CDFs

If S contains a countable number of sample points, then X will be a discrete RV having a countable number of distinct values. Figure 8.2–1 depicts the corresponding mapping processes and introduces the notation $x_1 < x_2 < \ldots$ for the values of $X(s)$ in ascending order. Each outcome produces a single number, but two or more outcomes may map into the same number.

Although a mapping relationship underlies every RV, we usually care only about the resulting numbers. We’ll therefore adopt a more direct viewpoint and treat X itself as the general symbol for the experimental outcomes. This viewpoint allows us to deal with numerical-valued events such as $X = a$ or $X \leq a$, where a is some point on the real line. Furthermore, if we replace the constant a with the independent variable x, then we get probability functions that help us calculate probabilities of numerical-valued events.

The probability function $P(X \leq x)$ is known as the cumulative distribution function (CDF), symbolized by

$$F_X(x) \triangleq P(X \leq x)$$

![Figure 8.2–1](image) Sample points mapped by the discrete RV $X(s)$ into numbers on the real line.
Pay careful attention to the notation here: The subscript \(X \) identifies the RV whose characteristics determine the function \(F_X(x) \), whereas the argument \(x \) defines the event \(X \leq x \) so \(x \) is not an RV. Since the CDF represents a probability, it must be bounded by

\[
0 \leq F_X(x) \leq 1
\]

with extreme values

\[
F_X(-\infty) = 0 \quad F_X(\infty) = 1
\]

The lower limit reflects our condition that \(P (X = -\infty) = 0 \), whereas the upper limit says that \(X \) always falls somewhere along the real line. The complementary events \(X \leq x \) and \(X > x \) encompass the entire real line, so

\[
P(X > x) = 1 - F_X(x)
\]

Other CDF properties will emerge as we go along.

Suppose we know \(F_X(x) \) and we want to find the probability of observing \(a < X \leq b \). Figure 8.2–2 illustrates the relationship of this event to the events \(X \leq a \) and \(X > b \). The figure also brings out the difference between open and closed inequalities for specifying numerical events. Clearly, the three events here are mutually exclusive when \(b > a \), and

\[
P(X \leq a) + P(a < X \leq b) + P(X > b) = P(X \leq \infty) = 1
\]

Substituting \(P(X \leq a) = F_X(a) \) and \(P(X > b) = 1 - F_X(b) \) yields the desired result

\[
P(a < X \leq b) = F_X(b) - F_X(a) \quad b > a
\]

Besides being an important relationship in its own right, Eq. (4) shows that \(F_X(x) \) has the nondecreasing property \(F_X(b) \leq F_X(a) \) for any \(b > a \). Furthermore, \(F_X(x) \) is continuous from the right in the sense that if \(\epsilon > 0 \) then \(F_X(x + \epsilon) \rightarrow F_X(x) \) as \(\epsilon \rightarrow 0 \).

Now let’s take account of the fact that a discrete RV is restricted to distinct values \(x_1, x_2, \ldots \). This restriction means that the possible outcomes \(X = x_i \) constitute a set of mutually exclusive events. The corresponding set of probabilities will be written as

\[
P_X(x_i) \triangleq P(X = x_i) \quad i = 1, 2, \ldots
\]
which we call the \textbf{frequency function}. Since the \(X_i\) are mutually exclusive, the probability of the event \(X \leq x_k\) equals the sum

\[
P(X \leq x_k) = P_X(x_1) + P_X(x_2) + \cdots + P_X(x_k)
\]

Thus, the CDF can be obtained from the frequency function \(P_X(x_i)\) via

\[
F_X(x_k) = \sum_{i=1}^{k} P_X(x_i)
\]

This expression indicates that \(F_X(x)\) looks like a \textit{staircase} with upward steps of height \(P_X(x_i)\) at each \(x = x_i\). The staircase starts at \(F_X(x) = 0\) for \(x < x_i\) and reaches \(F_X(x) = 1\) at the last step. Between steps, where \(x_k < x < x_{k+1}\), the CDF remains constant at \(F_X(x_k)\).

\section*{Digit Errors In a Noisy Channel}

Consider the experiment of transmitting a three-digit message over a noisy channel. The channel has error probability \(P(E) = \frac{1}{3} = 0.4\) per digit, and errors are statistically independent from digit to digit, so the probability of receiving a correct digit is \(P(C) = 1 - \frac{1}{3} = \frac{2}{3} = 0.6\). We'll take \(X\) to be the number of errors in a received message, and we'll find the corresponding frequency function and CDF.

The sample space for this experiment consists of eight distinct error patterns, like the head-tail sequences back in Fig. 8.1–1. But now the sample points are not equally likely since the error-free pattern has \(P(CCCC) = P(C)P(C)P(C)P(C) = \left(\frac{2}{3}\right)^3 = 0.216\), whereas the all-error pattern has \(P(EEEE) = \left(\frac{1}{3}\right)^3 = 0.064\). Similarly, each of the three patterns with one error has probability \(\left(\frac{1}{3}\right) \times \left(\frac{2}{3}\right)^2\) and each of the three patterns with two errors has probability \(\left(\frac{1}{3}\right)^2 \times \left(\frac{2}{3}\right)^2\). Furthermore, although there are eight points in \(S\), the RV \(X\) has only four possible values, namely, \(x_i = 0, 1, 2,\) and \(3\) errors.

Figure 8.2–3a shows the sample space, the mapping for \(X\), and the resulting values of \(P_X(x_i)\). The values of \(F_X(x_i)\) are then calculated via

\[
F_X(0) = P_X(0) \quad F_X(1) = P_X(0) + P_X(1)
\]

and so forth in accordance with Eq. (6). The frequency function and CDF are plotted in Fig. 8.2–3b. We see from the CDF plot that the probability of less than two errors is \(F_X(2 - \varepsilon) = F_X(1) = \frac{81}{125} = 0.648\) and the probability of more than one error is \(1 - F_X(1) = \frac{44}{125} = 0.352\).

\section*{Exercise 8.2–1}

Let a random variable be defined for the experiment in Exercise 8.1–1 by the following rule: The colors are assigned the numerical weights \(G = 2, R = -1,\) and \(Y = 0,\) and \(X\) is taken as the \textit{average} of the weights observed on a given trial of two spins. For instance, the outcome \(RY\) maps into the value \(X(RY) = (-1 + 0)/2 = -0.5.\) Find and plot \(P_X(x_i)\) and \(F_X(x_i)\). Then calculate \(P(-1 < X \leq 1.0).\)
Continuous Random Variables and PDFs

A **continuous RV** may take on any value within a certain range of the real line, rather than being restricted to a countable number of distinct points. For instance, you might spin a pointer and measure the final angle \(u \). If you take \(X(u) = \tan^2 u \), as shown in Fig. 8.2–4, then every value in the range \(0 \leq x < \infty \) is a possible outcome of this experiment. Or you could take \(X(\theta) = \cos \theta \), whose values fall in the range \(-1.0 \leq x \leq 1.0\).

Since a continuous RV has an uncountable number of possible values, the chance of observing \(X = a \) must be vanishingly small in the sense that \(P(X = a) = 0 \) for any specific \(a \). Consequently, frequency functions have no meaning for continuous RVs. However, events such as \(X \leq a \) and \(a < X \leq b \) may have nonzero

![Figure 8.2–3](a) Mapping for Example 8.2–1; (b) frequency function and CDF for the discrete RV in Example 8.2–1.

Continuous Random Variables and PDFs

A **continuous RV** may take on any value within a certain range of the real line, rather than being restricted to a countable number of distinct points. For instance, you might spin a pointer and measure the final angle \(\theta \). If you take \(X(\theta) = \tan^2 \theta \), as shown in Fig. 8.2–4, then every value in the range \(0 \leq x < \infty \), is a possible outcome of this experiment. Or you could take \(X(\theta) = \cos \theta \), whose values fall in the range \(-1.0 \leq x \leq 1.0\).

Since a continuous RV has an uncountable number of possible values, the chance of observing \(X = a \) must be vanishingly small in the sense that \(P(X = a) = 0 \) for any specific \(a \). Consequently, frequency functions have no meaning for continuous RVs. However, events such as \(X \leq a \) and \(a < X \leq b \) may have nonzero
probabilities, and \(F_X(x) \) still provides useful information. Indeed, the properties stated before in Eqs. (1)–(4) remain valid for the CDF of a continuous RV.

In contrast a more common description of a continuous RV is its **probability density function** (or PDF), defined by

\[
p_X(x) \triangleq \frac{dF_X(x)}{dx}
\]

provided that the derivative exists. We don’t lose information when differentiating \(F_X(x) \) because we know that \(F_X(-\infty) = 0 \). We can therefore write

\[
P(X \leq x) = F_X(x) = \int_{-\infty}^{x} p_X(\lambda) \, d\lambda
\]

where we’ve used the dummy integration variable \(\lambda \) for clarity. Other important PDF properties are

\[
p_X(x) \geq 0 \quad \int_{-\infty}^{\infty} p_X(x) \, dx = 1
\]

and

\[
P(a < X \leq b) = F_X(b) - F_X(a) = \int_{a}^{b} p_X(x) \, dx
\]

Thus,

A PDF is a nonnegative function whose total area equals unity and whose area in the range \(a < x \leq b \) equals the probability of observing \(X \) in that range.

As a special case of Eq. (10), let \(a = x - dx \) and \(b = x \). The integral then reduces to the differential area \(p_X(x) \, dx \) and we see that

\[
p_X(x) \, dx = P(x - dx < X < x)
\]

This relation serves as another interpretation of the PDF, emphasizing its nature as a probability density. Figure 8.2–5 shows a typical PDF for a continuous RV and the areas involved in Eqs. (10) and (11).
Occasionally we’ll encounter **mixed random variables** having both continuous and discrete values. We treat such cases using impulses in the PDF, similar to our spectrum of a signal containing both nonperiodic and periodic components. Specifically, for any discrete value \(x_0 \) with nonzero probability \(P_X(x_0) = P(X = x_0) \neq 0 \), the PDF must include an impulsive term \(P_X(x_0) \delta(x - x_0) \) so that \(F_X(x) \) has an appropriate jump at \(x = x_0 \). Taking this approach to the extreme, the frequency function of a discrete RV can be converted into a PDF consisting entirely of impulses.

But when a PDF includes impulses, we need to be particularly careful with events specified by open and closed inequalities. For if \(p_X(x) \) has an impulse at \(x_0 \), then the probability that \(X \geq x_0 \) should be written out as \(P(X \geq x_0) = P(X > x_0) + P(X = x_0) \). In contrast, there’s no difference between \(P(X \geq x_0) \) and \(P(X > x_0) \) for a strictly continuous RV having \(P(X = x_0) = 0 \).

Example 8.2–2 Uniform PDF

To illustrate some of the concepts of a continuous RV, let’s take \(X = \theta \) (radians) for the angle of the pointer back in Fig. 8.2–4. Presumably all angles between 0 and \(2\pi \) are equally likely, so \(p_X(x) \) has some constant value \(C \) for \(0 < x \leq 2\pi \) and \(p_X(x) = 0 \) outside this range. We then say that \(X \) has a **uniform PDF**.

The unit-area property requires that

\[
\int_{-\infty}^{\infty} p_X(x) \, dx = \int_{0}^{2\pi} C \, dx = 1 \Rightarrow C = \frac{1}{2\pi}
\]

so

\[
p_X(x) = \frac{1}{2\pi} [u(x) - u(x - 2\pi)] = \begin{cases} \frac{1}{2\pi} & 0 < x \leq 2\pi \\ 0 & \text{otherwise} \end{cases}
\]

which is plotted in Fig. 8.2–6a. Integrating \(p_X(x) \) per Eq. (8) yields the CDF in Fig. 8.2–6b, where

\[
F_X(x) = x/2\pi \quad 0 < x \leq 2\pi
\]
Random Variables and Probability Functions

so, for example, \(P(X \leq \pi) = F_X(\pi) = \frac{1}{2} \). These functions describe a continuous RV uniformly distributed over the range \(0 < x \leq 2\pi \).

But we might also define another random variable \(Z \) such that

\[
Z = \begin{cases}
\pi & X \leq \pi \\
X & X > \pi
\end{cases}
\]

Then \(P(Z < \pi) = 0, P(Z = \pi) = P(X \leq \pi) = \frac{1}{2}, \) and \(P(Z \leq z) = P(X \leq z) \) for \(z > \pi \). Hence, using \(z \) as the independent variable for the real line, the PDF of \(Z \) is

\[
p_Z(z) = \frac{1}{2} \delta(z - \pi) + \frac{1}{2\pi} [u(z - \pi) - u(z - 2\pi)]
\]

The impulse here accounts for the discrete value \(Z = \pi \).

Use the PDFs in Example 8.2–2 to calculate the probabilities of the following events: (a) \(\pi < X \leq 3\pi/2 \), (b) \(X > 3\pi/2 \), (c) \(\pi < Z \leq 3\pi/2 \), and (d) \(\pi \leq Z \leq 3\pi/2 \).

Figure 8.2–6 PDF and CDF of a uniformly distributed RV.

Transformations of Random Variables

The preceding example touched upon a transformation that defines one RV in terms of another. Here, we’ll develop a general expression for the resulting PDF when the new RV is a continuous function of a continuous RV with a known PDF.

Suppose we know \(p_X(x) \) and we want to find \(p_Z(z) \) for the RV related to \(X \) by the transformation function

\[Z = g(X) \]
We initially assume that $g(X)$ increases monotonically, so the probability of observing Z in the differential range $z - dz < Z \leq z$ equals the probability that X occurs in the corresponding range $x - dx < X \leq x$, as illustrated in Fig. 8.2–7. Equation (10) then yields

$$p_Z(z) \, dz = p_X(x) \, dx,$$

from which

$$p_Z(z) = p_X(x) \left| \frac{dx}{dz} \right|.$$

Finally, since x transforms to $z = g(x)$, we insert the inverse transformation $x = g^{-1}(z)$ to obtain

$$p_Z(z) = p_X[g^{-1}(z)] \left| \frac{dg^{-1}(z)}{dz} \right|$$

which holds for any monotonic function.

A simple but important monotonic function is the linear transformation

$$Z = \alpha X + \beta \quad (13a)$$

where α and β are constants. Noting that $Z = g(x) = \alpha x + \beta$, $X = g^{-1}(z) = (z - \beta)/\alpha$, and $dg^{-1}(z)/dz = 1/\alpha$, Eq. (12) becomes

$$p_Z(z) = \frac{1}{|\alpha|} p_X \left(\frac{z - \beta}{\alpha} \right) \quad (13b)$$

Hence, $p_Z(z)$ has the same shape as $p_X(x)$ shifted by β and expanded or compressed by α.

If $g(X)$ is not monotonic, then two or more values of X produce the same value of Z. We handle such cases by subdividing $g(x)$ into a set of monotonic functions, $g_1(x), g_2(x), \ldots$, defined over different ranges of x. Since these ranges correspond to mutually exclusive events involving X, Eq. (12) generalizes as

$$p_Z(z) = p_X[g_1^{-1}(z)] \left| \frac{dg_1^{-1}(z)}{dz} \right| + p_X[g_2^{-1}(z)] \left| \frac{dg_2^{-1}(z)}{dz} \right| + \ldots$$

The following example illustrates this method.

Figure 8.2–7 Transformation of an RV.
RV Transformation

Consider the transformation \(Z = \cos X \) with \(X \) being the uniformly distributed angle from Example 8.2–2. The plot of \(Z \) versus \(X \) in Fig. 8.2–8a brings out the fact that \(Z \) goes twice over the range \(-1\) to \(1\) as \(X \) goes from 0 to \(2\pi\), so the transformation is not monotonic.

To calculate \(p_Z(z) \), we first subdivide \(g(x) \) into the two monotonic functions

\[
\begin{align*}
g_1(x) &= \cos x \quad 0 < x \leq \pi \\
g_2(x) &= \cos x \quad \pi < x \leq 2\pi
\end{align*}
\]

which happen to be identical except for the defining ranges. For the range \(0 < x \leq \pi\), we have \(p_x(x) = \frac{1}{\pi} \) with \(x = g_1^{-1}(z) = \cos^{-1} z \), so \(dg_1^{-1}(z)/dz = -(1 - z^2)^{-1/2} \) and \(p_x[g_1^{-1}(z)] = \frac{1}{\pi z} \) over \(-1 \leq z \leq 1\). The same results hold for \(\pi < x \leq 2\pi\) because \(p_x(x) \) still equals \(\frac{1}{\pi z} \) and \(g_2(x) = g_1(x) \). Thus, from Eq. (14),

\[
p_Z(z) = 2 \times \frac{1}{2\pi} \left| -(1 - z)^{-1/2} \right| = \frac{1}{\pi \sqrt{1 - z^2}} \quad -1 \leq z \leq 1
\]

As illustrated in Fig. 8.2–8b, this PDF has peaks at \(z = \pm 1 \) because \(\cos X \) occurs more often near \(\pm 1 \) than any other value when \(X \) is uniformly distributed over \(2\pi\) radians.

Exercise 8.2–3

Find \(p_Z(z) \) when \(Z = \sqrt{X} \) and \(p_x(x) \) is uniform over \(0 < x \leq 4\).

Joint and Conditional PDFs

Concluding our introduction to random variables, we briefly discuss the case of two continuous RVs that can be observed simultaneously. A classic example of this situation is the dart-throwing experiment, with \(X \) and \(Y \) taken as the rectangular coordinates of the dart’s position relative to the center of the target.
The joint probability density function of \(X \) and \(Y \) will be denoted by \(p_{XY}(x,y) \), where the comma stands for and. This function represents a surface over the \(x-y \) plane such that

\[
p_{XY}(x, y) \, dx \, dy = P(x - dx < X \leq x, y - dy < Y \leq y)
\]

which is the two-dimensional version of Eq. (11). In words, the differential volume \(p_{XY}(x,y) \, dx \, dy \) equals the probability of observing the joint event \(x - dx < X \leq x \) and \(y - dy < Y \leq y \). Hence, the probability of the event \(a < X \leq b \) and \(c < Y \leq d \) is

\[
P(a < X \leq b, c < Y \leq d) = \int_c^d \int_a^b p_{XY}(x,y) \, dx \, dy \tag{15}
\]

Equation (15) corresponds to the volume between the \(x-y \) plane and the surface \(p_{XY}(x,y) \) for the stated ranges of \(x \) and \(y \).

If \(X \) and \(Y \) happen to be statistically independent, then their joint PDF reduces to the product

\[
p_{XY}(x,y) = p_X(x)p_Y(y) \tag{16}
\]

Otherwise, the dependence of \(Y \) on \(X \) is expressed by the conditional PDF

\[
p_Y(y|x) = \frac{p_{XY}(x,y)}{p_X(x)} \tag{17}
\]

which corresponds to the PDF of \(Y \) given that \(X = x \).

The PDF for \(X \) alone may be obtained from the joint PDF by noting that \(P(X \leq x) = P(X \leq x, -\infty < Y < \infty) \) since the value of \(Y \) doesn’t matter when we’re only concerned with \(X \). Thus,

\[
p_X(x) = \int_{-\infty}^{\infty} p_{XY}(x,y) \, dy \tag{18}
\]

We call \(p_X(x) \) a marginal PDF when it’s derived from a joint PDF per Eq. (18).

EXAMPLE 8.2–4

The joint PDF of two noise voltages is known to be

\[
p_{XY}(x,y) = \frac{1}{2\pi} e^{-(y^2-x^2+y^2+x^2/2)} \quad -\infty < x < \infty, \ -\infty < y < \infty
\]

From Eq. (18), the marginal PDF for \(X \) alone is

\[
p_X(x) = \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-(y^2-x^2+y^2+x^2/2)} \, dy = \frac{1}{\pi} e^{-x^2/4} \int_{0}^{\infty} e^{-\lambda^2} \, d\lambda = \frac{1}{2\sqrt{\pi}} e^{-x^2/4}
\]

where we have made the change of variable \(\lambda = y - x/2 \). In like manner,

\[
p_Y(y) = \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-(y^2-x^2+y^2+x^2/2)} \, dx = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}
\]
Thus, X and Y are not independent since $p_X(x)p_Y(y) \neq p_{XY}(x,y)$. But Eq. (17) yields the conditional PDFs

$$p_Y(y|x) = \frac{1}{\sqrt{\pi}} e^{-(y^2 - xy + \xi)}$$

$$p_X(x|y) = \frac{1}{\sqrt{2\pi}} e^{-(\xi - xy + \xi)}$$

8.3 Statistical Averages

For some purposes, a probability function provides more information about an RV than actually needed. Indeed, the complete description of an RV may prove to be an embarrassment of riches, more confusing than illuminating. Thus, we often find it more convenient to describe an RV by a few characteristic numbers. These numbers are the various statistical averages presented here.

Means, Moments, and Expectation

The **mean** of the random variable X is a constant m_X that equals the sum of the values of X weighted by their probabilities. This statistical average corresponds to an ordinary experimental average in the sense that the sum of the values observed over $N \gg 1$ trials is expected to be about Nm_X. For that reason, we also call m_X the expected value of X, and we write $E[X]$ or \bar{X} to stand for the expectation operation that yields m_X.

To formulate an expression for the statistical average or expectation, we begin by considering N independent observations of a discrete RV. If the event $X = x_i$ occurs N_i times, then the sum of the observed values is

$$N_1 x_1 + N_2 x_2 + \ldots = \sum_i N_i x_i \quad (1a)$$

Upon dividing by N and letting $N \to \infty$, the relative frequency N_i/N becomes $P(X = x_i) = P_X(x_i)$. Thus, the statistical average value is

$$m_X = \sum_i x_i P_X(x_i) \quad (1b)$$

which expresses the mean of a discrete RV in terms of its frequency function $P_X(x_i)$.

For the mean of a continuous RV, we replace $P_X(x_i)$ with $P(x - dx < X < x) = p_X(x) \, dx$ and pass from summation to integration so that

$$m_X = \int_{-\infty}^{\infty} x \, p_X(x) \, dx \quad (2)$$

This expression actually includes Eq. (1b) as a special case obtained by writing the discrete PDF as

$$p_X(x) = \sum_i P_X(x_i) \delta(x - x_i)$$
Hence, when we allow impulses in the PDF, Eq. (2) applies to any RV—continuous, discrete, or mixed. Hereafter, then, statistical averages will be written mostly in integral form with PDFs. The corresponding expressions for a strictly discrete RV are readily obtained by substituting the frequency function in place of the PDF or, more directly, by replacing the integration with the analogous summation.

When a function \(g(X) \) transforms \(X \) into another random variable \(Z \), its expected value can be found from \(p_X(x) \) by noting that the event \(X = x \) transforms to \(Z = g(x) \), so

\[
E[g(X)] = \int_{-\infty}^{\infty} g(x)p_X(x) \, dx \tag{3}
\]

If \(g(X) = X^n \), then \(E[X^n] \) is known as the \textbf{nth moment} of \(X \). The first moment, of course, is just the mean value \(E[X] = m_X \). The second moment \(E[X^2] \) or \(\overline{X}^2 \) is called the \textbf{mean-square} value, as distinguished from the mean squared \(m_X^2 = \overline{X}^2 \). Writing out Eq. (3) with \(g(X) = X^2 \), we have

\[
\overline{X}^2 = \int_{-\infty}^{\infty} x^2 p_X(x) \, dx
\]

or, for a discrete RV,

\[
\overline{X}^2 = \sum_i x_i^2 p_X(x_i)
\]

The mean-square value will be particularly significant when we get to random signals and noise.

Like time averaging, the expectation in Eq. (3) is a \textbf{linear} operation. Thus, if \(\alpha \) and \(\beta \) are constants and if \(g(X) = \alpha X + \beta \), then

\[
E[\alpha X + \beta] = \alpha \overline{X} + \beta \tag{4}
\]

Although this result seems rather trivial, it leads to the not-so-obvious relation

\[
E[\overline{X}X] = \overline{X}E[X] = \overline{X}^2
\]

since \(\overline{X} \) is a constant inside \(E[\overline{X}X] \).

Standard Deviation and Chebyshev’s Inequality

The \textbf{standard deviation} of \(X \), denoted by \(\sigma_X \), provides a measure of the spread of observed values of \(X \) relative to \(m_X \). The square of the standard deviation is called the \textbf{variance}, or \textbf{second central moment}, defined by

\[
\sigma_X^2 \triangleq E[(X - m_X)^2] \tag{5}
\]

But a more convenient expression for the standard deviation emerges when we expand \((X - m_X)^2 \) and invoke Eq. (4), so

\[
E[(X - m_X)^2] = E[X^2 - 2m_XX + m_X^2] = \overline{X}^2 - 2m_X \overline{X} + m_X^2 = \overline{X}^2 - m_X^2
\]
Hence, the standard deviation equals the square root of the mean-square value minus the mean value squared.

For an interpretation of σ_X, let k be any positive number and consider the event $|X - m_X| \geq k\sigma_X$.

Chebyshev’s inequality (also spelled Tchebycheff) states that

$$P(|X - m_X| \geq k\sigma_X) \leq \frac{1}{k^2} \quad (7a)$$

regardless of $p_X(x)$. Thus, the probability of observing any RV outside $\pm k$ standard deviations of its mean is no larger than $1/k^2$. By the same token,

$$P(|X - m_X| < k\sigma_X) > 1 - \frac{1}{k^2} \quad (7b)$$

With $k = 2$, for instance, we expect X to occur within the range $m_X \pm 2\sigma_X$ for more than $\frac{3}{4}$ of the observations. A small standard deviation therefore implies a small spread of likely values, and vice versa.

The proof of Eq. (7a) starts by taking $Z = X - m_X$ and $a = k\sigma_X > 0$. We then let ϵ be a small positive quantity and note that

$$E[Z^2] = \int_{-\infty}^{\infty} z^2 p_z(z) \, dz = \int_{-\infty}^{-\epsilon} z^2 p_z(z) \, dz + \int_{\epsilon}^{\infty} z^2 p_z(z) \, dz$$

But $z^2 \geq a^2$ over the range $\epsilon \leq |z| < \infty$, so

$$E[Z^2] \geq a^2 \left[\int_{-\infty}^{-\epsilon} p_z(z) \, dz + \int_{\epsilon}^{\infty} p_z(z) \, dz \right]$$

where the first integral inside the brackets represents $P(Z \leq -a)$ whereas the second represents $P(Z \geq a)$. Therefore,

$$P(|Z| \geq a) = P(Z \leq -a) + P(Z \geq a) \leq E[Z^2]/a^2$$

and Eq. (7a) follows by inserting $Z = X - m_X$, $E[Z^2] = \sigma_X^2$, and $a = k\sigma_X$.

Statistical Averages

To illustrate the calculation of statistical averages, let’s take the case where

$$p_X(x) = \frac{a}{2} e^{-a|x|} \quad -\infty < x < \infty$$

with a being a positive constant. This PDF describes a continuous RV with a Laplace distribution.

Drawing upon the even symmetry of $p_X(x)$, Eqs. (2) and (3) yield

$$m_X = \int_{-\infty}^{\infty} x \frac{a}{2} e^{-a|x|} \, dx = 0 \quad E[X^2] = 2 \int_{0}^{\infty} x^2 \frac{a}{2} e^{-ax} \, dx = \frac{2}{a^2}$$
Hence, from Eq. (6), \(\sigma_X = \sqrt{E[X^2] - m_X^2} = \sqrt{2}/a \).

The probability that an observed value of a Laplacian RV falls within \(\pm 2\sigma_X \) of the mean is given by

\[
P(\lvert X - 0 \rvert < 2\sqrt{2}/a) = \int_{-2\sqrt{2}/a}^{2\sqrt{2}/a} \frac{a}{2} e^{-a|x|} \, dx = 0.94
\]
as compared with the lower bound of 0.75 from Chebyshev’s inequality.

EXERCISE 8.3–1 Let \(X \) have a uniform distribution over \(0 > X \leq 2\pi \), as in Example 8.2–2 (p. 360). Calculate \(m_X, \bar{X}^2, \) and \(\sigma_X \). What’s the probability of \(X - m_X > 2\sigma_X \)?

Multivariate Expectations

Multivariate expectations involve two or more RVs, and they are calculated using multiple integration over joint PDFs. Specifically, when \(g(X,Y) \) defines a function of \(X \) and \(Y \), its expected value is

\[
E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) p_{XY}(x,y) \, dx \, dy \tag{8}
\]

However, we’ll restrict our attention to those cases in which the multiple integration reduces to separate integrals.

First, suppose that \(X \) and \(Y \) are independent, so \(p_{XY}(x,y) = p_X(x)p_Y(y) \). Assume further that we can write \(g(X,Y) \) as a product in the form \(g(X,Y) = g_X(X)g_Y(Y) \). Equation (8) thereby becomes

\[
E[g(X,Y)] = \int_{-\infty}^{\infty} g_X(x)p_X(x) \, dx \int_{-\infty}^{\infty} g_Y(y)p_Y(y) \, dy
\]

or

\[
E[g_X(X)]E[g_Y(Y)]
\]

If we take \(g(X,Y) = XY \), for instance, then \(g_X(X) = X \) and \(g_Y(Y) = Y \) so \(E[XY] = E[X]E[Y] \) or

\[
\bar{X} \bar{Y} = \bar{X} \bar{Y} = m_X m_Y \tag{10}
\]

Hence, the mean of the product of independent RVs equals the product of their means.

Next, consider the sum \(g(X,Y) = X + Y \), where \(X \) and \(Y \) are not necessarily independent. Routine manipulation of Eq. (8) now leads to \(E[X + Y] = E[X] + E[Y] \) or

\[
\bar{X} + \bar{Y} = \bar{X} + \bar{Y} = m_X + m_Y \tag{11}
\]
Hence, the mean of the sum equals the sum of the means, irrespective of statistical independence.

Finally, let $Z = X + Y$ so we know that $m_Z = m_X + m_Y$. But what’s the variance σ_Z^2? To answer that question we calculate the mean-square value $E[Z^2]$ via

$$Z^2 = E[X^2 + 2XY + Y^2] = \bar{X}^2 + 2\bar{XY} + \bar{Y}^2$$

Thus,

$$\sigma_Z^2 = \bar{Z}^2 - (m_X + m_Y)^2 = (\bar{X}^2 - m_X^2) + (\bar{Y}^2 - m_Y^2) + 2(\bar{XY} - m_Xm_Y)$$

The last term of this result vanishes when Eq. (10) holds, so the variance of the sum of independent RVs is

$$\sigma_Z^2 = \sigma_X^2 + \sigma_Y^2 \quad (12)$$

Equations (9) through (12) readily generalize to include three or more RVs. Keep in mind, however, that only Eq. (11) remains valid when the RVs are not independent.

Sample Mean and Frequency of Occurrence

Let X_1, X_2, \ldots, X_N be sample values obtained from N independent observations of a random variable X having mean m_X and variance σ_X^2. Each sample value is an RV, and so is the sum

$$Z = X_1 + X_2 + \ldots + X_N$$

and the **sample mean**

$$\mu = Z/N$$

and **sample variance**

$$\sigma^2 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

We’ll investigate the statistical properties of μ, and we’ll use them to reexamine the meaning of probability.

From Eqs. (11) and (12) we have $Z = \bar{X}_1 + \bar{X}_2 + \ldots + \bar{X}_N = N\mu_X$ and $\sigma_Z^2 = N\sigma_X^2$. Thus, $\bar{Z}/N = \mu_X$, whereas

$$\sigma^2 = E[(\mu - \bar{\mu})^2] = \frac{1}{N^2} \sum_{i=1}^{N} (x_i - \mu)^2 = \frac{1}{N^2} \sigma^2_X = \frac{1}{N} \sigma_X^2$$

Since $\sigma^2 = \sigma_X^2/\sqrt{N}$, the spread of the sample mean decreases with increasing N, and μ approaches m_X as $N \to \infty$. Furthermore, from Chebyshev’s inequality, the probability that μ differs from m_X by more than some positive amount e is upper-bounded by

$$P(|\mu - m_X| \geq e) \leq \sigma_X^2/N\epsilon^2$$
Although not immediately obvious, this result provides further justification for the relative-frequency interpretation of probability.

To develop that point, let \(A \) be a chance-experiment event and let \(X \) be a discrete RV defined such that \(X = 1 \) when \(A \) occurs on a given trial and \(X = 0 \) when \(A \) does not occur. If \(A \) occurs \(N_A \) times in \(N \) independent trials, then \(Z = N_A \) and \(\mu = N_A/N \).

Thus, our definition of \(X \) makes the sample mean \(\mu \) equal to the frequency of occurrence of \(A \) for that set of trials. Furthermore, since \(P(A) = P(X = 1) = P_X(1) \) and \(P(A^c) = P_X(0) \), the statistical averages of \(X \) are

\[
\begin{align*}
 m_X &= 0 \times P_X(0) + 1 \times P_X(1) = P(A) \\
 \text{E}[X^2] &= 0^2 \times P_X(0) + 1^2 \times P_X(1) = P(A) \\
 \sigma^2_X &= P(A) - P^2(A)
\end{align*}
\]

so

\[
P(\mid \mu - m_X \mid \geq \epsilon) = P \left[\left| \frac{N_A}{N} - P(A) \right| \geq \epsilon \right] \leq \frac{P(A) - P^2(A)}{N\epsilon^2}
\]

We therefore conclude that, as \(N \to \infty \), \(N_A/N \) must approach \(P(A) \) in the sense that the probability of a significant difference between \(N_A/N \) and \(P(A) \) becomes negligibly small.

EXERCISE 8.3-2

Prove Eq. (11) using marginal PDFs as defined by Eq. (18), Sect. 8.2, for \(p_X(x) \) and \(p_Y(y) \).

Characteristic Functions

Having found the mean and variance of a sum \(Z = X + Y \), we’ll now investigate the PDF of \(Z \) and its relation to \(p_X(x) \) and \(p_Y(y) \) when \(X \) and \(Y \) are independent. This investigation is appropriate here because the best approach is an indirect one using a special type of expectation.

The **characteristic function** of an RV \(X \) is an expectation involving an auxiliary variable \(\nu \) defined by

\[
\Phi_X(\nu) \triangleq \text{E}[e^{i\nu X}] = \int_{-\infty}^{\infty} e^{i\nu x} p_X(x) \, dx
\]

Upon closer inspection of Eq. (13), the presence of the complex exponential \(e^{i\nu x} \) suggests similarity to a Fourier integral. We bring this out explicitly by letting \(\nu = 2\pi t \) and \(x = f \) so that

\[
\Phi_X(2\pi t) = \int_{-\infty}^{\infty} p_X(f)e^{i2\pi ft} \, df = \mathcal{F}^{-1}[p_X(f)]
\]

Consequently, by the Fourier integral theorem,
Hence, the characteristic function and PDF of a random variable constitute the Fourier-transform pair \(\Phi_X(2\pi t) \leftrightarrow p_X(f) \).

Now, for the PDF of a sum of independent RVs, we let \(Z = X + Y \) and we use Eqs. (13) and (9) to write

\[
\Phi_Z(\nu) = E[e^{i\nu(X+Y)}] = E[e^{i\nu X}] E[e^{i\nu Y}] = \Phi_X(\nu) \Phi_Y(\nu)
\]

Then, from the convolution theorem,

\[
p_Z(f) = \mathcal{F}[\Phi_X(2\pi t) \Phi_Y(2\pi t)] = p_X(f) \ast p_Y(f)
\]

Appropriate change of variables yields the final result

\[
p_Z(z) = \int_{-\infty}^{\infty} p_X(z - \lambda)p_Y(\lambda) \, d\lambda = \int_{-\infty}^{\infty} p_X(\lambda)p_Y(z - \lambda) \, d\lambda \tag{15}
\]

Thus, the PDF of \(X + Y \) equals the convolution of \(p_X(x) \) and \(p_Y(y) \) when \(X \) and \(Y \) are independent. As we’ll discuss in the latter part of Sect. 8.4, Eq. (15) is used in conjunction with the central limit theorem to show how the sum of independent random variables form a normal distribution.

Other applications of characteristic functions are explored in problems at the end of the chapter.

Use Eq. (14a) to find \(\Phi_X(\nu) \) for the uniform PDF \(p_X(x) = a^{-1}\Pi(x/a) \).

EXERCISE 8.3–3

8.4 PROBABILITY MODELS

Many probability functions have been devised and studied as models for various random phenomena. Here we discuss the properties of two discrete functions (binomial and Poisson) and two continuous functions (gaussian and Rayleigh). These models, together with the uniform and Laplace distributions, cover most of the cases encountered in our latter work. Table T.5 at the back of the book summarizes our results and includes a few other probability functions for reference purposes.

Binomial Distribution

The binomial model describes an integer-valued discrete RV associated with repeated trials. Specifically,

A **binomial random variable** corresponds to the number of times an event with probability \(\alpha \) occurs in \(n \) independent trials of a chance experiment.
This model thus applies to repeated coin tossing when \(I \) stands for the number of heads in \(n \) tosses and \(P(H) = \alpha \). But, more significantly for us, it also applies to digital transmission when \(I \) stands for the number of errors in an \(n \)-digit message with per-digit error probability \(\alpha \).

To formulate the binomial frequency function \(P_i(i) = P(| = i) \), consider any sequence of \(n \) independent trials in which event \(A \) occurs \(i \) times. If \(P(A) = \alpha \), then \(P(A^c) = 1 - \alpha \) and the sequence probability equals \(\alpha^i(1 - \alpha)^{n-i} \). The number of different sequences with \(i \) occurrences is given by the binomial coefficient, denoted \(\binom{n}{i} \), so we have

\[
P_i(i) = \binom{n}{i} \alpha^i (1 - \alpha)^{n-i} \quad i = 0, 1, \ldots, n
\]

The corresponding CDF is

\[
F_i(k) = \sum_{i=0}^{k} P_i(i) \quad k = 0, 1, \ldots, n
\]

These functions were previously evaluated in Fig. 8.2–3 for the case of \(n = 3 \) and \(\alpha = 2/5 \).

The binomial coefficient in Eq. (1) equals the coefficient of the \((i + 1)\) term in the expansion of \((a + b)^n\), defined in general by the factorial expression

\[
\binom{n}{i} \triangleq \frac{n!}{i!(n-i)!}
\]

where it’s understood that \(0! = 1 \) when \(i = 0 \) or \(i = n \). This quantity has the symmetry property

\[
\binom{n}{i} = \binom{n}{n-i}
\]

We thus see that

\[
\binom{n}{0} = \binom{n}{n} = 1 \quad \binom{n}{1} = \binom{n}{n-1} = n \quad \binom{n}{2} = \binom{n}{n-2} = \frac{n(n-1)}{2}
\]

and so on. Other values can be found using Pascal’s triangle, tables, or a calculator or computer with provision for factorials.

The statistical averages of a binomial RV are obtained by inserting Eq. (1) into the appropriate discrete expectation formulas. Some rather laborious algebra then yields simple results for the mean and variance, namely,

\[
m = n\alpha \quad \sigma^2 = n\alpha(1 - \alpha) = m(1 - \alpha)
\]

where we’ve omitted the subscript \(I \) for simplicity. The relative spread \(\sigma/m \) decreases as \(1/\sqrt{n} \), meaning that the likely values of \(I \) cluster around \(m \) when \(n \) is large.
Error Statistics For a Noisy Binary Channel

Suppose 10,000 digits are transmitted over a noisy channel with per-digit error probability $\alpha = 0.01$. Equation (3) then gives

$$m = 10,000 \times 0.01 = 100 \quad \sigma^2 = 100(1 - 0.01) = 99$$

Hence, the likely range $m \pm 2\sigma$ tells us to expect about 80 to 120 errors.

Poisson Distribution

The Poisson model describes another integer-valued RV associated with repeated trials, in that

A Poisson random variable corresponds to the number of times an event occurs in an interval T when the probability of a single occurrence in the small interval ΔT is $\mu \Delta T$.

The resulting Poisson frequency function is

$$P_i(i) = e^{-\mu T} \frac{(\mu T)^i}{i!} \quad (4)$$

from which

$$m = \mu T \quad \sigma^2 = m$$

These expressions describe random phenomena such as radioactive decay and shot noise in electronic devices, which relate to the time distribution of events (e.g., an atom decaying in a sample or an electron being emitted from a cathode).

The Poisson model also approximates the binomial model when n is very large, α is very small, and the product $n\alpha$ remains finite. Equation (1) becomes awkward to handle in this case, but we can let $\mu T = m$ in Eq. (4) to obtain the more convenient approximation

$$P_i(i) = e^{-m} \frac{m^i}{i!} \quad (5)$$

Neither n nor α appears here since they have been absorbed in the mean value $m = n\alpha$.

Use Eq. (5) to estimate the probability of $I \leq 2$ errors when 10,000 digits are transmitted over a noisy channel having error probability $\alpha = 5 \times 10^{-5}$.

EXAMPLE 8.4–1

EXERCISE 8.4–1
Gaussian PDF

The Gaussian model describes a continuous RV having the normal distribution encountered in many different applications in engineering, physics, and statistics. The Gaussian model often holds when the quantity of interest results from the summation of many small fluctuating components. Thus, for instance, random measurement errors usually cause experimental values to have a Gaussian distribution around the true value. Similarly, the random motion of thermally agitated electrons produces the Gaussian random variable known as thermal noise.

A Gaussian RV is a continuous random variable \(X \) with mean \(m \), variance \(\sigma^2 \), and PDF

\[
p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-m)^2/2\sigma^2}, \quad -\infty < x < \infty
\] (6)

This function defines the bell-shaped curve plotted in Fig. 8.4–1. The even symmetry about the peak at \(x = m \) indicates that

\[
P(X \leq m) = P(X > m) = \frac{1}{2}
\]

so observed values of \(X \) are just as likely to fall above or below the mean.

Now assume that you know the mean \(m \) and variance \(\sigma^2 \) of a Gaussian RV and you want to find the probability of the event \(X > m + k\sigma \). Since the integral in question cannot be evaluated in closed form, numerical methods have been used to generate extensive tables of the normalized integral known as the \(Q \)-function.

\[
Q(k) \triangleq \frac{1}{\sqrt{2\pi}} \int_k^\infty e^{-\lambda^2/2} d\lambda
\] (7)

The change of variable \(\lambda = (x - m)/\sigma \) then shows that

\[
P(X > m + k\sigma) = Q(k)
\]

We therefore call \(Q(k) \) the area under the Gaussian tail, as illustrated by Fig. 8.4–2. This figure also brings out the fact that \(P(m < X \leq m + k\sigma) = \frac{1}{2} - Q(k) \), which follows from the symmetry and unit-area properties of \(p_X(x) \).

You can calculate any desired Gaussian probability in terms of \(Q(k) \) using Fig. 8.4–2 and the symmetry of the PDF. In particular,

\[
P(X > m + k\sigma) = P(X \leq m - k\sigma) = Q(k) \quad (8a)
\]

\[
P(m < X \leq m + k\sigma) = P(m - k\sigma < X \leq m) = \frac{1}{2} - Q(k) \quad (8b)
\]

\[
P(|X - m| > k\sigma) = 2Q(k) \quad (8c)
\]

\[
P(|X - m| \leq k\sigma) = 1 - 2Q(k) \quad (8d)
\]

Table 8.4–1 compares some values of this last quantity with the lower bound \((1 - 1/k^2)\) from Chebyshev’s inequality. The lower bound is clearly conservative, and the likely
range of observed values is somewhat less than $m \pm 2\sigma$. We usually take the likely range of a gaussian RV to be $m \pm \sigma$ since $P(|X - m| \leq \sigma) = 0.68$.

For larger values of k, the area under the gaussian tail becomes too small for numerical integration. But we can then use the analytical approximation

$$Q(k) \approx \frac{1}{\sqrt{2\pi k^2}} e^{-k^2/2}, \quad k > 3$$

This approximation follows from Eq. (7) by integration by parts.

Table T.6 at the back of the book gives a detailed plot of $Q(k)$ for $0 \leq k \leq 7$. Also given are relationships between $Q(k)$ and other gaussian probability functions found in the literature.
EXAMPLE 8.4–2

Events With Gaussian RVs

Suppose you want to evaluate the probability of \(|X - m| \leq 3\) when \(X\) is gaussian with \(\sigma^2 = 4\). You can use Eq. (8d) and Table 8.4–1 by noting that \(\sigma = 2\) and \(k \sigma = 3\) when \(k = 3/\sigma = 1.5\). Hence,

\[
P(|X - m| \leq 3) = P(|X - m| \leq 1.5\sigma) = 1 - 2Q(1.5) = 0.87
\]

EXERCISE 8.4–2

Given that \(X\) is gaussian with \(m = 5\) and \(\sigma = 8\), sketch the PDF and mark the boundaries of the area in question to show that \(P(9 < X \leq 25) = Q(0.5) - Q(2.5) \approx 0.3\).

Rayleigh PDF

The Rayleigh model describes a continuous RV obtained from two gaussian RVs as follows:

If \(X\) and \(Y\) are independent gaussian RVs with zero mean and the same variance \(\sigma^2\), then the random variable defined by \(R = \sqrt{X^2 + Y^2}\) has a Rayleigh distribution.

Thus, as shown in Fig. 8.4–3, the Rayleigh model applies to any rectangular-to-polar conversion when the rectangular coordinates are identical but independent gaussians with zero mean.

To derive the corresponding Rayleigh PDF, we introduce the random angle \(\Phi\) from Fig. 8.4–3 and start with the joint PDF relationship

\[
p_{R \Phi}(r, \phi) \, dr \, d\phi = p_{XY}(x, y) \, dx \, dy
\]

where

\[
r^2 = x^2 + y^2 \quad \phi = \arctan(y/x) \quad dx \, dy = r \, dr \, d\phi
\]

Figure 8.4–3 Rectangular to polar conversion.
Since X and Y are independent gaussians with $m = 0$ and variance σ^2,

$$p_{XY}(x, y) = p_X(x)p_Y(y) = \frac{1}{2\pi\sigma^2}e^{-(x^2+y^2)/2\sigma^2}$$

Hence, including $u(r)$ to reflect the fact that $r \geq 0$, we have

$$p_{R\phi}(r, \varphi) = \frac{r}{2\pi\sigma^2}e^{-r^2/2\sigma^2}u(r) \quad (10)$$

The angle φ does not appear explicitly here, but its range is clearly limited to 2π radians.

We now obtain the PDF for R alone by integrating Eq. (10) with respect to φ. Taking either $0 < \varphi \leq 2\pi$ or $-\pi > \varphi \leq \pi$ yields the Rayleigh PDF

$$p_R(r) = \frac{r}{\sigma^2}e^{-r^2/2\sigma^2}u(r) \quad (11)$$

which is plotted in Fig. 8.4–4. The resulting mean and second moment of R are

$$\bar{R} = \sqrt{\frac{2}{\pi}}\sigma \quad \bar{R}^2 = 2\sigma^2 \quad (12)$$

For probability calculations, the Rayleigh CDF takes the simple form

$$F_R(r) = P(R \leq r) = (1 - e^{-r^2/2\sigma^2})u(r) \quad (13)$$

derived by integrating $p_R(\lambda)$ over $0 \leq \lambda \leq r$.

Returning to Eq. (10), we get the marginal PDF for the random angle Φ via

$$p_\Phi(\varphi) = \int_0^\infty p_{R\phi}(r, \varphi) \, dr = \frac{1}{2\pi}$$

so Φ has a uniform distribution over 2π radians. We also note that $p_{R\phi}(r, \varphi) = p_R(r)p_\Phi(\varphi)$, which means that the polar coordinates R and Φ are statistically independent. These results will be of use in Chap. 10 for the representation of bandpass noise.

Figure 8.4–4 Rayleigh PDF.
CHAPTER 8 • Probability and Random Variables

Rayleigh Event

Suppose you throw darts at a target whose bull’s eye has a radius of 3 cm. If the rectangular coordinates of the impact points are gaussianly distributed about the origin with spread $\sigma = 4$ cm in either direction, then your probability of hitting the bull’s eye is given by Eq. (13) as

$$P(R \leq 3) = 1 - e^{-9/32} \approx 25\%$$

EXERCISE 8.4–3

Derive Eq. (13) from Eq. (11).

Bivariate Gaussian Distribution

Lastly, we want to investigate the joint PDF of two gaussian RVs that are neither identically distributed nor independent. As preparation, we first introduce a general measure of interdependence between any two random variables.

Let X and Y be arbitrarily distributed with respective means and variances m_X, m_Y, σ_X^2, and σ_Y^2. The degree of dependence between them is expressed by the correlation coefficient

$$\rho = \frac{1}{\sigma_X \sigma_Y} \mathbb{E}[(X - m_X)(Y - m_Y)] \quad (14)$$

where the expectation $\mathbb{E}[(X - m_X)(Y - m_Y)]$ is called the covariance of X and Y. At one extreme, if X and Y are statistically independent, then $\mathbb{E}[(X - m_X)(Y - m_Y)] = \mathbb{E}[(X - m_X)]\mathbb{E}(Y - m_Y) = 0$ so the covariance equals zero and $\rho = 0$. At the other extreme, if Y depends entirely upon X in the sense that $Y = \pm \alpha X$, then $\sigma_Y^2 = (\alpha \sigma_X)^2$ and the covariance equals $\pm \alpha \sigma_X^2$ so $\rho = \pm 1$. Thus, the correlation coefficient ranges over $-1 \leq \rho \leq 1$, and $|\rho|$ reflects the degree of interdependence.

When X and Y are interdependent gaussian RVs, their joint PDF is given by the bivariate gaussian model

$$p_{XY}(x, y) = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1 - \rho^2}} e^{-f(x, y)/(1 - \rho^2)} \quad (15a)$$

with

$$f(x, y) = \frac{(x - m_X)^2}{2\sigma_X^2} + \frac{(y - m_Y)^2}{2\sigma_Y^2} - \frac{(x - m_X)(y - m_Y)\rho}{\sigma_X \sigma_Y} \quad (15b)$$

This formidable-looking expression corresponds to a bell-shaped surface over the x-y plane, the peak being at $x = mX$ and $y = mY$.

If $\rho = 0$, then the last term of Eq. (15b) disappears and $p_{XY}(x,y) = p_X(x)p_Y(y)$. We thus conclude that

- Uncorrelated gaussian RVs are statistically independent.
Further study leads to the additional conclusions that

- The marginal and conditional PDFs derived from the bivariate gaussian PDF with any ρ are all gaussian functions.
- Any linear combination $Z = \alpha X + \beta Y$ will also be a gaussian RV.

These three properties are unique characteristics of the bivariate gaussian case, and they do not necessarily hold for other distributions.

All of the foregoing analysis can be extended to the case of three or more jointly gaussian RVs. In such cases, matrix notation is usually employed for compact PDF expressions.

Central Limit Theorem

Consider a set of independent random variables, X_1, X_2, \ldots, X_N with i - means, variances, and PDFs of $m_{X_i}, \sigma^2_{X_i}$, and $p_{X_i}(x_i)$ respectively. Let’s also define the random variable Z as a sum of random variables X_i, or

$$ Z = \sum_{i=1}^{N} X_i \quad \text{[16]} $$

The **central limit theorem** states that, as $N \to \infty$, the sum Z approaches a gaussian PDF. Furthermore, if the individual components of Z make only a small contribution to the sum, then the PDF approaches a gaussian PDF as N becomes large regardless of the distribution of the individual components.

If you recall from Sect. 8.3, Eqs. (11) and (12), the random variable formed by the sum of the individual random variables will have its mean and variance to be

$$ m_Z = \sum_{i=1}^{N} m_{X_i} \quad \text{[17]} $$

$$ \sigma^2_Z = \sum_{i=1}^{N} \sigma^2_{X_i} \quad \text{[18]} $$

Let’s consider another approach to the central limit theorem. Recall from Eq. (15) of Sect. 8.3

$$ p_Z(x) = p_{X_1}(x_1) \ast p_{X_2}(x_2) \ast \ldots \ast p_{X_N}(x_N) \quad \text{[19]} $$

with \ast denoting the convolution operator and $p_{X_i}(x_i)$ denoting the PDF of the random variable X_i. If we consider the sum of Eq. (16) here and the convolution of Eq. (19), it can be shown that $p_Z(z)$ approaches a gaussian PDF. This will be presented in the next example.
CHAPTER 8 • Probability and Random Variables

Central Limit Theorem

Suppose we have a large barrel of resistors whose values are 10 ± 20 percent ohms and uniformly distributed around the average of 10 ohms. The PDF is shown in Fig. 8.4–5. We pull out a set of 15 resistors from the barrel, and for each set we measure the individual values and then calculate the ith mean; thus

\[Z_i = \frac{1}{15} \sum_{j=1}^{15} R_j. \]

Similarly, for two sets, or \(i = 2 \), we get \(Z = Z_1 + Z_2 \), and so on for four sets. Using Eq. (19) for 2 sets of resistors we get \(p_Z(z) = p_{R_1}(r_1^*) \ast p_{R_2}(r_2^*) \). Assuming each batch has identical PDFs, then \(p_Z(z) = p_R(r) \ast p_R(r) \), as shown in Fig. 8.4–5. If we form \(Z = Z_1 + Z_2 + Z_3 + Z_4 \), then its corresponding PDF is \(p_Z(z) = p_R(r) \ast p_R(r) \ast p_R(r) \ast p_R(r) \), as shown in Fig. 8.4–5. Note as we increase the number of sets, the PDF of the means starts to look more and more like a gaussian RV, even though the original PDF for a given set of samples is uniform. Thus the mean becomes a gaussian RV.

EXAMPLE 8.4–4 Central Limit Theorem

Suppose we have a large barrel of resistors whose values are 10 ± 20 percent ohms and uniformly distributed around the average of 10 ohms. The PDF is shown in Fig. 8.4–5. We pull out a set of 15 resistors from the barrel, and for each set we measure the individual values and then calculate the ith mean; thus \(Z_i = \frac{1}{15} \sum_{j=1}^{15} R_j \).

Similarly, for two sets, or \(i = 2 \), we get \(Z = Z_1 + Z_2 \), and so on for four sets. Using Eq. (19) for 2 sets of resistors we get \(p_Z(z) = p_{R_1}(r_1^*) \ast p_{R_2}(r_2^*) \). Assuming each batch has identical PDFs, then \(p_Z(z) = p_R(r) \ast p_R(r) \), as shown in Fig. 8.4–5. If we form \(Z = Z_1 + Z_2 + Z_3 + Z_4 \), then its corresponding PDF is \(p_Z(z) = p_R(r) \ast p_R(r) \ast p_R(r) \ast p_R(r) \), as shown in Fig. 8.4–5. Note as we increase the number of sets, the PDF of the means starts to look more and more like a gaussian RV, even though the original PDF for a given set of samples is uniform. Thus the mean becomes a gaussian RV.

8.5 QUESTIONS AND PROBLEMS

Questions

1. Some systems incorporate redundancy such that if device A fails, then device B will take over. What prevents the probability of failure for each unit not being independent from the other?

2. What would you expect to be the PDF for the means of the FE scores from different schools? Why?

3. What PDF has identical mean, median, and mode values?

4. If someone says the statistics were biased, what does that tell you about them?
5. Why would or wouldn’t a modern-day telephone presidential poll be biased? State any assumptions.

6. What information do the mean and standard deviation tell you about your data?

7. Give some examples of random variables.

8. Define independent and uncorrelated random variables, and give some examples.

9. Two common expressions are “lightning doesn’t strike twice in the same place,” and “a cannon ball doesn’t hit the same foxhole twice.” How could there be any truth to these sayings?

Problems

8.1–1 The outcome of an experiment is an integer \(l \) whose value is equally likely to be any integer in the range \(1 \leq l \leq 12 \). Let \(A \) be the event that \(l \) is odd, let \(B \) be the event that \(l \) is exactly divisible by 3, and let \(C \) be the event that \(l \) is exactly divisible by 4. Draw the Venn diagram and find the probabilities of the events \(A, B, C, AB, AC, BC, \) and \(ACB \).

8.1–2 The outcome of an experiment is an integer \(l \) whose value is equally likely to be any integer in the range \(1 \leq l \leq 4 \). The experiment is performed twice, yielding the outcomes \(l_1 \) and \(l_2 \). Let \(A \) be the event that \(l_1 = l_2 \), let \(B \) be the event that \(l_1 = l_2 \), and let \(C \) be the event that \(l_1 + l_2 \geq 6 \). Draw the Venn diagram and find the probabilities of the events \(A, B, C, AB, AC, BC, \) and \(ACB \).

8.1–3 A binary data system uses two symbols \(0 \) and \(1 \) transmitted with probabilities of 0.45 and 0.55 respectively. Owing to transmission errors, the probability of receiving a \(1 \) when a \(0 \) was transmitted is 0.05 and the probability of receiving a \(0 \) when a \(1 \) was transmitted is 0.02. What is (a) the probability that a \(1 \) was transmitted given that a that a \(1 \) was received, and (b) the overall symbol error probability? Hint: Combine Sect. 8.1 Eqs. (10) and (11) to get

\[
P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^{N} P(B|A_i)P(A_i)}
\]

8.1–4 Let’s assume the probability of having a fixable failure during the warranty period of 0.1 and having a failure that cannot be fixed during the warranty period of 0.05. What is the probability during the warranty period that the first two cars sold will both have (a) no failures, and (b) failures that cannot be fixed?

8.1–5 If \(A \) and \(B \) are not mutually exclusive events, then the number of times \(A \) occurs in \(N \) trials can be written as \(N_A = N_{AB} + N_{ABc} \), where \(N_{ABc} \)
stands for the number of times A occurs without B. Use this notation to show that \(P(AB^C) = P(A) - P(AB) \).

8.1–6
Use the notation in Prob. 8.1–5 to justify Eq. (7) in Sect. 8.1.

8.1–7
Let \(C \) stand for the event that either A or B occurs but not both. Use the notation in Prob. 8.1–5 to express \(P(C) \) in terms of \(P(A) \), \(P(B) \), and \(P(AB) \).

8.1–8
A system transmits binary symbols over a noisy channel, with \(P(0) = \frac{1}{2} \) and \(P(1) = \frac{3}{5} \). Additive noise is such that a 1 turning into a 0 has a probability of 0.3, and a 0 turning into a 1 has a probability of 0.1. Find the probability of (a) receiving a 0 without error, (b) receiving a 1 without error, and (c) the overall system error.

8.1–9
A biased coin is loaded such that \(P(H) = (1 + \epsilon)/2 \) with \(0 < |\epsilon| < 1 \). Show that the probability of a match in two independent tosses will be greater than \(\frac{1}{2} \).

8.1–10
A certain computer becomes inoperable if two components \(C_A \) and \(C_B \) both fail. The probability that \(C_A \) fails is 0.01 and the probability that \(C_B \) fails is 0.005. However, the probability that \(C_B \) fails is increased by a factor of 4 if \(C_A \) has failed. Calculate the probability that the computer becomes inoperable. Also find the probability that \(C_A \) fails if \(C_B \) has failed.

8.1–11*
A link between New York and Los Angeles consists of a transmitter and receiver and two satellite repeaters. Their respective failure probability rates are \(P(T) = 0.1 \), \(P(R) = 0.2 \), and \(P(S_1) = P(S_2) = 0.4 \). If one satellite fails, then the other will relay the signal. Thus, a failure occurs when either the transmitter, receiver, or both satellites fail. What is the probability that there will be no communication from New York to Los Angeles?

8.1–12
To ensure reliable communication between New York and Washington, DC, the phone company has three separate links. The first one is a direct link via satellite and has a probability of failure of 0.4; the second is a series of three relay stations, with each one having a probability of failure of 0.2; and the third is a series of two relay stations with each one having a probability of failure of 0.1. What is the probability of failure of communication between New York and Washington?

8.1–13
A communication link consists of a transmitter \(T \) that sends a message over two separate paths. Path 1 consists of a fiber cable with two repeaters, \(R_1 \) and \(R_2 \), and path 2 is a satellite repeater, \(S \). The probabilities of these working are \(P(T) = 0.9 \), \(P(R_1) = P(R_2) = 0.5 \), and \(P(S) = 0.4 \). What is the overall probability of getting a message to the receiver?

8.1–14
An honest coin is tossed twice and you are given partial information about the outcome. (a) Use Eq. (8), Sect. 8.1 to find the probability of a
match when you are told that the first toss came up heads.
(b) Use Eq. (8) in Section 8.1 to find the probability of a match when you
are told that heads came up on at least one toss. (c) Use Eq. (10) in Sec-

tion 8.1 to find the probability of heads on at least one toss when you are
told that a match has occurred.

8.1–15 Do Prob. 8.1–14 for a loaded coin having \(P(H) = \frac{1}{4} \).

8.1–16 Derive from Eq. (9) in Sect. 8.1 the chain rule

\[
P(XYZ) = P(X)P(Y|X)P(Z|XY)
\]

8.1–17* A box contains 10 fair coins with \(P(H) = \frac{1}{2} \) and 20 loaded coins with \(P(H) = \frac{1}{4} \). A coin is drawn at random from the box and tossed twice.
(a) Use Eq. (11) in Sect. 8.1 to find the probability of the event “all
tails.” Let the conditioning events be the honesty of the coin. (b) If the
event “all tails” occurs, what’s the probability that the coin was loaded?

8.1–18 Do Prob. 8.1–17 for the case when the withdrawn coin is tossed three
times.

8.1–19 Two marbles are randomly withdrawn without replacement from a bag
initially containing five red marbles, three white marbles, and two green
marbles. (a) Use Eq. (11) in Sect. 8.1 to find the probability that the
withdrawn marbles have matching colors. Let the conditioning events be
the color of the first marble withdrawn. (b) If the withdrawn marbles
have matching colors, what’s the probability that they are white?

8.1–20 Do Prob. 8.1–19 for the case when three marbles are withdrawn from the
bag.

8.2–1* Let \(X = \frac{1}{2} N^2 \), where \(N \) is a random integer whose value is equally likely
to be any integer in the range \(-1 \leq N \leq 3\). Plot the CDF of \(X \) and use it to evaluate the probabilities of \(X \leq 0 \), \(2 < X \leq 3 \), \(X < 2 \), and \(X \geq 2 \).

8.2–2 Do Prob. 8.2–1 with \(X = 4 \cos \pi N/3 \).

8.2–3 Let \(p_X(x) = xe^{-u(x)} \). Find \(F_X(x) \), and use it to evaluate \(P(X \leq 1) \), \(P(1 < X \leq 2) \), and \(P(X > 2) \).

8.2–4 Let \(p_X(x) = \frac{1}{2} e^{-|x|} \). Find \(F_X(x) \), and use it to evaluate \(P(X \leq 0) \), \(P(0 < X \leq 1) \), and \(P(X > 1) \).

8.2–5* Suppose a certain random variable has the CDF

\[
F_X(x) = \begin{cases}
0 & x \leq 0 \\
Kx^2 & 0 < x \leq 10 \\
100K & x > 10
\end{cases}
\]

Evaluate \(K \), write the corresponding PDF, and find the values of \(P(X \leq 5) \) and \(P(5 < X \leq 7) \).
8.2–6 Do Prob. 8.2–5 with

\[F_X(x) = \begin{cases}
0 & x \leq 0 \\
\frac{\sin \pi x/40}{\sin \pi/4} & 0 < x \leq 10 \\
\frac{\sin \pi x/40}{\sin \pi/4} & x > 10
\end{cases} \]

8.2–7 Given that \(F_X(x) = (\pi + 2 \tan^{-1} x)/2\pi \), find the CDF and PDF of the random variable \(Z \) defined by \(Z = 0 \) for \(X = 0 \) and \(Z = X \) for \(X > 0 \).

8.2–8‡ Do Prob. 8.2–7 with \(Z = -1 \) for \(X = 0 \) and \(Z = X \) for \(X > 0 \).

8.2–9* Let \(p_X(x) = 2e^{-2x}u(x) \). Find the PDF of the random variable defined by the transformation \(Z = 2X - 5 \). Then sketch both PDFs on the same set of axes.

8.2–10 Do Prob. 8.2–9 with \(Z = -2X + 1 \).

8.2–11 Let \(X \) have a uniform PDF over \(-1 \leq x \leq 3\). Find and sketch the PDF of \(Z \) defined by the transformation \(Z = |X| \).

8.2–12 Do Prob. 8.2–11 with \(Z = |X| \).

8.2–13‡ Do Prob. 8.2–11 with \(Z = X \).

8.2–14 Consider the square-law transformation \(Z = X^2 \). Show that

\[p_Z(z) = \frac{1}{2\sqrt{z}} [p_X(\sqrt{z}) + p_X(-\sqrt{z})]u(z) \]

8.2–15 Let \(p_X(x) \) be a gaussian pdf with zero mean and \(\sigma_X \). Find the PDF of the random variable defined by the transformation of \(Y = e^{-2x}u(X) \).

8.2–16* Find \(p_Y(y) \) when \(p_{X,Y}(x,y) = ye^{-y(x+1)}u(x)u(y) \). Then show that \(X \) and \(Y \) are not statistically independent, and find \(p_X(x|y) \).

8.2–17 Do Prob. 8.2–16 with \(p_{X,Y}(x,y) = [(x + y)^2/40]\Pi(x/2)\Pi(y/6) \).

8.2–18 Show that \(\int_{-\infty}^{\infty} p_Y(y|y) \, dy = 1 \). Explain why this must be true.

8.2–19 Obtain an expression for \(p_Y(y|x) \) in terms of \(p_X(x|y) \) and \(p_Y(y) \).

8.3–1* Find the mean, second moment, and standard deviation of \(X \) when \(p_X(x) = ae^{-a^2u(x)} \) with \(a > 0 \).

8.3–2 Find the mean, second moment, and standard deviation of \(X \) when \(p_X(x) = x^2e^{-x}u(x) \) with \(a > 0 \).

8.3–3 Find the mean, second moment, and standard deviation of \(X \) when

\[p_X(x) = \frac{\sqrt{2}}{\pi [1 + (x - a)^2]} \]

8.3–4 A discrete RV has two possible values, \(a \) and \(b \). Find the mean, second moment, and standard deviation in terms of \(p = P(X = a) \).
8.3–5* A discrete RV has \(K \) equally likely possible values, 0, \(a \), 2\(a \), \ldots \((K - 1) a\). Find the mean, second moment, and standard deviation.

8.3–6 Find the mean, second moment, and standard deviation of \(Y = a \cos X \), where \(a \) is a constant and \(X \) has a uniform PDF over \(\theta \leq x \leq \theta + 2\pi \).

8.3–7 Do Prob. 8.3–6 for the case when \(X \) has a uniform PDF over \(\theta \leq x \leq \theta + \pi \).

8.3–8 Let \(Y = aX + b \). Show that \(s_Y = a s_X \).

8.3–9* Let \(Y = X + b \). What value of \(b \) minimizes \(E[Y^2] \)?

8.3–10‡ Let \(X \) be a nonnegative continuous RV and let \(a \) be any positive constant. By considering \(E[X] \), derive **Markov's inequality** \(P(X \geq a) \leq m_X/a \).

8.3–11 Use \(E[(X + Y)^2] \) to obtain upper and lower bounds on \(E[XY] \) when \(X \) and \(Y \) are not statistically independent.

8.3–12 The **covariance** of \(X \) and \(Y \) is defined as \(C_{XY} = E[(X - m_X)(Y - m_Y)] \). Expand this joint expectation and simplify it for the case when: (a) \(X \) and \(Y \) are statistically independent; (b) \(Y \) is related to \(X \) by \(Y = \alpha X + \beta \).

8.3–13 Let received signal \(Y = X + N \), where \(X \) and \(N \) are the desired signal and zero-mean additive noise respectively. Assume that \(X \) and \(N \) are independent, and statistics \(\sigma_X^2 \), \(\sigma_N^2 \), \(m_X \), and \(m_N \) are known. Determine an estimator \(\hat{a} \) that \(X = \hat{a}Y \) minimizes the mean squared error \(\varepsilon^2 = E[(X - \hat{a}Y)^2] \).

8.3–14 In **linear estimation** we estimate \(Y \) from \(X \) by writing \(\bar{Y} = \alpha X + \beta \). Obtain expressions for \(\alpha \) and \(\beta \) to minimize the mean square error \(\varepsilon^2 = E[(Y - \bar{Y})^2] \).

8.3–15 Show that the \(n \)th moment of \(X \) can be found from its characteristic function via

\[
E[X^n] = \int_{-\infty}^{\infty} d^n \Phi_X(\nu) \mid \nu = 0
\]

8.3–16* Obtain the characteristic function of \(X \) when \(p_X(x) = a e^{-ax} u(x) \) with \(a > 0 \). Then use the relation in Prob. 8.3–15 to find the first three moments.

8.3–17 Let \(X \) have a known PDF and let \(Y = g(X) \), so

\[
\Phi_Y(\nu) = E[e^{i\nu g(X)}] = \int_{-\infty}^{\infty} e^{i\nu g(x)} p_X(x) \, dx
\]

If this integral can be rewritten in the form

\[
\Phi_Y(\nu) = \int_{-\infty}^{\infty} e^{i\nu h(\lambda)} \, d\lambda
\]
then \(p_Y(y) = h(y) \). Use this method to obtain the PDF of \(Y = X^2 \) when
\[p_X(x) = 2ax e^{-ax} u(x). \]

8.3–18† Use the method in Prob. 8.3–17 to obtain the PDF of \(Y = \sin X \) when \(X \) has a uniform PDF over \(|x| \leq \pi/2\).

8.3–19 Early component failures can be modeled by an exponential PDF with
\[p_X(x) = \alpha e^{-\alpha x} u(x), \]
with the mean time to failure of \(m_X = 6 \) months.
(a) Derive the PDF function and determine \(\sigma_X^2 \), and (b) determine the probability of failure after 12 months.

8.4–1* Ten honest coins are tossed. What's the likely range of the number of heads? What's the probability that there will be fewer than three heads?

8.4–2 Do Prob. 8.4–1 with biased coins having \(P(H) = 3/5 \).

8.4–3 The one-dimensional random walk can be described as follows. An inebriated man walking in a narrow hallway takes steps of equal length \(l \). He steps forward with probability \(\alpha = 3/4 \) or backwards with probability \(1 - \alpha = 1/4 \). Let \(X \) be his distance from the starting point after 100 steps. Find the mean and standard deviation of \(X \).

8.4–4 A noisy transmission channel has per-digit error probability \(\alpha = 0.01 \). Calculate the probability of more than one error in 10 received digits. Repeat this calculation using the Poisson approximation.

8.4–5* A radioactive source emits particles at the average rate of 0.5 particles per second. Use the Poisson model to find the probability that: (a) exactly one particle is emitted in two seconds; (b) more than one particle is emitted in two seconds.

8.4–6‡ Show that the Poisson distribution in Eq. (5), Sect. 8.4, yields
\[E[I] = m \]
and
\[E[I^2] = m^2 + m. \]
The summations can be evaluated by writing the series expansion for \(e^m \) and differentiating it twice.

8.4–7 Observations of a noise voltage \(X \) are found to have a gaussian distribution with \(m = 100 \) and \(\sigma = 2 \). Evaluate \(\bar{X}^2 \) and the probability that \(X \) falls outside the range \(m \pm \sigma \).

8.4–8 A gaussian RV has \(\bar{X} = 2 \) and \(\bar{X^2} = 13 \). Evaluate the probabilities of the events \(X > 5 \) and \(2 < X \leq 5 \).

8.4–9* A gaussian RV has \(E[X] = 10 \) and \(E[X^2] = 500 \). Find \(P(X > 20) \), \(P(10 < X \leq 20) \), \(P(0 < X \leq 20) \), and \(P(X > 0) \).

8.4–10 When a binomial CDF has \(n \gg 1 \), it can be approximated by a gaussian CDF with the same mean and variance. Suppose an honest coin is tossed 100 times. Use the gaussian approximation to find the probability that (a) heads occurs more than 70 times; (b) the number of heads is between 40 and 60.

8.4–11 Let \(X \) be a gaussian RV with mean \(m \) and variance \(\sigma^2 \). Write an expression in terms of the \(Q \) function for \(P(a < X \leq b) \) with \(a < m < b \).
8.4–12 Consider a home burglar system that uses motion detectors such that movement detected above a specific threshold will trigger an alarm. There is always some random motion in the house, but an intruder increases the level that triggers the alarm. The random motion has a Rayleigh PDF with $\sigma = 1.5 \text{ V}$. Testing shows that an intruder causes a random motion with a voltage output v_{intruder} that has a gaussian distribution with a mean and standard deviation of 7.5 and 2.0 V respectively. If the threshold is low enough, the random motion can reach a level to trigger a false alarm. Determine the threshold level such that the probability of a false alarm is $P(FA) \leq 0.005$. Then calculate the corresponding probability of detecting an intruder.

8.4–13* Consider the burglar system of Prob. 8.4–12. What would the threshold be if we wanted the probability of detection to be greater than 0.99, and what would be the corresponding false alarm probability?

8.4–14 A digital signal whereby a “1” $\rightarrow 5$ volts, and a “0” $\rightarrow 0$ volts is transmitted over a channel that has been corrupted by zero-mean gaussian noise with $\sigma = 2$ volts. Furthermore, the data is such that $P(1) = \frac{3}{4}$ and $P(0) = \frac{1}{4}$. The detector’s threshold is such that, if the received signal is above 3 volts, it is interpreted as a logic 1, otherwise it is considered a logic 0. (a) Calculate the overall probability of error P_e for your system, and (b) suggest ways to reduce P_e.

8.4–15 Do Prob 8.4–14 with the noise having a uniform PDF whose range is \pm 4 volts.

8.4–16* Do Prob 8.4–14 with the noise having a PDF of $p_n(n) = \frac{1}{2} e^{-|n|}$.

8.4–17 As course instructor you have decided that the final grades have to fit a normal or gaussian distribution such that 5% of the class are assigned grades of A and F, 20% are assigned grades B and D, and the remaining 50% are assigned a grade of C. If the class statistics are $m_x = 60$ and $\sigma = 15$, what are the breakpoints for grades A–F?

8.4–18 A professional licensing exam is set up so that the passing grade is calculated to be a score greater than 1.5 standard deviations below the mean. What is the pass percentage for a given exam that has an average of 60 and standard deviation of 20? Assume grades have a normal distribution.

8.4–19 A random noise voltage X is known to be gaussian with $E[X] = 0$ and $E[X^2] = 9$. Find the value of c such that $|X| < c$ for (a) 90 percent of the time; (b) 99 percent of the time.

8.4–20 Write $e^{-x^2/2} \, dx = -(1/\lambda) d(e^{-x^2/2})$ to show that the approximation in Eq. (9), Sect. 8.4, is an upper bound on $Q(k)$. Then justify the approximation for $k \gg 1$.
8.4–21 Let X be a gaussian RV with mean m and variance σ^2. (a) Show that $E[(X - m)^n] = 0$ for odd n. (b) For even n, use integration by parts to obtain the recursion relation

$$E[(X - m)^n] = (n - 1)\sigma^2 E[(X - m)^{n-2}]$$

Then show for $n = 2, 4, 6, \ldots$ that

$$E[(X - m)^n] = 1 \cdot 3 \cdot 5 \cdots (n - 1)\sigma^n$$

8.4–22 Let X be a gaussian RV with mean m and variance σ^2. Show that its characteristic function is $\Phi_X(\nu) = e^{-\sigma^2\nu^2/2}$.

8.4–23 Let $Z = X + Y$, where X and Y are independent gaussian RVs with different means and variances. Use the characteristic function in Prob. 8.4–22 to show that Z has a gaussian PDF. Then extrapolate your results for $Z = \sum_{i=1}^n X_i$

where the X_i are mutually independent gaussian RVs.

8.4–24 A random variable Y is said to be log-normal if the transformation $X = \ln Y$ yields a gaussian RV. Use the gaussian characteristic function in Prob. 8.4–22 to obtain $E[Y]$ and $E[Y^2]$ in terms of m_X and σ_X^2. Do not find the PDF or characteristic function of Y.

8.4–25 Let $Z = X^2$, where X is a gaussian RV with zero mean and variance σ^2. (a) Use Eqs. (3) and (13), Sect. 8.3, to show that

$$\Phi_Z(\nu) = (1 - j2\sigma^2\nu)^{-1/2}$$

(b) Apply the method in Prob. 8.3–17 to find the first three moments of Z. What statistical properties of X are obtained from these results?

8.4–26 The resistance R of a resistor drawn randomly from a large batch is found to have a Rayleigh distribution with $\bar{R}^2 = 32$. Write the PDF $p_R(r)$ and evaluate the probabilities of the events $R > 6$ and $4.5 < R \leq 5.5$.

8.4–27 The noise voltage X at the output of a rectifier is found to have a Rayleigh distribution with $\bar{X}^2 = 18$. Write the PDF $p_X(x)$ and evaluate $P(X > 3)$, $P(X > 4)$, and $P(3 < X \leq 4)$.

8.4–28 Certain radio channels suffer from Rayleigh fading such that the received signal power is a random variable $Z = X^2$ and X has a Rayleigh distribution. Use Eq. (12), Sect. 8.2, to obtain the PDF

$$p_Z(z) = \frac{1}{m} e^{-z/mu(z)}$$

where $m = E[Z]$. Evaluate the probability $P(Z \leq km)$ for $k = 1$ and $k = 0.1$.
8.4–29‡ Let R_1 and R_2 be independent Rayleigh RVs with $E[R_1^2] = E[R_2^2] = 2\sigma^2$.

(a) Use the characteristic function from Prob. 8.4–18 to obtain the PDF of $A = R_1^2$.

(b) Now apply Eq. (15), Sect. 8.3, to find the PDF of $W = R_1^2 + R_2^2$.

8.4–30 Let the bivariate gaussian PDF in Eq. (15), Sect. 8.4, have $m_x = m_y = 0$ and $\sigma_x = \sigma_y = \sigma$. Show that $p_Y(y)$ and $p_X(x|y)$ are gaussian functions.

8.4–31 Find the PDF of $Z = X + 3Y$ when X and Y are gaussian RVs with $m_x = 6$, $m_y = -2$, $\sigma_x = \sigma_y = 4$, and $E[XY] = -22$.

8.4–32 Let $X = Y^2$, so X and Y are not independent. Nevertheless, show that they are uncorrelated if the PDF of X has even symmetry.
Random Signals and Noise

CHAPTER OUTLINE

9.1 Random Processes
 Ensemble Averages and Correlation Functions Ergodic and Stationary Processes Gaussian Processes

9.2 Random Signals
 Power Spectrum Superposition and Modulation Filtered Random Signals

9.3 Noise
 Thermal Noise and Available Power White Noise and Filtered Noise Noise Equivalent Bandwidth
 System Measurements Using White Noise

9.4 Baseband Signal Transmission With Noise
 Additive Noise and Signal-to-Noise Ratios Analog Signal Transmission

9.5 Baseband Pulse Transmission With Noise
 Pulse Measurements in Noise Pulse Detection and Matched Filters
All meaningful communication signals are unpredictable or random as viewed from the receiving end. Otherwise, there would be little value in transmitting a signal whose behavior was completely known beforehand. Furthermore, all communication systems suffer to some degree from the adverse effects of electrical noise. The study of random signals and noise undertaken here is therefore essential for evaluating the performance of communication systems.

Sections 9.1 and 9.2 of this chapter combine concepts of signal analysis and probability to construct mathematical models of random electrical processes, notably random signals and noise. Don’t be discouraged if the material seems rather theoretical and abstract, for we’ll put our models to use in Sects. 9.3 through 9.5. Specifically, Sect. 9.3 is devoted to the descriptions of noise per se, while Sects. 9.4 and 9.5 examine signal transmission in the presence of noise. Most of the topics introduced here will be further developed and extended in later chapters of the text.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Define the mean and autocorrelation function of a random process, and state the properties of a stationary or gaussian process (Sect. 9.1).
2. Relate the time and ensemble averages of a random signal from an ergodic process (Sect. 9.1).
3. Obtain the mean-square value, variance, and power spectrum of a stationary random signal, given its autocorrelation function (Sect. 9.2).
4. Find the power spectrum of a random signal produced by superposition, modulation, or filtering (Sect. 9.2).
5. Write the autocorrelation and spectral density of white noise, given the noise temperature (Sect. 9.3).
6. Calculate the noise bandwidth of a filter, and find the power spectrum and total output power with white noise at the input (Sect. 9.3).
7. State the conditions under which signal-to-noise ratio is meaningful (Sect. 9.4).
8. Analyze the performance of an analog baseband transmission system with noise (Sect. 9.4).
9. Find the optimum filter for pulse detection in white noise (Sect. 9.5).
10. Analyze the performance of a pulse transmission system with noise (Sect. 9.5).

9.1 RANDOM PROCESSES

A random signal is the manifestation of a random electrical process that takes place over time. Such processes are also called stochastic processes. When time enters the picture, the complete description of a random process becomes quite complicated—especially if the statistical properties change with time. But many of the random processes encountered in communication systems have the property of stationarity or even ergodicity, which leads to rather simple and intuitively meaningful relationships between statistical properties, time averages, and spectral analysis.

This section introduces the concepts and description of random process and briefly discusses the conditions implied by stationarity and ergodicity.
Ensemble Averages and Correlation Functions

Previously we said that a random variable (RV) maps the outcomes of a chance experiment into numbers $X(s)$ along the real line. We now include time variation by saying that

A random process maps experimental outcomes into real functions of time. The collection of time functions is known as an ensemble, and each member is called a sample function.

We’ll represent ensembles formally by $v(t,s)$ where t is time and s is the ensemble member/sample function. When the process in question is electrical, the sample functions are random signals.

Consider, for example, the set of voltage waveforms generated by thermal electron motion in a large number of identical resistors. The underlying experiment might be to pick a resistor at random and observe the waveform across its terminals. Figure 9.1–1 depicts some of the random signals from the ensemble $v(t,s)$ associated with this experiment. A particular outcome (or choice of resistor) corresponds to the sample function $v_1(t) = v(t,s)$ having the value $v_1(t_1) = v(t_1,s)$ at time t_1. If we know the experimental outcome then, in principle, we know the entire behavior of the sample function and all randomness disappears.

Unfortunately, the basic premise regarding random processes is that we don’t know which sample function we’re observing. So at time t_1, we could expect any value from the ensemble of possible values $v(t_1,s)$. In other words, $v(t_1,s)$ constitutes a random variable, say V_1, defined by a “vertical slice” through the ensemble at $t = t_1$, as illustrated in Fig. 9.1–1. Likewise, the vertical slice at t_2 defines another random variable V_2. Viewed in this light, a random process boils down to a family of RVs.

Figure 9.1–1 Waveforms in an ensemble $v(t,s)$.
Now let’s omit s and represent the random process by $v(t)$, just as we did when we used X for a single random variable. The context will always make it clear when we’re talking about random processes rather than nonrandom signals, so we’ll not need a more formal notation. (Some authors employ boldface letters or use $V(t)$ for the random process and X_i for the random variables.) Our streamlined symbol $v(t)$ also agrees with the fact that we hardly ever know nor care about the details of the underlying experiment. What we do care about are the statistical properties of $v(t)$.

For a given random process, the mean value of $v(t)$ at arbitrary time t is defined as

$$\mu(t) \triangleq E[v(t)]$$

(1)

Here, $E[v(t)]$ denotes an ensemble average obtained by averaging over all the sample functions with time t held fixed at an arbitrary value. Setting $t = t_i$ then yields $E[v(t_i)] = \mu_t$, which may differ from μ_v.

To investigate the relationship between the RVs V_1 and V_2 we define the autocorrelation function

$$R_v(t_1, t_2) \triangleq E[v(t_1)v(t_2)]$$

(2)

where the lowercase subscript has been used to be consistent with our previous work in Chapter 3. This function measures the relatedness or dependence between V_1 and V_2. If they happen to be statistically independent, then $R_v(t_1, t_2) = \mu_v^2$. However, if $t_2 = t_1$, then $V_2 = V_1$ and $R_v(t_1, t_1) = \mu_v^2$. More generally, setting $t_2 = t_1 = t$ yields

$$R_v(t, t) = E[v^2(t)] = \mu_v^2$$

which is the mean-square value of $v(t)$ as a function of time.

Equations (1) and (2) can be written out explicitly when the process in question involves an ordinary random variable X in the functional form

$$v(t) = g(X, t)$$

Thus, at any time t_i, we have the RV transformation $V_i = g(X, t_i)$. Consequently, knowledge of the PDF of X allows you to calculate the ensemble average and the autocorrelation function via

$$\mu(t) = E[g(X, t)] = \int_{-\infty}^{\infty} g(x, t)p_X(x) \, dx$$

(3a)

$$R_v(t_1, t_2) = E[g(X, t_1)g(X, t_2)] = \int_{-\infty}^{\infty} g(x, t_1)g(x, t_2)p_X(x) \, dx$$

(3b)

Equations (3a) and (3b) also generalize to the case of a random process defined in terms of two or more RVs. If $v(t) = g(X, Y, t)$, for instance, then Eq. (3b) becomes $R_v(t_1, t_2) = E[g(X, Y, t_1)g(X, Y, t_2)]$.

Occasionally we need to examine the joint statistics of two random processes, say \(v(t) \) and \(w(t) \). As an extension of Eq. (2), their relatedness is measured by the **cross-correlation function**

\[
R_{vw}(t_1, t_2) \triangleq E[v(t_1)w(t_2)]
\]

Similarly, the **covariance function** between signals \(v(t) \) and \(w(t) \) is defined by

\[
C_{vw}(t_1, t_2) \triangleq E[(V(t_1) - E[V(t_1)])(W(t_2) - E[W(t_2)])]
\]

The processes are said to be **uncorrelated** if, for all \(t_1 \) and \(t_2 \),

\[
R_{vw}(t_1, t_2) = v(t_1) \times w(t_2)
\]

If we consider \(C_{vw}(t_1, t_2) \), then Eq. (5) becomes

\[
C_{vw}(t_1, t_2) = R_{vw}(t_1, t_2) - \overline{v(t_1)} \times \overline{w(t_2)}
\]

and with

\[
R_{vw}(t_1, t_2) = \overline{v(t_1)} \times \overline{w(t_2)}
\]

we have

\[
C_{vw}(t_1, t_2) = 0.
\]

Thus if a process has a zero covariance, then it is uncorrelated. Physically independent random processes are usually statistically independent and, hence, uncorrelated. However, except for jointly gaussian processes, uncorrelated processes are not necessarily independent. Finally, two random processes are said to be **orthogonal** if

\[
R_{vw}(t_1, t_2) = 0 \text{ for all } t_1 \text{ and } t_2.
\]

Ensemble Averages

Consider the random processes \(v(t) \) and \(w(t) \) defined by

\[
v(t) = t + X \\
w(t) = tY
\]

where \(X \) and \(Y \) are random variables. Although the PDFs of \(X \) and \(Y \) are not given, we can still obtain expressions for the ensemble averages from the corresponding expectation operations.

The mean and autocorrelation of \(v(t) \) are found using Eqs. (3a) and (3b), keeping in mind that time is not a random quantity. Thus,

\[
\overline{v(t)} = E[t + X] = t + E[X] = t + \overline{X}
\]

\[
R_v(t_1, t_2) = E[(t_1 + X)(t_2 + X)]
\]

\[
= E[t_1t_2 + (t_1 + t_2)X + X^2] = t_1t_2 + (t_1 + t_2)\overline{X} + \overline{X^2}
\]
Likewise, for \(\mathbf{w}(t)\),
\[
\mathbf{w}(t) = \mathbf{E}[\mathbf{Y}] = t\mathbf{Y} \\
R_w(t_1, t_2) = \mathbf{E}[t_1\mathbf{Y}t_2\mathbf{Y}^*] = t_1t_2\mathbf{Y}^2
\]
Taking the crosscorrelation of \(v(t)\) with \(w(t)\), we get
\[
R_{vw}(t_1, t_2) = \mathbf{E}[(t_1 + X)t_2\mathbf{Y}] = \mathbf{E}[t_1t_2\mathbf{Y} + t_2XY] = t_1t_2\mathbf{Y} + t_2\mathbf{X}\mathbf{Y}
\]
If \(X\) and \(Y\) happen to be independent, then \(\mathbf{X}\mathbf{Y} = \mathbf{X} \times \mathbf{Y}\) and
\[
R_{vw}(t_1, t_2) = t_1t_2\mathbf{Y} + t_2\mathbf{X}\mathbf{Y} = (t_1 + \mathbf{X})(t_2\mathbf{Y}) = \mathbf{v}(t_1) \times \mathbf{w}(t_2)
\]
so the processes are uncorrelated.

Example 9.1-2 Randomly Phased Sinusoid

Suppose you have an oscillator set at some nonrandom amplitude \(A\) and frequency \(\omega_0\), but you don’t know the phase angle until you turn the oscillator on and observe the waveform. This situation can be viewed as an experiment in which you pick an oscillator at random from a large collection with the same amplitude and frequency but no phase synchronization. A particular oscillator having phase angle \(\varphi\) generates the sinusoidal sample function \(v(t) = A\cos(\omega_0t + \varphi)\), and the ensemble of sinusoids constitutes a random process defined by
\[
v(t) = A\cos(\omega_0t + \Phi)
\]
where \(\Phi\) is a random angle presumably with a uniform PDF over \(2\pi\) radians. We’ll find the mean value and autocorrelation function of this randomly phased sinusoid.

Since \(v(t)\) is defined by transformation of \(\Phi\), we can apply Eqs. (3a) and (3b) with \(g(\Phi, t) = A\cos(\omega_0t + \Phi)\) and \(p_\phi(\varphi) = 1/2\pi\) for \(0 < \varphi < 2\pi\). As a preliminary step, let \(n\) be a nonzero integer and consider the expected value of \(\cos(\alpha + n\Phi)\). Treating \(\alpha\) as a constant with respect to the integration over \(\varphi\),
\[
\mathbf{E}[\cos(\alpha + n\Phi)] = \int_{-\infty}^{\infty} \cos(\alpha + n\Phi)\ p_\phi(\varphi)\ d\varphi = \int_0^{2\pi} \cos(\alpha + n\Phi)\ \frac{1}{2\pi}\ d\varphi
\]
\[
= [\sin(\alpha + 2\pi n) - \sin\alpha]/2\pi n = 0 \quad n \neq 0
\]
Of course, with \(n = 0\), \(\mathbf{E}[\cos\alpha] = \cos\alpha\) because \(\cos\alpha\) does not involve the random variable \(\Phi\).

Now we find the mean value of \(v(t)\) by inserting \(g(\Phi, t)\) with \(\alpha = \omega_0t\) into Eq. (3a), so
\[
\mathbf{v}(t) = \mathbf{E}[g(\Phi, t)] = A\mathbf{E}[\cos(\omega_0t + \Phi)] = 0
\]
which shows that the mean value equals zero at any time. Next, for the autocorrelation function, we use Eq. (3b) with \(\alpha_1 = \omega_0t_1\) and \(\alpha_2 = \omega_0t_2\). Trigonometric expansion then yields
\[
R_v(t_1, t_2) = \mathbf{E}[A\cos(\alpha_1 + \Phi) \times A\cos(\alpha_2 + \Phi)]
\]
\[
= (A^2/2)\ \mathbf{E}[\cos(\alpha_1 - \alpha_2) + \cos(\alpha_1 + \alpha_2 + 2\Phi)]
\]
\[
= (A^2/2) \{ E[\cos(\alpha_1 - \alpha_2)] + E[\cos(\alpha_1 + \alpha_2 + 2\Phi)] \}
= (A^2/2) \{ \cos(\alpha_1 - \alpha_2) + 0 \}
\]
and hence
\[
R_u(t_1, t_2) = (A^2/2) \cos \omega_0(t_1 - t_2)
\]
Finally, setting \(t_2 = t_1 = t\) gives
\[
\overline{v^2(t)} = R_v(t, t) = A^2/2
\]
so the mean-square value stays constant over time.

Let \(v(t) = X + 3t\) where \(X\) is an RV with \(\overline{X} = 0\) and \(\overline{X^2} = 5\). Show that \(\overline{v(t)} = 3t\) and \(R_v(t_1, t_2) = 5 + 9t_1t_2\).

Exercise 9.1–1

Ergodic and Stationary Processes

The randomly phased sinusoid in Example 9.1–2 illustrates the property that some ensemble averages may equal the corresponding time averages of an arbitrary sample function. To elaborate, recall that if \(g[v_i(t)]\) is any function of \(v_i(t)\), then its time average is given by
\[
<g[v_i(t)]> = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g[v_i(t)] \, dt
\]
With \(v_i(t) = a \cos (\omega_i t + \varphi_i)\), for instance, time averaging yields \(<v_i(t)> = 0 = E[v(t)]\) and \(<v_i^2(t)> = \frac{1}{2} a^2 = E[v^2(t)]\).

Using a time average instead of an ensemble average has strong practical appeal when valid, because an ensemble average involves every sample function rather than just one. We therefore say that

A random process is **ergodic** if all time averages of sample functions equal the corresponding ensemble averages.

This means that we can take time averages of one sample function to determine or at least estimate ensemble averages.

The definition of ergodicity requires that an ergodic process has
\[
<g[v_i(t)]> = E[g[v(t)]]
\]
for any \(v_i(t)\) and any function \(g[v_i(t)]\). But the value of \(<g[v_i(t)]>\) must be independent of \(t\), so we conclude that

All ensemble averages of an ergodic process are independent of time.
The randomly phased sinusoid happens to ergodic, whereas the process in Exercise 9.1–1 is not, since \(E[v(t)] \) varies with time.

When a random signal comes from an ergodic source, the mean and mean-square values will be constants. Accordingly, we write

\[
\begin{align*}
E[v(t)] &= \bar{v} = m_v \\
E[v^2(t)] &= \bar{v}^2 = \sigma^2_v + m_v^2
\end{align*}
\]

where \(m_v \) and \(\sigma^2_v \) denote the mean and variance of \(v(t) \).

Then, observing that any sample function has \(\langle v_i(t) \rangle = E[v(t)] \) and \(\langle v_i^2(t) \rangle = E[v^2(t)] \), we can interpret certain ensemble averages in more familiar terms as follows:

1. The mean value \(m_v \) equals the DC component \(\langle v_i(t) \rangle \).
2. The mean squared equals the DC power \(\langle v_i^2(t) \rangle \).
3. The mean-square value \(\bar{v}^2 \) equals the total average power \(\langle v_i^2(t) \rangle \).
4. The variance \(\sigma^2_v \) equals the AC power, meaning the power in the time-varying component.
5. The standard deviation \(\sigma_v \) equals the RMS value of the time-varying component.

These relations help make an electrical engineer feel more at home in the world of random processes.

Regrettably, testing a given process for ergodicity generally proves to be a daunting task because we must show that \(\langle g[v_i(t)] \rangle = E[g[v(t)]] \) for any and all \(g[v(t)] \). Instead, we introduce a useful but less stringent condition by saying that

A random process is \textbf{wide-sense stationary} (WSS) when the mean \(E[v(t)] \) is independent of time [i.e., stationary] and the autocorrelation function \(R_v(t_1, t_2) \) depends only on the time difference \(t_1 - t_2 \).

In contrast to WSS, we say that

A random process is said to be \textbf{strictly stationary} when the statistics are the same regardless of any shift in the time origin.

“Strictly stationary” for stochastic systems is analogous to “time-invariant” for deterministic systems.

Expressed in mathematical form, wide-sense stationarity requires that

\[
E[v(t)] = m_v \quad R_v(t_1, t_2) = R_v(t_1 - t_2)
\]

Any ergodic process satisfies Eq. (9) and thus is wide-sense stationary. However, stationarity does not guarantee ergodicity because any sample function of an ergodic
process must be representative of the entire ensemble. Furthermore, an ergodic process is strictly stationary in that all ensemble averages are independent of time. Hereafter, unless otherwise indicated, the term stationary will mean wide-sense stationary per Eq. (9).

Although a stationary process is not necessarily ergodic, its autocorrelation function is directly analogous to the autocorrelation function of a deterministic signal. We emphasize this fact by letting $\tau = t_1 - t_2$ and taking either $t_1 = t$ or $t_2 = t$ to rewrite $R_v(t_1 - t_2)$ as

$$R_v(\tau) = E[v(t)v(t - \tau)] = E[v(t + \tau)v(t)] \quad (10)$$

Equation (10) then leads to the properties

$$R_v(-\tau) = R_v(\tau) \quad (11a)$$
$$R_v(0) = \bar{v}^2 = \sigma_v^2 + m_v^2 \quad (11b)$$
$$|R_v(\tau)| \leq R_v(0) \quad (11c)$$

so the autocorrelation function $R_v(\tau)$ of a stationary process has even symmetry about a maximum at $\tau = 0$, which equals the mean-square value.

For $\tau \neq 0$, $R_v(\tau)$ measures the statistical similarity of $v(t)$ and $v(t \pm \tau)$. On the one hand, if $v(t)$ and $v(t \pm \tau)$ become independent as $\tau \to \infty$, then

$$R_v(\pm \infty) = \bar{v}^2 = m_v^2 \quad (12)$$

On the other hand, if the sample functions are periodic with period T_0, then

$$R_v(\tau \pm nT_0) = R_v(\tau) \quad n = 1, 2, \ldots \quad (13)$$

and $R_v(\tau)$ does not have a unique limit as $|\tau| \to \infty$.

Returning to the randomly phased sinusoid, we now see that the stationarity conditions in Eq. (9) are satisfied by $E[v(t)] = 0$ and $R_v(t_1, t_2) = (A^2/2) \cos \omega_0(t_1 - t_2) = R_v(t_1 - t_2)$. We therefore write $R_v(\tau) = (A^2/2) \cos \omega_0\tau$, which illustrates the properties in Eqs. (11a)–(11c). Additionally, each sample function $v_i(t) = A \cos (\omega_0 t + \varphi_i)$ has period $T_0 = 2\pi/\omega_0$ and so does $R_v(\tau)$, in agreement with Eq. (13).

Finally, we define the average power of a random process $v(t)$ to be the ensemble average of $\langle v^2(t) \rangle$, so

$$P \triangleq E[\langle v^2(t) \rangle] = E[\langle v^2(t) \rangle] \quad (14)$$

This definition agrees with our prior observation that the average power of an ergodic process is $\langle v^2(t) \rangle = \bar{v}^2$, since an ergodic process has $E[\langle v^2(t) \rangle] = \langle v^2(t) \rangle$ and $\langle E[\langle v^2(t) \rangle] = E[\langle v^2(t) \rangle]$ when $E[\langle v^2(t) \rangle]$ is independent of time. If the process is stationary but not necessarily ergodic, then $E[\langle v^2(t) \rangle] = R_v(0)$ and Eq. (14) reduces to

$$P = R_v(0) \quad (15)$$

All stationary processes of practical interest have $R_v(0) > 0$, so most of the sample functions are power signals rather than finite-energy signals.
EXAMPLE 9.1–3 Random Digital Wave

The random digital wave comes from an ensemble of rectangular pulse trains like the sample function in Fig. 9.1–2a. All pulses have fixed nonrandom duration D, but the ensemble involves two random variables, as follows:

1. The delay T_d is a continuous RV uniformly distributed over $0 < t_d < D$, indicating that the ensemble consists of unsynchronized waveforms.

2. The amplitude a_k of the kth pulse is a discrete RV with mean $E[a_k] = 0$ and variance σ^2, and the amplitudes in different intervals are statistically independent so $E[a_j a_k] = E[a_j]E[a_k] = 0$ for $j \neq k$.

Note that we’re using the lowercase symbol a_k here for the random amplitude, and that the subscript k denotes the sequence position rather than the amplitude value. We’ll investigate the stationarity of this process, and we’ll find its autocorrelation function.

Consider the kth pulse interval defined by $kD + T_d < t < (k+1)D + T_d$ and shown in Fig. 9.1–2b. Since $v(t_i) = a_k$ when t_i falls in this interval, and since all such intervals have the same statistics, we conclude that

$$ E[v(t)] = E[a_k] = 0 \quad E[v^2(t)] = E[a_k^2] = \sigma^2 $$

Being independent of time, these results suggest a stationary process. To complete the test for wide-sense stationarity, we must find $R_v(t_1, t_2)$. However, since the probability function for the pulse amplitudes is not known, our approach will be based on the expectation interpretation of the ensemble average $E[v(t_1)v(t_2)]$ when t_1 and t_2 fall in the same or different pulse intervals.

Clearly, t_1 and t_2 must be in different intervals when $|t_2 - t_1| > D$, in which case $v(t_1) = a_j$ and $v(t_2) = a_k$ with $j \neq k$ so

$$ E[v(t_1)v(t_2)] = E[a_j a_k] = 0 \quad |t_2 - t_1| > D $$

Figure 9.1–2 Random digital wave: (a) sample function; (b) kth pulse interval.
But if $|t_2 - t_1| < D$, then either t_1 and t_2 are in adjacent intervals and $E [v(t_1)v(t_2)] = 0$, or else t_1 and t_2 are in the same interval and $E [v(t_1)v(t_2)] = E [a_0^2] = \sigma^2$.

We therefore let A stand for the event “t_1 and t_2 in adjacent intervals” and write

$$E [v(t_1)v(t_2)] = E [a_0a_k]P(A) + E [a_0^2] [1 - P(A)]$$

$$= \sigma^2 [1 - P(A)] \quad |t_2 - t_1| < D$$

From Fig. 9.1–2b, the probability $P(A)$ involves the random delay T_d as well as t_1 and t_2. For $t_1 < t_2$ as shown, t_1 and t_2 are in adjacent intervals if $t_1 < kD + T_d < t_2$, and

$$P(t_1 - kD < T_d < t_2 - kD) = \int_{t_1 - kD}^{t_2 - kD} \frac{1}{D} dt_d = \frac{t_2 - t_1}{D}$$

Including the other case when $t_2 < t_1$, the probability of t_1 and t_2 being in adjacent intervals is

$$P(A) = \frac{|t_2 - t_1|}{D}$$

and hence,

$$E [v(t_1)v(t_2)] = \sigma^2 [1 - |t_2 - t_1|/D] \quad |t_2 - t_1| < D$$

Combining this result with our previous result for $|t_2 - t_1| > D$, we have

$$R_v(t_1,t_2) = \sigma^2 \left(1 - \frac{|t_2 - t_1|}{D} \right) \quad |t_2 - t_1| < D$$

$$= 0 \quad \quad |t_2 - t_1| > D$$

Since $R_v(t_1,t_2)$ depends only on the time difference $t_1 - t_2$, the random digital wave is wide-sense stationary.

Accordingly, we now let $\tau = t_1 - t_2$ and express the correlation function in the compact form

$$R_v(\tau) = \sigma^2 \Lambda \left(\frac{\tau}{D} \right)$$

where $\Lambda (\tilde{\tau})$ is the triangle function. The corresponding plot of $R_v(\tau)$ in Fig. 9.1–3 deserves careful study because it further illustrates the autocorrelation properties stated in Eqs. (11a)–(11c), with $m_v = 0$ and $\bar{V}^2 = \sigma_v^2 + m_v^2 = \sigma^2$.

The average power of this process is then given by Eq. (15) as

$$\bar{P} = R_v(0) = \sigma^2$$

However, the process is not ergodic and the average power of a particular sample function could differ from \bar{P}. By way of example, if $v_i(t)$ happens to have $a_k = a_0$ for all k, then $<v_i(t)> = <a_0> = a_0^2 \neq \bar{P}$. We use \bar{P} as the “best” prediction for the value of $<v_i(t)>$ because we don’t know the behavior of $v_i(t)$ in advance.
Let \(v(t) \) be a stationary process and let \(z(t_1, t_2) = v(t_1) + v(t_2) \). Use the fact that \(E[z^2(t_1, t_2)] \geq 0 \) to prove Eq. (11c).

Gaussian Processes

A random process is called a **gaussian process** if all marginal, joint, and conditional PDFs for the random variables \(V_i = v(t_i) \) are gaussian functions. But instead of finding all these PDFs, we usually invoke the central-limit to determine if a given process is gaussian. Gaussian processes play a major role in the study of communication systems because the gaussian model applies to so many random electrical phenomena—at least as a first approximation.

Having determined or assumed that \(v(t) \) is gaussian, several important and convenient properties flow therefrom. Specifically, more advanced investigations show that:

1. The process is completely described by \(E[v(t)] \) and \(R_v(t_1, t_2) \).
2. If \(R_v(t_1, t_2) = E[v(t_1)]E[v(t_2)] \), then \(v(t_1) \) and \(v(t_2) \) are uncorrelated and statistically independent.
3. If \(v(t) \) satisfies the conditions for wide-sense stationarity, then the process is also strictly stationary and ergodic.
4. Any linear operation on \(v(t) \) produces another gaussian process.

These properties greatly simplify the analysis of random signals, and they will be drawn upon frequently hereafter. Keep in mind, however, that they hold in general only for gaussian processes.

EXERCISE 9.1–2 Let \(v(t) \) be a stationary process and let \(z(t_1, t_2) = v(t_1) + v(t_2) \). Use the fact that \(E[z^2(t_1, t_2)] \geq 0 \) to prove Eq. (11c).

EXERCISE 9.1–3 By considering \(R_w(t_1, t_2) \), determine the properties of \(w(t) = 2v(t) - 8 \) when \(v(t) \) is a gaussian process with \(E[v(t)] = 0 \) and \(R_v(t_1, t_2) = 9e^{-5|t_1-t_2|} \).
In Chapter 7, channel access was achieved by a given user’s being assigned a specific frequency and/or time slot. A variation of time-division multiplexing for random access to a channel is called **Aloha**. Here we have a channel with multiple users sending data packets of length T, at various times and independent of one another. A user will send a packet to some destination regardless of other existing users on the channel. If the transmission is not acknowledged by the destination, it is assumed lost because of a collision with one or more packets sent by other users on the channel. The sender retransmits the packet until it is finally acknowledged. We will assume that a collision with any portion of our packet will cause it to be lost. Therefore, the time frame of a collision can be up to $2T$. Packets arriving at some point can be modeled as a Poisson process. Let μ be the packet rate of all channel users with i packets being sent during interval $2T$. The probability of having i packets colliding during interval $2T$ is thus

$$P(i) = e^{-\mu 2T} \frac{(\mu 2T)^i}{i!}$$

(16)

Thus the probability of no ($i = 0$) collisions is

$$P(\text{no collisions during interval } 2T) = e^{-2\mu T}$$

(17)

With μ as the number of packets per second, then the probability of a packet being successfully received is

$$P(\text{packet successfully received}) = \mu e^{-2\mu T}$$

(18)

We can improve the performance of Aloha by requiring that each user on the channel be synchronized so all packet transmission is done at specific times. This modification is called **slotted Aloha**. By synchronizing the packet transmissions, a collision will occur over the entire packet interval or not occur at all. Thus the collision interval is reduced from $2T \to T$. Slotted Aloha provides double the performance over unslotted Aloha. See Abrahamson (1970) for more information on Aloha.

9.2 RANDOM SIGNALS

This section focuses on random signals from ergodic or at least stationary sources. We’ll apply the Wiener-Kinchine theorem to obtain the power spectrum, and we’ll use correlation and spectral analysis to investigate filtering and other operations on random signals.

Power Spectrum

When a random signal $v(t)$ is stationary, then we can meaningfully speak of its power spectrum $G_v(f)$ as the distribution of the average power P over the frequency

The Aloha system originated at the University of Hawaii by Abrahamson (1970).
domain. According to the **Wiener-Kinchine theorem**, $G_v(f)$ is related to the autocorrelation $R_v(\tau)$ by the Fourier transform

$$G_v(f) = \mathcal{F}[R_v(\tau)] \triangleq \int_{-\infty}^{\infty} R_v(\tau) e^{-j2\pi f \tau} \, d\tau \quad (1a)$$

Conversely,

$$R_v(\tau) = \mathcal{F}^{-1}[G_v(f)] \triangleq \int_{-\infty}^{\infty} G_v(f) e^{j2\pi f \tau} \, df \quad (1b)$$

Thus, the autocorrelation and spectral density constitute a Fourier transform pair, just as in the case of deterministic power signals. Properties of $G_v(f)$ include

$$\int_{-\infty}^{\infty} G_v(f) \, df = R_v(0) = \bar{v}^2 = \mathbb{P} \quad (2)$$

$$G_v(f) \geq 0 \quad G_v(-f) = G_v(f) \quad (3)$$

The even-symmetry property comes from the fact that $R_v(\tau)$ is real and even, since $v(t)$ is real.

The power spectrum of a random process may be continuous, impulsive, or mixed, depending upon the nature of the source. By way of illustration, the randomly phased sinusoid back in Example 9.1–2 has

$$R_v(\tau) = \frac{A^2}{2} \cos 2\pi f_0 \tau \leftrightarrow G_v(f) = \frac{A^2}{4} \delta(f - f_0) + \frac{A^2}{4} \delta(f + f_0) \quad (4)$$

The resulting impulsive spectrum, plotted in Fig. 9.2–1a, is identical to that of a deterministic sinusoid because the randomly phased sinusoid comes from an ergodic process whose sinusoidal sample functions differ only in phase angle. In contrast, the random digital wave in Example 9.1–3 has

$$R_v(\tau) = \sigma^2 \Lambda(\frac{f}{D}) \leftrightarrow G_v(f) = \sigma^2 D \text{sinc}^2 f D \quad (5)$$

Figure 9.2–1b shows this continuous power spectrum.

Since the autocorrelation of a random signal has the same mathematical properties as those of a deterministic power signal, justification of the Wiener-Kinchine theorem for random signals could rest on our prior proof for deterministic signals.

\[\text{Figure 9.2–1 Power spectra: (a) randomly phased sinusoid; (b) random digital wave.} \]
However, an independent derivation based on physical reasoning provides additional insight and a useful alternative definition of power spectrum.

Consider the finite-duration or truncated random signal

\[v_T(t) \Delta \begin{cases} v(t) & |t| < T/2 \\ 0 & |t| > T/2 \end{cases} \]

Since each truncated sample function has finite energy, we can introduce the Fourier transform

\[V_T(f, s) = \int_{-T/2}^{T/2} v_T(t) e^{-jst} dt \tag{6} \]

Then \(|V_T(f, s)|^2\) is the energy spectral density of the truncated sample function \(v_T(t, s)\). Furthermore, drawing upon Rayleigh's energy theorem in the form

\[\int_{-T/2}^{T/2} v_T^2(t) dt = \int_{-\infty}^{\infty} |V_T(f, s)|^2 df \]

the average power of \(v(t)\) becomes

\[P = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} E[v_T^2(t)] dt = \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} \frac{1}{T} E[|V_T(f, s)|^2] df \]

Accordingly, we now define the power spectrum of \(v(t)\) as

\[G_v(f) \Delta \lim_{T \to \infty} \frac{1}{T} E[|V_T(f, s)|^2] \tag{7} \]

which agrees with the properties in Eqs.(2) and (3).

Conceptually, Eq. (7) corresponds to the following steps: (1) calculate the energy spectral density of the truncated sample functions; (2) average over the ensemble; (3) divide by \(T\) to obtain power; and (4) take the limit \(T \to \infty\). Equation (7) provides the basis for experimental spectra estimation. For if we observe a sample function \(v(t, s)\) for a long time \(T\), then we can estimate \(G_v(f)\) from

\[\hat{G}_v(f) = \frac{1}{T} |V_T(f, s)|^2 \]

The spectral estimate \(\hat{G}_v(f)\) is called the periodogram because it originated in the search for periodicities in seismic records and similar experimental data.

Now, to complete our derivation of the Wiener-Kinchine theorem, we outline the proof that \(G_v(f)\) in Eq. (7) equals \(\mathcal{F}_r[R_v(\tau)]\). First, we substitute Eq. (6) into \(E[|V_T(f, s)|^2] = E[V_T(f, s) V_T^*(f, s)]\) and interchange integration and expectation to get

\[E[|V_T(f, s)|^2] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[v(t) v(\lambda)] e^{-jst-\lambda} dt d\lambda \]
in which
\[E[v(t)v(\lambda)] = R_v(t, \lambda) = R_v(t - \lambda) \]

Next, let \(\tau = t - \lambda \) and \(\mu = t \) so the double integration is performed over the region of the \(\tau \mu \) plane shown in Fig. 9.2–2. Integrating with respect to \(\mu \) for the two cases \(\tau < 0 \) and \(\tau > 0 \) then yields
\[
E[|V(\text{f}, s)|^2] = \int_{-\infty}^{\infty} R_v(\tau)e^{-j\omega\tau} \left(\int_{-\infty}^{\infty} d\mu \right) d\tau + \int_{-\infty}^{\infty} R_v(\tau)e^{-j\omega\tau} \left(\int_{-\infty}^{\infty} d\mu \right) d\tau
\]
\[
= \int_{-\infty}^{\infty} R_v(\tau)e^{-j\omega(\tau + T)} d\tau + \int_{-\infty}^{\infty} R_v(\tau)e^{-j\omega(T - \tau)} d\tau
\]

Finally, since \(\tau = -|\tau| \) for \(\tau < 0 \), we have
\[
E[|V(\text{f}, s)|^2] = T \int_{-\infty}^{\infty} \left(1 - \frac{|\tau|}{T} \right) R_v(\tau)e^{-j\omega\tau} d\tau \tag{8}
\]

Therefore,
\[
\lim_{T \to \infty} \frac{1}{T} E[|V(\text{f}, s)|^2] = \int_{-\infty}^{\infty} R_v(\tau)e^{-j\omega\tau} d\tau
\]
which confirms that \(G_v(\text{f}) = \mathcal{F}R_v(\tau) \).

EXAMPLE 9.2–1 Random Telegraph Wave

Figure 9.2–3a represents a sample function of a random telegraph wave. This signal makes independent random shifts between two equally likely values, \(A \) and 0. The number of shifts per unit time is governed by a Poisson distribution, with \(\mu \) being the average shift rate.

We’ll find the power spectrum given the autocorrelation function
\[
R_v(\tau) = \frac{A^2}{4}(e^{-2\mu|\tau|} + 1)
\]
Figure 9.2–3 Random telegraph wave: (a) sample function; (b) autocorrelation; (c) power spectrum.

which is sketched in Fig. 9.2–3b. From \(R_v(\tau) \) we see that

\[
P = \bar{v}^2 = R_v(0) = \frac{A^2}{2}, \quad m_v^2 = R_v(\pm \infty) = \frac{A^2}{4}
\]

so the RMS value is \(\sigma_v = \sqrt{\bar{v}^2 - m_v^2} = A/2 \).

Taking the Fourier transform of \(R_v(\tau) \) gives the power spectrum

\[
G_v(f) = \frac{A^2}{4\mu[1 + (\pi f/\mu)^2]} + \frac{A^2}{4} \delta(f)
\]

which includes an impulse at the origin representing the DC power \(m_v^2 = \frac{A^2}{4} \). This mixed spectrum is plotted in Fig. 9.2–3c. Although \(\mu \) equals the average shift rate, about 20 percent of the AC power (measured in terms of \(\sigma_v^2 \)) is contained in the higher frequencies \(|f| > \mu \).
EXERCISE 9.2–1 To confirm in general that $G_v(f)$ includes an impulse when $m_v \neq 0$, let $z(t) = v(t) - m_v$ and show from $R_z(\tau)$ that $G_v(f) = G_z(f) + m_v^2 \delta(f)$.

Superposition and Modulation

Some random signals may be viewed as a combination of other random signals. In particular, let $v(t)$ and $w(t)$ be jointly stationary so that their cross-correlation

$$R_{vw}(t_1, t_2) = R_{vw}(t_1 - t_2)$$

and let

$$z(t) = v(t) \pm w(t)$$

Then

$$R_z(\tau) = R_v(\tau) + R_w(\tau) \pm [R_{vw}(\tau) + R_{wv}(\tau)]$$

and

$$G_z(f) = G_v(f) + G_w(f) \pm [G_{vw}(f) + G_{wv}(f)]$$

where we have introduced the cross-spectral density

$$G_{vw}(f) \triangleq \mathcal{F}_\tau[R_{vw}(\tau)]$$

The cross-spectral density vanishes when $v(t)$ and $w(t)$ are uncorrelated and $m_v m_w = 0$, so

$$R_{vw}(\tau) = R_{wv}(\tau) = 0$$

Under this condition

$$R_z(\tau) = R_v(\tau) + R_w(\tau)$$

$$G_z(f) = G_v(f) + G_w(f)$$

and

$$\overline{z^2} = \overline{v^2} + \overline{w^2}$$

Thus, we have superposition of autocorrelation, power spectra, and average power.

When Eq. (11a) holds, the random signals are said to be incoherent or noncoherent. Signals from independent sources are usually incoherent, and superposition of average power is a common physical phenomenon. For example, if two musicians play in unison but without perfect synchronization, then the total acoustical power simply equals the sum of the individual powers.

Now consider the modulation operation defined by the product

$$z(t) = v(t) \cos(\omega_c t + \Phi)$$

where $v(t)$ is stationary random signal and Φ is a random angle independent of $v(t)$ and uniformly distributed over 2π radians. If we didn’t include Φ, then $z(t)$ would
be nonstationary; including Φ merely recognizes the arbitrary choice of the time origin when $v(t)$ and $\cos \omega_c t$ come from independent sources.

Since modulation is a time-varying process, we must determine $R_z(t)$ from $R_z(t_1, t_2) = E[z(t_1)z(t_2)]$ by taking the joint expectation with respect to both v and Φ. After trigonometric expansion we get

$$R_z(t_1, t_2) = \frac{1}{2}E[v(t_1)v(t_2)]\{\cos \omega_c(t_1 - t_2) + E[\cos(\omega_c t_1 - \omega_c t_2 + 2\Phi)]\}$$

Thus, with $\tau = t_1 - t_2$,

$$R_z(\tau) = \frac{1}{2}R_v(\tau) \cos 2\pi f_c \tau$$ \hspace{1cm} (13a)

and Fourier transformation yields

$$G_z(f) = \frac{1}{4} [G_v(f - f_c) + G_v(f + f_c)]$$ \hspace{1cm} (13b)

Not surprisingly, modulation translates the power spectrum of $v(t)$ up and down by f_c units.

Modulation is a special case of the product operation

$$z(t) = v(t)w(t)$$ \hspace{1cm} (14)

If $v(t)$ and $w(t)$ are independent and jointly stationary, then

$$R_z(\tau) = R_v(\tau)R_w(\tau)$$ \hspace{1cm} (15a)

and

$$G_z(f) = G_v(f) * G_w(f)$$ \hspace{1cm} (15b)

which follows from the convolution theorem.

EXERCISE 9.2–2

Derive Eq. (13b) from Eq. (15b) by making a judicious choice for $w(t)$.

Filtered Random Signals

Figure 9.2–4 represents a random signal $x(t)$ applied to the input of a filter (or any LTI system) having transfer function $H(f)$ and impulse response $h(t)$. The resulting output signal is given by the convolution

$$y(t) = \int_{-\infty}^{\infty} h(\lambda)x(t - \lambda)d\lambda$$ \hspace{1cm} (16)

Since convolution is a linear operation, a gaussian input produces a gaussian output whose properties are completely described by m_y and $R_y(\tau)$. These output statistics can be found from $H(f)$ or $h(t)$, and they will be useful even in the nongaussian case.
We'll assume that \(h(t) \) is real, so both \(x(t) \) and \(y(t) \) are real. We'll also assume that \(x(t) \) is a stationary power signal and that the system is stable. Under these conditions, \(y(t) \) will be a stationary power signal and the output-input cross-correlation is a convolution with the impulse response, namely,

\[
R_{yx}(\tau) = h(\tau) * R_x(\tau)
\]
(17a)

The proof of this relation starts with \(R_{yx}(t_1, t_2) = E[y(t_1)x(t_2)] \). Inserting \(y(t) \) from Eq. (16) and exchanging the order of operations yields

\[
R_{yx}(t_1, t_2) = \int_{-\infty}^{\infty} h(\lambda) E[x(t_1 - \lambda)x(t_2)] d\lambda
\]

Then, since \(x(t) \) is stationary,

\[
E[x(t_1 - \lambda)x(t_2)] = R_x(t_1 - \lambda,t_2) = R_x(t_1 - \lambda - t_2)
\]

Finally, letting \(t_2 = t_1 - \tau \),

\[
R_{yx}(t_1, t_1 - \tau) = R_{yx}(\tau) = \int_{-\infty}^{\infty} h(\lambda)R_x(\tau - \lambda) d\lambda
\]

so \(R_{yx}(\tau) = h(\tau) * R_x(\tau) \). Proceeding in the same fashion, the output autocorrelation is found to be

\[
R_y(\tau) = h(-\tau) * R_{yx}(\tau) = h(\tau) * h(\tau) * R_x(\tau)
\]
(17b)

which also establishes the fact that \(y(t) \) is at least wide-sense stationary.

From Eq. (17b), it follows that the power spectra are related by

\[
G_y(f) = [H(f)]^2 G_x(f)
\]
(18)

Consequently,

\[
R_y(\tau) = \mathcal{F}^{-1}[|H(f)|^2 G_x(f)]
\]
(19a)

\[
\overline{y^2} = R_y(0) = \int_{-\infty}^{\infty} |H(f)|^2 G_x(f) df
\]
(19b)

Furthermore, the mean value of the output is

\[
m_y = \left[\int_{-\infty}^{\infty} h(\lambda) d\lambda \right] m_x = H(0) m_x
\]
(20)
where \(H(0) \) equals the system’s DC gain.

The power spectrum relation in Eq. (18) has additional value for the study of linear operations on random signals, whether or not filtering is actually involved. In particular, suppose that we know \(G_x(f) \) and we want to find \(G_y(f) \) when \(y(t) = dx(t)/dt \). Conceptually, \(y(t) \) could be obtained by applying \(x(t) \) to an ideal differentiator which we know has \(H(f) = j2\pi f \). We thus see from Eq. (18) that if

\[
y(t) = dx(t)/dt \tag{21a}
\]

then

\[
G_y(f) = (2\pi f)^2 G_x(f) \tag{21b}
\]

Conversely, if

\[
y(t) = \int_{-\infty}^{t} x(\lambda) d\lambda \quad m_x = 0 \tag{22a}
\]

then

\[
G_y(f) = (2\pi f)^{-2} G_x(f) \tag{22b}
\]

These relations parallel the differentiation and integration theorems for Fourier transforms.

EXAMPLE 9.2–2

Let the random telegraph wave from Example 9.2–1 be applied to an ideal bandpass filter with unity gain and narrow bandwidth \(B \) centered at \(f_c = \mu/\pi \). Figure 9.2–5 shows the resulting output power spectrum \(G_y(f) = |H(f)|^2 G_x(f) \).

With \(G_x(\pm f_c) = A^2/8\mu \) and \(B \ll f_c \), we have

\[
G_y(f) = \begin{cases}
\frac{A^2}{8\mu} & \frac{-B}{2} < |f - f_c| < \frac{B}{2} \\
0 & \text{otherwise}
\end{cases}
\]
and the output power equals the area under $G_y(f)$, namely

\[
\overline{y^2} = 2B \times \left(\frac{A^2}{8\mu} \right) = \frac{A^2B}{4\mu} \ll \frac{A^2}{4\pi}
\]

whereas $\overline{x^2} = A^2/2$. Moreover, since $H(0) = 0$, we know from Eq. (20) that $m_y = 0$ even though $m_x = A/2$. Note that we obtained these results without the added labor of finding $R_y(\tau)$.

EXAMPLE 9.2–3 Hilbert Transform of a Random Signal

The Hilbert transform $\hat{x}(t)$ was previously defined as the output of a quadrature phase-shifting filter having

\[
h_Q(t) = \frac{1}{\pi t} \quad H_Q(f) = -j \text{sgn } f
\]

Since $|H_Q(f)|^2 = 1$, we now conclude that if $x(t)$ is a random signal and $y(t) = x(t)$, then

\[
G_x(f) = G_x(f) \quad R_x(\tau) = \mathcal{F}^{-1}[G_x(f)] = R_x(\tau)
\]

Thus, Hilbert transformation does not alter the values of m_x or $\overline{x^2}$.

However, from Eq. (17a),

\[
R_{x\hat{x}}(\tau) = h_Q(\tau)^* R_x(\tau) = \hat{R}_x(\tau)
\]

where $\hat{R}_x(\tau)$ stand for the Hilbert transform of $R_x(\tau)$. It can also be shown that

\[
R_{x\hat{x}}(\tau) = -\hat{R}_x(\tau)
\]

We’ll apply these results in the next chapter.

EXERCISE 9.2–3

Let the random digital wave described by Eq. (5) be applied to a first-order LPF with $H(f) = [1 + j(f/B)]^{-1}$ and $B \ll 1/D$. Obtain approximate expressions for $G_y(f)$ and $R_y(\tau)$.

9.3 NOISE

Unwanted electric signals come from a variety of sources, generally classified as either human interference or naturally occurring noise. Human interference is produced by other communication systems, ignition and commutator sparking, AC hum, and so forth. Natural noise-generating phenomena include atmospheric disturbances, extra-terrestrial radiation, and random electron motion. By careful engineering, the effects
of many unwanted signals can be reduced or virtually eliminated. Nevertheless, there always remain certain inescapable random signals that present a fundamental limit to system performance.

One unavoidable cause of electrical noise is the thermal motion of electrons in conducting media—wires, resistors, and so on. Accordingly, this section begins with a brief discussion of thermal noise that, in turn, leads to the convenient abstraction of white noise—a useful model in communication. We then consider filtered white noise and the corresponding input–output relations. Other aspects of noise analysis are developed in subsequent chapters and the appendix. In particular, the special properties of bandpass noise will be discussed in Sect. 10.1.

Thermal Noise and Available Power

For our purposes,

> Thermal noise is the noise produced by the random motion of charged particles (usually electrons) in conducting media.

From kinetic theory, the average energy of a particle at absolute temperature T is proportional to kT, k being the Boltzmann constant. We thus expect thermal-noise values to involve the product kT. In fact, we’ll develop a measure of noise power in terms of temperature. Historically, Johnson (1928) and Nyquist (1928b) first studied noise in metallic resistors—hence, the designation Johnson noise or resistance noise. There now exists an extensive body of theoretical and experimental studies pertaining to noise, from which we’ll freely draw.

When a metallic resistance R is at temperature T, random electron motion produces a noise voltage $v(t)$ at the open terminals. Consistent with the central-limit theorem, $v(t)$ has a Gaussian distribution with zero mean and variance

$$
\overline{v^2} = \sigma_v^2 = \frac{2(\pi kT)^2}{3h} R \quad V^2
$$

(1)

where T is measured in kelvins (K) and

$$
k = \text{Boltzmann constant} = 1.38 \times 10^{-23} \text{ J/K}$$

$$
h = \text{Planck constant} = 6.62 \times 10^{-34} \text{ J-s}
$$

The presence of the Planck constant in Eq. (1) indicates a result from quantum theory. The theory further shows that the mean square spectral density of thermal noise is

$$
G_v(f) = \frac{2R|f|}{e^{\frac{|f|}{kT}} - 1} \quad V^2/\text{Hz}
$$

(2a)
which is plotted in Fig. 9.3–1 for \(f \geq 0 \). This expression reduces at “low” frequencies to

\[
G_v(f) = 2RkT \left(1 - \frac{|f|}{2kT} \right) \quad |f| \ll \frac{kT}{h}
\]

Both Eq. (2a) and (2b) omit a term corresponding to the zero-point energy, which is independent of temperature and plays no part in thermal noise transferred to a load.

Fortunately, communication engineers almost never have need for Eqs. (2a) and (2b). To see why, let room temperature or the standard temperature be

\[
\bar{T}_0 \triangleq 290 \text{ K (63°F)}
\]

which is rather on the chilly side but simplifies numerical work since

\[
k\bar{T}_0 = 4 \times 10^{-21} \text{ W-s}
\]

If the resistance in question is at \(\bar{T}_0 \), then \(G_v(f) \) is essentially constant for \(|f| < 0.1k\bar{T}_0/h = 10^{12} \text{ Hz} \). But this upper limit falls in the infrared part of the electromagnetic spectrum, far above the point where conventional electrical components have ceased to respond. And this conclusion holds even at cryogenic temperatures \(\bar{T} = 0.001\bar{T}_0 \).

Therefore, for almost all purposes we can say to a good practical accuracy that the mean square voltage spectral density of thermal noise is constant at

\[
G_v(f) = 2RkT \quad V^2/\text{Hz}
\]

obtained from Eq. (2b) with \(h|f|/k\bar{T} \ll 1 \). The one trouble with Eq. (4) is that it erroneously predicts \(\overline{v^2} = \infty \) when \(G_v(f) \) is integrated over all \(f \). However, you seldom have to deal directly with \(\overline{v^2} \) because \(v(t) \) is always subject to the filtering effects of other circuitry. That topic will be examined shortly. Meanwhile, we’ll use Eq. (4) to construct the Thévenin equivalent model of a resistance, as shown in Fig. 9.3–2a. Here the resistance is replaced by a noiseless resistance of the same value, and the noise is represented by a mean square voltage generator. Similarly, Fig. 9.3–2b is the Norton equivalent with a mean square current generator having \(G_i(f) = G_v(f)/R^2 = 2kT/R \). Both generators are shaded to indicate their special nature.

![Figure 9.3–1](image.png)

Figure 9.3–1 Thermal noise spectra density, \(V^2/\text{Hz} \).
Instead of dealing with mean square voltage or current, describing thermal noise by its available power cleans up the notation and speeds calculations. Recall that available power is the maximum power that can be delivered to a load from a source having fixed nonzero source resistance. The familiar theorem for maximum power transfer states that this power is delivered only when the load impedance is the complex conjugate of the source impedance. The load is then said to be matched to the source, a condition usually desired in communication systems.

Let the sinusoidal source in Fig. 9.3–3a have impedance \(Z_s = R_s + jX_s \), and let the open-circuit voltage be \(v_s \). If the load impedance is matched, so that \(Z_L = Z_s^* = R_s - jX_s \), then the terminal voltage is \(v_s/2 \) and the available power is

\[
P_s = \frac{\langle [v_s(t)/2]^2 \rangle}{R_s} = \frac{\langle v_s^2(t) \rangle}{4R_s}
\]

Using our Thévenin model, we extend this concept to a thermal resistor viewed as a noise source in Fig. 9.3–3b. By comparison, the available spectral density at the load resistance is

\[
G_d(f) = \frac{G_v(f)}{4R} = \frac{1}{2} \frac{k}{2B} \text{ W/Hz}
\]

A thermal resistor therefore delivers a maximum power density of \(k/2B \) W/Hz to a matched load, regardless of the value of \(R \)!

Calculate from Eq. (1) the RMS noise voltage across the terminals of a \(1 - k\Omega \) resistance at \(B = 29 \text{ K} \). Then use Eq. (2b) to find the percentage of the mean square voltage that comes from frequency components in the range \(|f| < 1 \text{ GHz} \).
White Noise and Filtered Noise

Besides thermal resistors, many other types of noise sources are gaussian and have a flat spectral density over a wide frequency range. Such a spectrum has all frequency components in equal proportion, and is therefore called white noise by analogy to white light. White noise is a convenient model (and often an accurate one) in communications, and the assumption of a gaussian process allows us to invoke all the aforementioned properties—but some applications (beyond our scope) may need a more advanced model to accurately characterize the noise.

We'll write the spectral density of white noise in general as

\[G(f) = \frac{N_0}{2} \]

(6a)

where \(N_0 \) represents a density constant in the standard notation. The seemingly extraneous factor of 1/2 is included to indicate that half the power is associated with positive frequency and half with negative frequency, as shown in Fig. 9.3–4a. Alternatively, \(N_0 \) stands for the one-sided spectral density. Note that Eq. (6a) is derived from the graph of Fig. 9.3–1 and assumes that the noise power is constant for all frequency. In reality, the graph indicates the noise power slowly decreasing with increasing frequency but at a rate such that it stays within 10 percent of \(N_0/2 \) for frequencies up to 1000 GHz, above the normal RF spectrum. The autocorrelation function for white noise follows immediately by Fourier transformation of \(G(f) \), so

\[R(\tau) = \frac{N_0}{2} \delta(\tau) \]

(6b)

as in Fig. 9.3–4b.

We thus see that \(R(\tau) = 0 \) for \(\tau \neq 0 \), so any two different samples of a gaussian white noise signal are uncorrelated and hence statistically independent. This observation, coupled with the constant power spectrum, leads to an interesting conclusion, to wit: When white noise is displayed on an oscilloscope, successive sweeps are always different from each other; but the spectrum in general always looks the same, no matter what sweep speed is used, since all rates of time variation (frequency components) are contained in equal proportion. Similarly, when white noise drives a loudspeaker, it always sounds the same, somewhat like a waterfall.

Figure 9.3–4 White noise: (a) power spectrum; (b) autocorrelation.
The value of N_0 in Eqs. (6a) and (6b) depends upon two factors: the type of noise, and the type of spectral density. If the source is a thermal resistor, then the mean square voltage and mean square current densities are

$$\begin{align*}
N_{0v} &= 4Rk\overline{F} \\
N_{0i} &= \frac{4k\overline{F}}{R}
\end{align*}$$

(7)

where the added subscripts v and i identify the type of spectral density. Moreover, any thermal noise source by definition has the available one-sided noise spectral density $2G_{\alpha}(f) = k\overline{F}$. Other white noise sources are nonthermal in the sense that the available power is unrelated to a physical temperature. Nonetheless, we can speak of the noise temperature \overline{T}_N of almost any white noise source, thermal or nonthermal, by defining

$$\overline{T}_N \triangleq \frac{2G_{\alpha}(f)}{k} = \frac{N_0}{k}$$

(8a)

Then, given a source’s noise temperature,

$$N_0 = k\overline{T}_N$$

(8b)

It must be emphasized that \overline{T}_N is not necessarily a physical temperature. For instance, some noise generators have $\overline{T}_N = 10\overline{T}_0 = 3000$ K (5000° F), but the devices surely aren’t physically that hot.

Now consider gaussian white noise $x(t)$ with spectral density $G_{\alpha}(f) = N_0/2$ applied to an LTI filter having transfer function $H(f)$. The resulting output $y(t)$ will be gaussian noise described by

$$\begin{align*}
G_y(f) &= \frac{N_0}{2} |H(f)|^2 \\
R_y(\tau) &= \frac{N_0}{2} \overline{F}_\tau^{-1} \left[|H(f)|^2 \right] \\
\overline{y}^2 &= \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 \, df
\end{align*}$$

(9a–c)

Pay careful attention to Eq. (9a) which shows that the spectral density of filtered white noise takes the shape of $|H(f)|^2$. We therefore say that filtering white noise produces colored noise with frequency content primarily in the range passed by the filter.

Colored noise can originate from semiconductor devices and includes flicker noise and popcorn noise, or burst noise. These noise sources are in addition to the internal thermal white noise caused by the ohmic resistance of the devices. In comparison to the relatively flat frequency spectrum of white noise, flicker noise has a $1/f$ spectrum, and burst noise has a $1/f^2$ spectrum. See Appendix A, particularly Fig. A–5 for more information on colored noise.

As an illustration of filtered noise, let $H(f)$ be an ideal lowpass function with unit gain and bandwidth B. Then
which are plotted in Fig. 9.3–5. Besides the spectral shaping, we see that lowpass filtering causes the output noise to be correlated over time intervals of about 1/2B. We also see that

\[G_y(f) = \frac{N_0}{2} \Pi \left(\frac{f}{2B} \right) \quad R_y(\tau) = N_0 B \text{sinc} 2B \tau \]

(10a)

which are plotted in Fig. 9.3–5. Besides the spectral shaping, we see that lowpass filtering causes the output noise to be correlated over time intervals of about 1/2B. We also see that

\[\overline{y^2} = N_0 B \]

(10b)

so the output power is directly proportional to the filter’s bandwidth.

EXAMPLE 9.3–1 Thermal Noise in an RC Network

To pull together several of the topics so far, consider the RC network in Fig. 9.3–6a with the resistor at temperature \(\bar{T} \). Replacing this thermal resistor with its Thévenin model leads to Fig. 9.3–6b, a white-noise mean square voltage source with \(G_x(f) = 2\frac{Rk\bar{T}}{C} V^2/\text{Hz} \) applied to a noiseless RC LPF. Since \(|H(f)|^2 = [1 + (f/B)^2]^{-1} \), the output spectral density is

\[G_y(f) = |H(f)|^2 G_x(f) = \frac{2Rk\bar{T}}{1 + (f/B)^2} B = \frac{1}{2\pi RC} \]

(11a)

The inverse transform then yields

\[R_y(\tau) = 2\frac{Rk\bar{T}}{\pi} B e^{-2\pi B |\tau|} = \frac{k\bar{T}}{C} e^{-|\tau|/RC} \]

(11b)
which shows that the interval over which the filtered noise voltage has appreciable correlation approximately equals the network’s time constant τRC, as might have been suspected.

We can further say that $y(t)$ is a gaussian random signal with no DC component—since $x(t)$ is a zero-mean gaussian—and

$$\bar{y}^2 = R_y(0) = \frac{k\tau}{C}$$ \hspace{1cm} (12)

Surprisingly, \bar{y}^2 depends on C but not on R, even though the noise source is the thermal resistor! This paradox will be explained shortly; here we conclude our example with a numerical calculation.

Suppose the resistor is at room temperature $T = 0$ and $C = 0.1 \mu F$; then

$$\bar{y}^2 = 4 \times 10^{-21}/10^{-7} = 4 \times 10^{-14} \text{ V}^2$$

and the RMS output voltage is $\sigma_y = 2 \times 10^{-7} = 0.2 \mu V$. Such exceedingly small values are characteristic of thermal noise, which is why thermal noise goes unnoticed in ordinary situations. However, the received signal in a long-distance communication system may be of the same order of magnitude or even smaller.

Noise Equivalent Bandwidth

Filtered white noise usually has finite power. To emphasize this property, we designate average noise power by N and write Eq. (9c) in the form

$$N = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df = N_0 \int_{0}^{\infty} |H(f)|^2 df$$

Noting that the integral depends only on the filter’s transfer function, we can simplify discussion of noise power by defining a noise equivalent bandwidth B_N (or just the noise bandwidth) as

$$B_N \triangleq \frac{1}{g} \int_{0}^{\infty} |H(f)|^2 df$$ \hspace{1cm} (13)

where

$$g = |H(f)|_{\text{max}}^2$$

which stands for the center-frequency power ratio (assuming that the filter has a meaningful center frequency). Hence the filtered noise power is

$$N = gN_0B_N$$ \hspace{1cm} (14)

This expression becomes more meaningful if you remember that N_0 represents density.

Examining Eq. (14) shows that the effect of the filter has been separated into two parts: the relative frequency selectivity as described by B_N, and the power gain (or attenuation) represented by g. Thus, B_N equals the bandwidth of an ideal rectangular
filter with the same gain that would pass as much white noise power as the filter in question, as illustrated in Fig. 9.3–7a for a bandpass filter and Fig. 9.3–7b for a lowpass filter.

Let’s apply Eqs. (13) and (14) to the RC LPF in Example 9.3–1. The filter’s center frequency is $f = 0$ so $g = |H(0)|^2 = 1$, and

$$B_N = \int_0^\infty \frac{df}{1 + (f/B)^2} = \frac{\pi B}{2} = \frac{1}{4RC}$$ \hspace{1cm} (15)

The reason why \bar{y}^2 in Eq. (12) is independent of R now becomes apparent if we write $\bar{y}^2 = N = N_0 B_N = (4RkT) \times (1/4RC)$. Thus, increasing R increases the noise density N_0 (as it should) but decreases the noise bandwidth B_N. These two effects precisely cancel each other and $\bar{y}^2 = kT/C$.

By definition, the noise bandwidth of an ideal filter is its actual bandwidth. For practical filters, B_N is somewhat greater than the 3 dB bandwidth. However, as the filter becomes more selective (sharper cutoff characteristics), its noise bandwidth approaches the 3 dB bandwidth, and for most applications we are not too far off in taking them to be equal.

In summary, if $y(t)$ is filtered white noise of zero mean, then

$$\bar{y}^2 = \sigma_y^2 = N = gN_0 B_N \quad \sigma_y = \sqrt{N} = \sqrt{gN_0 B_N}$$ \hspace{1cm} (16)

This means that given a source of white noise, an average power meter (or mean square voltage meter) will read $\bar{y}^2 = N = N_0 B_N$, where B_N is the noise bandwidth of the meter itself. Working backward, the source power density can be inferred via $N_0 = N/B_N$, provided that the noise is white over the frequency-response range of the meter.

EXERCISE 9.3–2

Consider an nth-order Butterworth LPF defined by Eq. (4), Sect. 9.3. Show that the noise bandwidth B_N is related to the 3 dB bandwidth B by

$$B_N = \frac{\pi B}{2n \sin(\pi/2n)}$$ \hspace{1cm} (17)

Hence, $B_N \rightarrow B$ as $n \rightarrow \infty$.

Figure 9.3–7 Noise equivalent bandwidth of (a) bandpass filter; (b) lowpass filter.
System Measurements Using White Noise

Since white noise contains all frequencies in equal proportion, it’s a convenient signal for system measurements and experimental design work. Consequently, white noise sources with calibrated power density have become standard laboratory instruments. A few of the measurements that can be made with these sources are outlined here.

Noise Equivalent Bandwidth Suppose the gain of an amplifier is known, and we wish to find its noise equivalent bandwidth. To do so, we can apply white noise to the input and measure the average output power with a meter whose frequency response is essentially constant over the amplifier’s passband. The noise bandwidth in question is then, from Eq. (14), \(B_N = N/gN_0 \).

Amplitude Response To find the amplitude response (or amplitude ratio) of a given system, we apply white noise to the input so the output power spectrum is proportional to \(|H(f)|^2 \). Then we scan the output with a tunable bandpass filter whose bandwidth is constant and small compared to the variations of \(|H(f)|^2 \). Figure 9.3–8a diagrams the experimental setup. If the scanning filter is centered at \(f_c \), the rms noise voltage at its output is proportional to \(|H(f_c)| \). By varying \(f_c \), a point-by-point plot of \(|H(f)| \) is obtained.

Impulse Response Figure 9.3–8b shows a method for measuring the impulse response \(h(t) \) of a given system. The instrumentation required is a white noise source, a variable time delay, a multiplier, and an averaging device. Denoting the input noise as \(x(t) \), the system output is \(h(t) \ast x(t) \), and the delayed signal is \(x(t - t_d) \). Thus, the output of the multiplier is

\[
z(t) = x(t - t_d)[h(t) \ast x(t)] = x(t - t_d) \int_{-\infty}^{\infty} h(\lambda)x(t - \lambda)d\lambda
\]

![Diagram of system measurements using white noise: (a) amplitude response; (b) impulse response.](image-url)
Now suppose that \(z(t) \) is averaged over a long enough time to obtain \(\langle z(t) \rangle \). If the noise source is ergodic and the system is linear and time-invariant, then the average output approximates the ensemble average

\[
E [z(t)] = \int_{-\infty}^{\infty} h(\lambda) E [x(t - t_d) x(t - \lambda)] d\lambda = \int_{-\infty}^{\infty} h(\lambda) R_x(\lambda - t_d) d\lambda
\]

But with \(x(t) \) being white noise, Eq. (6b) says that \(R_x(\lambda - t_d) = (N_0/2)\delta(\lambda - t_d) \). Hence,

\[
\langle z(t) \rangle \approx \frac{N_0}{2} \int_{-\infty}^{\infty} h(\lambda) \delta(\lambda - t_d) d\lambda = \frac{N_0}{2} h(t_d)
\]

and \(h(t) \) can be measured by varying the time delay \(t_d \).

The measurement techniques in Fig. 9.3–8 have special value for industrial processing or control systems. A conventional sinusoidal or pulsed input could drive such a system out of its linear operating region and, possibly, cause damage to the system. Low-level white noise then provides an attractive non-upsetting alternative for the test input signal.

9.4 BASEBAND SIGNAL TRANSMISSION WITH NOISE

At last we’re ready to investigate the effects of noise on electrical communication. We begin here by studying baseband signal transmission systems with additive noise, and we’ll introduce the signal-to-noise ratio as a measure of system performance in regard to analog communication. Section 9.5 focuses on pulse transmission.

Throughout this section and Sec. 9.5, we’ll restrict our consideration to a linear system that does not include carrier modulation. This elementary type of signal transmission will be called **baseband communication**. The results obtained for baseband systems serve as a benchmark for comparison when we discuss carrier modulation systems with noise in subsequent chapters.

Additive Noise and Signal-to-Noise Ratios

Contaminating noise in signal transmission usually has an **additive** effect in the sense that

Noise often adds to the information-bearing signal at various points between the source and the destination.

For purposes of analysis, all the noise will be lumped into one source added to the signal \(x_q(t) \) at the input of the receiver. Figure 9.4–1 diagrams our model of additive noise.
9.4 Baseband Signal Transmission with Noise

This model emphasizes the fact that the most vulnerable point in a transmission system is the receiver input where the signal level has its weakest value. Furthermore, noise sources at other points can be "referred" to the receiver input using techniques covered in the appendix.

Since the receiver is presumed to be linear, its combined input produces output signal plus noise at the destination. Accordingly, we write the output waveform as

\[y_d(t) = x_d(t) + n_d(t) \]

(1)

where \(x_d(t) \) and \(n_d(t) \) stand for the signal and noise waveforms at the destination. The total output power is then found by averaging \(y_d^2(t) = x_d^2(t) + 2x_d(t)n_d(t) + n_d^2(t) \).

To calculate this average, we'll treat the signal as a sample function of an ergodic process and we'll make two reasonable assumptions about additive noise:

1. The noise comes from an ergodic source with zero mean and power spectral density \(G_n(f) \).
2. The noise is physically independent of the signal and therefore uncorrelated with it.

Under these conditions the statistical average of the crossproduct \(x_d(t)n_d(t) \) equals zero because \(x_d(t) \) and \(n_d(t) \) are incoherent. Thus, the statistical average of \(y_d^2(t) \) yields

\[\overline{y_d^2} = \overline{x_d^2} + \overline{n_d^2} \]

(2)

which states that we have superposition of signal and noise power at the destination.

Let's underscore the distinction between desired signal power and unwanted noise power by introducing the notation

\[S_d \triangleq \overline{x_d^2} \quad N_d \triangleq \overline{n_d^2} \]

(3a)

so that

\[\overline{y_d^2} = S_d + N_d \]

(3b)

The \textbf{signal-to-noise ratio} (SNR) will now be defined as the ratio of signal power to noise power, symbolized by

\[(S/N)_d \triangleq S_d/N_d = \frac{\overline{x_d^2}}{\overline{n_d^2}} \]

(4)

and often expressed in decibels.
This ratio provides an important and handy indication of the degree to which the signal has been contaminated with additive noise. But note that the interpretation of signal-to-noise ratio is meaningful only when Eq. (2) holds. Otherwise, \(\frac{y_d^2}{N_0} \) would include additional terms involving the crossproduct of signal times noise.

Superposition of signal and noise power is a helpful condition in experimental work because you can’t turn off the noise to determine \(S_D \) alone. Instead, you must measure \(N_D \) alone (with the signal off) and measure \(y_d^2 = S_D + N_D \) (with the signal on). Given these measured values, you can calculate \(\frac{S}{N} \) from the relationship \(\frac{y_d^2}{N_0} = \frac{(S_D + N_D)}{N_D} = \frac{(S/N)}{0} + 1 \).

For analytic work, we generally take the case of white noise with \(G_\eta(f) = N_0/2 \). If the receiver has gain \(g_R \) and noise bandwidth \(B_N \), the destination noise power becomes

\[
N_D = g_R N_0 B_N
\]

When the noise has a gaussian distribution, this case is called **additive white gaussian noise** (AWGN), which is often the assumed model.

In any white-noise case, the noise density may also be expressed in terms of the noise temperature \(T_N \) referred to the receiver input, so that

\[
N_0 = k T_N = k T_0 \frac{T_N}{T_0} = 4 \times 10^{-21} \left(\frac{T_N}{T_0} \right) \text{ W/Hz}
\]

where we’ve introduced the standard temperature \(T_0 \) for numerical convenience. Typical values of \(T_N \) range from about 0.2\(T_0 \) (60 K) for a carefully designed low-noise system up to 10\(T_0 \) or more for a “noisy” system.

Analog Signal Transmission

Figure 9.4–2 represents a simple analog signal baseband transmission system. The information generates an analog message waveform \(x(t) \), which is to be reproduced at the destination. We’ll model the source as an ergodic process characterized by a message bandwidth \(W \) such that any sample function \(x(t) \) has negligible spectral content for \(|f| > W \). The channel is assumed to be distortionless over the message bandwidth so that \(x_D(t) = K x(t - t_d) \), where \(K \) and \(t_d \) account for the total amplification and time delay of the system. We’ll concentrate on the contaminating effects of additive white noise, as measured by the system’s signal-to-noise ratio at the destination.

The average signal power generated at the source can be represented as \(S_x \triangleq x^2 \).

Since the channel does not require equalization, the transmitter and receiver merely...
act as amplifiers over the message band with power gains g_T and g_R compensating for the transmission loss L. Thus, the transmitted signal power, the received signal power, and the destination signal power are related by

$$S_T = g_T \frac{x^2_T}{g_T} = g_T S_X \quad S_R = \frac{x^2}{g_R} = S_T / L \quad S_D = \frac{x^2_D}{g_R} = g_R S_X$$ \hspace{1cm} (7)

These three parameters are labeled at the corresponding locations in Fig. 9.4–2.

The figure also shows a lowpass filter as part of the receiver. This filter has the crucial task of passing the message while reducing the noise at the destination. Obviously, the filter should reject all noise frequency components that fall outside the message band—which calls for an ideal LPF with bandwidth $B = W$. The resulting destination noise power will be $N_D = g_R N_0 W$, obtained from Eq. (5) with $B_N = B = W$.

We now see that the receiver gain g_R amplifies signal and noise equally. Therefore, g_R cancels out when we divide S_D by N_D, and

$$\left(\frac{S}{N}\right)_D = \frac{S_R}{N_0 W}$$ \hspace{1cm} (8)

This simple result gives the destination signal-to-noise ratio in terms of three fundamental system parameters: the signal power S_R and noise density N_0 at the receiver input, and the message bandwidth W. We can also interpret the denominator $N_0 W$ as the noise power in the message band before amplification by g_R. Consequently, a wideband signal suffers more from noise contamination than a narrowband signal.

For decibel calculations of $(S/N)_D$, we’ll express the signal power in milliwatts (or dBm) and write the noise power in terms of the noise temperature T_N. Thus,

$$\left(\frac{S}{N}\right)_{D_{\text{dB}}} = 10 \log_{10} \frac{S_R}{k T_N W} = S_{R_{\text{dB}}} + 174 - 10 \log_{10} \left(\frac{T_N}{T_0}\right) W$$ \hspace{1cm} (9)

where the constant 174 dB comes from Eq. (6) converted to milliwatts.

Table 9.4–1 lists typical dB values of $(S/N)_D$ along with the frequency range needed for various types of analog communication systems. The upper limit of the frequency range equals the nominal message bandwidth W. The lower limit also has design significance because many transmission systems include transformers or coupling capacitors that degrade the low-frequency response.

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Frequency Range</th>
<th>Signal-to-Noise Ratio, dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barely intelligible voice</td>
<td>500 Hz to 2 kHz</td>
<td>5–10</td>
</tr>
<tr>
<td>Telephone-quality voice</td>
<td>200 Hz to 3.2 kHz</td>
<td>25–35</td>
</tr>
<tr>
<td>AM broadcast quality audio</td>
<td>100 Hz to 5 kHz</td>
<td>40–50</td>
</tr>
<tr>
<td>FM broadcast quality audio</td>
<td>50 Hz to 15 kHz</td>
<td>50–60</td>
</tr>
<tr>
<td>High-fidelity audio</td>
<td>20 Hz to 20 kHz</td>
<td>55–65</td>
</tr>
<tr>
<td>Video</td>
<td>60 Hz to 4.2 MHz</td>
<td>45–55</td>
</tr>
</tbody>
</table>
The destination signal-to-noise ratio doesn’t depend on the receiver gain, which only serves to produce the desired signal level at the output. However, \((S/N)_D\) will be affected by any gains or losses that enter the picture before the noise has been added. Specifically, substituting \(S_R = S_T/L\) in Eq. (8) yields

\[
(S/N)_D = S_T/LN_0W
\]

so \((S/N)_D\) is directly proportional to the transmitted power \(S_T\) and inversely proportional to the transmission loss \(L\)—a rather obvious but nonetheless significant conclusion.

When all the parameters in Eq. (10) are fixed and \((S/N)_D\) turns out to be too small, consideration should be given to the use of repeaters to improve system performance. In particular, suppose that the transmission path is divided into equal sections, each having loss \(L_1\). If a repeater amplifier with noise density \(N_0\) is inserted at the end of the first section, its output signal-to-noise ratio will be

\[
(S/N)_1 = S_T/L_1N_0W
\]

which follows immediately from Eq. (10). Repeaters are often designed so the amplifier gain just equals the section loss. The analysis in the appendix then shows that if the system consists of \(m\) identical repeater sections (including the receiver), the overall signal-to-noise ratio becomes

\[
\left(\frac{S}{N}\right)_D = \frac{1}{m}\left(\frac{S}{N}\right)_1 = \frac{L}{mL_1}\left(\frac{S_T}{LN_0W}\right)
\]

Compared to direct transmission, this result represents potential improvement by a factor of \(L/mL_1\).

It should be stressed that all of our results have been based on distortionless transmission, additive white noise, and ideal filtering. Consequently, Eqs. (8)–(11) represent upper bounds on \((S/N)_D\) for analog communication. If the noise bandwidth of the lowpass filter in an actual system is appreciably greater than the message bandwidth, the signal-to-noise ratio will be reduced by the factor \(W/B_H\). System nonlinearities that cause the output to include signal-times-noise terms also reduce \((S/N)_D\). However, nonlinear companding may yield a \((S/N)_D\) net improvement in both linear and nonlinear cases.

EXAMPLE 9.4–1

Consider a cable system having \(L = 140\) dB = \(10^{14}\) and \(F_N = 5F_0\). If you want high-fidelity audio transmission with \(W = 20\) kHz and \((S/N)_D \geq 60\) dB, the necessary signal power at the receiver can be found from Eq. (9) written as

\[
S_{R_{min}} + 174 - 10 \log_{10}(S \times 20 \times 10^3) \geq 60 \text{ dB}
\]

Hence, \(S_R \geq -64\) dBm \(= 4 \times 10^{-7}\) mW and the transmitted power must be

\[S_T = L S_R \geq 4 \times 10^7\text{ mW} = 40,000\text{ W}.\]

Needless to say, you wouldn’t even try to put 40 kW on a typical signal transmission cable! Instead, you might insert a repeater at the midpoint so that \(L_1 = 70\)
dB = 10^7. (Recall that cable loss in dB is directly proportional to length.) The resulting improvement factor in Eq. (11) is

\[\frac{L}{mL_1} = \frac{10^{14}}{2 \times 10^7} = 5 \times 10^6 \]

which reduces the transmitted-power requirement to \(S_T \geq (4 \times 10^7 \text{ mW})/(5 \times 10^6) = 8 \text{ mW} \)—a much more realistic value. You would probably take \(S_T \) in the range of 10–20 mW to provide a margin of safety.

Repeat the calculations in Example 9.4–1 for the case of video transmission with \(W = 4.2 \text{ MHz} \) and \((S/N)_D \geq 50 \text{ dB} \).

9.5 BASEBAND PULSE TRANSMISSION WITH NOISE

This section looks at baseband pulse transmission with noise, which differs from analog signal transmission in two major respects. First, rather than reproducing a waveform, we’re usually concerned with measuring the pulse amplitude or arrival time or determining the presence or absence of a pulse. Second, we may know the pulse shape in advance, but not its amplitude or arrival time. Thus, the concept of signal-to-noise ratio as introduced in Sect. 9.4 has little meaning here.

Pulse Measurements in Noise

Consider initially the problem of measuring some parameter of a single received pulse \(p(t) \) contaminated by additive noise, as represented by the receiver diagrammed in Fig. 9.5–1a. Let the pulse be more-or-less rectangular with received

\[G(f) = N_0/2 \]

\[B_N \geq \frac{1}{2\tau} \]

\[y(t) = p(t) + n(t) \]

Figure 9.5–1 Pulse measurement in noise: (a) model; (b) waveform.
amplitude A, duration τ, and energy $E_p = A^2\tau$. Let the noise be white with power spectral density $G(f) = N_0/2$ and zero mean value. The pulse will be passed and the excess noise will be removed by a reasonably selective lowpass filter having unity gain and bandwidth $B = B_N \approx 1/2\tau$. Thus, the output $y(t) = p(t) + n(t)$ sketched in Fig. 9.5–1b consists of noise variations superimposed on a trapezoidal pulse shape with risetime $t_r = 1/2B_N$.

If you want to measure the pulse amplitude, you should do so at some instant t_s near the center of the output pulse. A single measurement then yields the random quantity

$$y(t_s) = A + n(t_s) = A + \epsilon_A$$

where $\epsilon_A = n(t_s)$ represents the amplitude error. Thus, the error variance is

$$\sigma_A^2 = \sigma^2 = N_0B_N$$

(1)

which should be small compared to A^2 for an accurate measurement. Since $A^2 = E_p/\tau$ and $B_N \approx 1/2\tau$, we can write the lower bound of this error variance as

$$\sigma_A^2 \geq \frac{N_0A^2}{2E_p}$$

(2)

Any filter bandwidth less than about $1/2\tau$ would undesirably reduce the output pulse amplitude as well as the noise. Achieving the lower bound requires a matched filter as discussed later.

Measurements of pulse arrival time or duration are usually carried out by detecting the instant t_b when $y(t)$ crosses some fixed level such as $A/2$. The noise perturbation $n(t_b)$ shown in the enlarged view of Fig. 9.5–2 causes a time-position error ϵ_t. From the similar triangles here we see that $\epsilon_t/n(t_b) = t_r/A$, so $\epsilon_t = (t_r/A)n(t_b)$ and

$$\sigma_t^2 = (t_r/A)^2\sigma^2 = (t_r/A)^2N_0B_N$$

Substituting $t_r = 1/2B_N$ and $A^2 = E_p/\tau$ yields

$$\sigma_t^2 = \frac{N_0}{4B_NA^2} = \frac{N_0\tau}{4B_NE_p}$$

(3)

Figure 9.5–2 Time-position error caused by noise.
which implies that we can make \(\sigma_t \) arbitrarily small by letting \(B_N \to \infty \) so that \(t_r \to 0 \). But the received pulse actually has a nonzero risetime determined by the transmission bandwidth \(B_T \). Hence,

\[
\sigma_t^2 \geq \frac{N_0}{4B_T A^2} = \frac{N_0 \tau}{4B_T E_p}
\]

and the lower bound is obtained with filter bandwidth \(B_N \approx B_T \)—in contrast to the lower bound on \(\sigma_A \) obtained with \(B_N \approx 1/2 \tau \).

Suppose a 10-\(\mu \)s pulse is transmitted on a channel having \(B_T = 800 \) kHz and \(N_0 = E_p/50 \). Calculate \(\sigma_A/A \) and \(\sigma_t/\tau \) when: (a) \(B_N = 1/2 \tau \); (b) \(B_N = B_T \).

Pulse Detection and Matched Filters

When we know the pulse shape, we can design optimum receiving filters for detecting pulses buried in additive noise of almost any known spectral density \(G_n(f) \). Such optimum filters, called **matched filters**, have extensive applications in digital communication, radar systems, and the like.

Figure 9.5–3 will be our model for pulse detection. The received pulse has known shape \(p(t) \) but unknown amplitude \(A_p \) and arrival time \(t_0 \), so the received signal is

\[
x_R(t) = A_p p(t - t_0)
\]

Thus, the Fourier transform of \(x_R(t) \) will be

\[
X_R(f) = A_p P(f)e^{-j\omega t_0}
\]

where \(P(f) = \mathcal{F}[p(t)] \). The total received pulse energy is

\[
E_p = \int_{-\infty}^{\infty} |X_R(f)|^2 df = A_p^2 \int_{-\infty}^{\infty} |P(f)|^2 df
\]
To detect the pulse in the face of additive noise, the receiving filter should compress the pulse energy into an output pulse with peak amplitude \(A \) at some specific instant, say \(t = t_0 + t_d \), and the filter should also minimize the RMS output noise (output noise power). The output waveform would thus look something like Fig. 9.5–3b. We seek the filter transfer function \(H(f) \) that achieves this goal, given \(p(t) \) and \(G_n(f) \).

First, we write the peak pulse amplitude in terms of \(H(f) \) and \(P(f) \), namely,

\[
A = \mathcal{F}^{-1}[H(f)X_p(f)]_{t=t_0+t_d} = A_p \int_{-\infty}^{\infty} H(f)P(f)e^{j\omega t_d} df
\]

(6)

Next, assuming that the noise has zero mean, its output variance is

\[
\sigma^2 = \int_{-\infty}^{\infty} |H(f)|^2 G_n(f) df
\]

We want to maximize the ratio of peak output amplitude \(A \) to RMS noise \(\sigma \) or, equivalently,

\[
\left(\frac{A}{\sigma} \right)^2 = A_p^2 \frac{\int_{-\infty}^{\infty} H(f)P(f)e^{j\omega t_d} df}{\int_{-\infty}^{\infty} |H(f)|^2 G_n(f) df}
\]

(7)

where \(H(f) \) is the only function at our disposal. Normally, optimization requires the methods of variational calculus. Fortunately this particular problem (and a few others) can be solved by the clever application of Schwarz’s inequality.

For our present purposes we draw upon the inequality from Eq. (17), Sect. 3.6 in the form

\[
\left(\int_{-\infty}^{\infty} V(f)W^*(f) df \right)^2 \leq \int_{-\infty}^{\infty} |V(f)|^2 df \int_{-\infty}^{\infty} |W(f)|^2 df
\]

where \(V(f) \) and \(W(f) \) are arbitrary functions of \(f \). The left-hand side of this inequality is identical to Eq. (7) with

\[
V(f) = H(f)\sqrt{G_n(f)}
\]

\[
W^*(f) = A_p^*H(f)P(f)e^{j\omega t_d} / V(f) = A_p \sqrt{G_n(f)}
\]

and the inequality becomes an equality when \(V(f) \) is proportional to \(W(f) \). Therefore, if \(V(f) = KW(f)/\Delta R \), then we obtain the maximum value

\[
\left(\frac{A}{\sigma} \right)_{\text{max}}^2 = A_p^2 \int_{-\infty}^{\infty} \frac{|P(f)|^2}{G_n(f)} df
\]

(8)
The corresponding optimum filter must have

\[H_{opt}(f) = K \frac{P^*(f)e^{-j\phi}}{G_n(f)} \] \hspace{1cm} (9)

where K is an arbitrary gain constant. Observe that \(|H_{opt}(f)|\) is proportional to \(|P(f)|\) and inversely proportional to \(G_n(f)\). Hence, the optimum filter emphasizes those frequencies where the pulse spectrum is large and deemphasizes those frequencies where the noise spectrum is large—a very sensible thing to do. Note also, as shown in the derivation of Eq. (10) the signal-to-noise ratio is only a function of signal energy and noise energy, not on the signal’s wave shape.

In the special but important case of white noise with \(G_n(f) = N_0/2\), Eq. (8) reduces to

\[\left(\frac{A}{\sigma} \right)^2 = \frac{2A^2}{N_0} \int_{-\infty}^{\infty} |P(f)|^2 df = \frac{2E_p}{N_0} \] \hspace{1cm} (10)

which brings out the significance of the energy \(E_p\) for pulse detection. The impulse response of the optimum filter is then

\[h_{opt}(t) = \mathcal{F}^{-1} \left[\frac{2K}{N_0} P^*(f)e^{-j\phi} \right] = \frac{2K}{N_0} p(t_d - t) \] \hspace{1cm} (11)

The name-matched filter comes from the fact that \(h_{opt}(t)\) is obtained from the pulse \(p(t)\) reversed in time and shifted by \(t_d\). The value of \(t_d\) equals the delay between the pulse arrival and the output peak, and it may be chosen by the designer.

Sometimes the matched filter turns out to be physically unrealizable because \(h_{opt}(t)\) has precursors for \(t < 0\). However, a reasonable approximation may be obtained by taking \(t_d\) large enough so that the precursors are negligible.

Consider the rectangular pulse shape \(p(t) = u(t) - u(t - \tau)\). Find \(h_{opt}(t)\) from Eq. (11) when \(K = N_0/2\), and determine the condition on \(t_d\) for realizability of the matched filter. Then use the convolution \(h_{opt}(t)\cdot x_R(t)\) to obtain the peak value \(A\) of the output pulse.

Exercise 9.5–2

Example 9.5–1

Signal-to-Noise Ratio for a RC LPF

Consider a unity amplitude sinusoidal signal in the presence of noise that is filtered using a RC-LPF. Derive the expression that maximizes the output signal-to-noise ratio with respect to time constant \(\tau = RC\).

The sinusoidal signal, \(x(t) = \cos 2\pi f_0 t\) is inputted to the RC network of Fig. 3.1–2. From Eq. (18) of Sect. 3.1 and Eq. (21) of Sect. 3.6, the signal output power is

\[S = G_s(f_0) = \frac{A^2/2}{1 + (2\pi f_0 RC)^2}. \]

From Eqs. (15) and (16) of Sect. 9.3, the noise power
is \(N = \frac{N_0}{4RC} \). Thus \(\frac{S}{N} = \frac{2A^2RC}{N_0[1 + (2\pi f_0RC)^2]} \bigg|_{\tau = RC} \)

\[
\frac{2A^2\tau}{N_0[1 + (2\pi f_0\tau)^2]}.
\]

(12)

To determine the value of \(\tau = RC \) that maximizes the output \(\frac{S}{N} \), we take the derivative of \(\frac{S}{N} \) with respect to \(\tau \), set it to zero, giving us

\[
(\frac{S}{N})_{\text{max}} \text{ when } \tau = \frac{1}{2\pi f_0}
\]

(13)

Substituting Eq. (13) back into (12) gives

\[
\frac{S}{N} = \frac{A^2}{2\pi f_0N_0}
\]

(14)

In contrast, if a matched filter were used with the noisy sinusoidal input, Eq. (10) would give us \(\frac{S}{N} = \frac{A^2}{N_0} \).

EXERCISE 9.5–3

Let \(y(t) = x(t) + n(t) \) be a received signal that consists of a of 1 Hz, unity-amplitude sinusoidal signal \(x(t) \) that is corrupted by AWGN \(n(t) \). The noise has \(\sigma = 1 \).

(a) Write a computer program that implements a matched filter to obtain an estimate of \(x(t) \) from \(y(t) \). (b) Repeat (a) but use a single-stage Butterworth filter as specified in Eq. (8b) of Sect. 3.1. Plot \(x(t) \), \(y(t) \), and the filter output \(\hat{x}(t) \) for both filters.

9.6 QUESTIONS AND PROBLEMS

Questions

1. Give some practical examples of random variables and random processes.
2. In your own words, describe the terms autocorrelation and cross-correlation.
3. Under what conditions will an uncorrelated process be independent?
4. What are the possible causes of power line noise?
5. Describe how you could assemble an array of sensors where you could receive extremely weak signals at an acceptable SNR.
6. Given that the output power from a satellite transmitter has not changed, what change in technology has enabled satellite television with 12-inch dishes instead of the 20 foot ones?
7. How might you determine if the source of noise is in the channel or the receiver circuitry?
8. Explain why in an antenna-transmission line-receiver system the best SNR performance requires that the preamp be located nearest to the antenna.

9. Give a real-world example of why amplifying a signal in the latter stages of the receiver (e.g., the IF or AF stages) does not necessarily improve reception quality.

10. Can an amplifier at the receiver's input improve the signal-to-noise ratio? Why or why not?

11. Give an analogy to an Aloha system.

12. Many instrumentation systems suffer when the sensor amplifier suffers from $1/f$ noise. How can we mitigate against this?

13. Why would thermal noise have a gaussian distribution?

Problems

9.1–1* The random variable X has a uniform distribution over $0 \leq x \leq 2$. Find $\overline{v(t)}$, $R_v(t_1, t_2)$, and $\overline{v^2(t)}$ for the random process $v(t) = 6e^{xt}$.

9.1–2 Do Prob. 9.1–1 with $v(t) = 6 \cos Xt$.

9.1–3 Let X and Y be independent RVs. Given that X has a uniform distribution over $-1 \leq x \leq 1$ and that $Y = 2$ and $Y^2 = 6$, find $\overline{v(t)}$, $R_v(t_1, t_2)$, and $\overline{v^2(t)}$ for the random process $v(t) = (Y + 3XT)t$.

9.1–4 Do Prob. 9.1–3 with $v(t) = Ye^{xt}$.

9.1–5 Do Prob. 9.1–3 with $v(t) = Y \cos Xt$.

9.1–6‡ Let $v(t) = A \cos (2\pi f_1 t + \Phi)$ where A is a constant and f_1 and Φ are RVs. If Φ has a uniform distribution over 2π radians and f_1 has an arbitrary PDF $p_f(f)$, show that

$$R_v(t_1, t_2) = \frac{A^2}{2} \int_{-\infty}^{\infty} \cos 2\pi f (t_1 - t_2) p_f(f) \, df$$

Also find $\overline{v(t)}$ and $\overline{v^2(t)}$.

9.1–7* Let X and Y be independent RVs, both having zero mean and variance σ^2. Find the crosscorrelation function of the random processes

$$v(t) = X \cos \omega_0 t + Y \sin \omega_0 t$$

$$w(t) = Y \cos \omega_0 t - X \sin \omega_0 t$$

9.1–8 Consider the process $v(t)$ defined in Prob. 9.1–7. (a) Find $\overline{v(t)}$ and $R_v(t_1, t_2)$ to confirm that this process is wide-sense stationary. (b) Show, from $E\{v^2(t)\}$ and $<v(t)>$, that the process is not ergodic.

9.1–9 Let $v(t) = A \cos (\omega_0 t + \Phi)$, where A and Φ are independent RVs and Φ has a uniform distribution over 2π radians. (a) Find $\overline{v(t)}$ and $R_v(t_1, t_2)$ to
CHAPTER 9 • Random Signals and Noise

confirm that this process is wide-sense stationary. (b) Show, from \(E[v^2(t)] \) and \(<v^2(t)><\), that the process is not ergodic.

9.1–10* Let \(z(t) = v(t) - v(t + T) \), where \(v(t) \) is a stationary nonperiodic process and \(T \) is a constant. Find the mean and variance of \(z(t) \) in terms of \(R_v(\tau) \).

9.1–11 Do Prob. 9.1–10 with \(z(t) = v(t) + v(t - T) \).

9.1–12 Let \(v(t) \) and \(w(t) \) be two independent processes. Show that they will be uncorrelated.

9.2–1* A certain random signal has \(R_v(\tau) = 16e^{-8\tau^2} + 9 \). Find the power spectrum and determine the signal’s dc value, average power, and rms value.

9.2–2 Do Prob. 9.2–1 with \(R_v(\tau) = 32\text{sinc}^28\tau + 4\cos 8\tau \).

9.2–3 Consider the signal defined in Prob. 9.1–6. Show that \(G_v(f) = (A^2/4)[p_t(f) + p_t(-f)] \). Then simplify this expression for the case when \(f = f_0 \), where \(f_0 \) is a constant.

9.2–4 Consider the spectral estimate \(\tilde{G}_v(f) = [V_v(f, s)]^2/T \). Use Eq. (8) to show that \(E[\tilde{G}_v(f)] = (T\text{sinc}^2fT)^*G_v(f) \). What happens in the limit as \(T \rightarrow \infty \)?

9.2–5† Let \(v(t) \) be a randomly phased sinusoid. Show that Eq. (7) yields \(G_v(f) \) in Eq. (4).

9.2–6 Modify Eqs. (11b)–(11d), for the case when \(v(t) \) and \(w(t) \) are independent stationary signals with \(m_v m_w \neq 0 \). Show from your results that \(R_z(\pm \infty) = (m_v \pm m_w)^2 \) and that \(Z^2 > 0 \).

9.2–7 Let \(v(t) \) and \(w(t) \) be jointly stationary, so that \(R_{vw}(t_1, t_2) = R_{vw}(t_1 - t_2) \). Show that

\[
R_{vw}(\tau) = R_{vw}(-\tau)
\]

What’s the corresponding relationship between the cross-spectral densities?

9.2–8 Let \(z(t) = v(t) - v(t + T) \), where \(v(t) \) is a stationary random signal and \(T \) is a constant. Start with \(R_y(t_1, t_2) \) to find \(R_y(\tau) \) and \(G_y(f) \) in terms of \(R_v(\tau) \) and \(G_v(f) \).

9.2–9 Do Prob. 9.2–8 with \(z(t) = v(t) + v(t - T) \).

9.2–10 Let \(z(t) = A \cos(2\pi f_1 t + \Phi_1) \cos(2\pi f_2 t + \Phi_2) \), where \(A, f_1, \) and \(f_2 \) are constants, and \(\Phi_1 \) and \(\Phi_2 \) are independent RVs, both uniformly distributed over \(2\pi \) radians. Find \(G_y(f) \) and simplify it for the case \(f_1 = f_2 \).

9.2–11 Confirm that \(R_y(\tau) = h(-\tau) \ast R_y(\tau) \).

9.2–12* Let \(y(t) = dx(t)/dt \). Find \(R_y(\tau) \) and \(R_y(\tau) \) in terms of \(R_x(\tau) \) by taking the inverse transforms of \(G_y(f) \) and \(G_y(f) \).

9.2–13 Let \(y(t) = x(t) - \alpha x(t - T) \), where \(\alpha \) and \(T \) are constants. Obtain expressions for \(G_y(f) \) and \(R_y(\tau) \).
9.2–14* What is the average power for the following signals. (a) \(G_x(f) = 6e^{-3|f|} \), (b) \(G_x(f) = 4e^{-f^2/100} \).

9.2–15 Use the relation in Prob. 9.2–7 to show that
\[
R_x(\tau) = -\tilde{R}_x(\tau)
\]

9.2–16‡ The moving average of a random signal \(x(t) \) is defined as
\[
y(t) = \frac{1}{T} \int_{t-T/2}^{t+T/2} x(\lambda) \, d\lambda
\]
Find \(H(f) \) such that \(y(t) = h(t)x(t) \) and show that
\[
R_y(\tau) = \frac{1}{T} \int_{-T}^{T} \left(1 - \frac{|\lambda|}{T} \right) R_x(\tau - \lambda) \, d\lambda
\]

9.3–1 Derive Eq. (2b) by using series approximations in Eq. (2a).

9.3–2 Use Eq. (17b) to show that Eq. (9b) can be written in the alternate form
\[
R_y(\tau) = \frac{N_0}{2} \int_{-\infty}^{\infty} h(t) h(t + \tau) \, dt
\]

9.3–3* Find \(G_y(f) \), \(R_y(\tau) \), and \(y^2 \) when white noise is filtered by the zero-order hold on Eq. (17), Sect. 6.1.

9.3–4 Do Prob. 9.3–3 with a gaussian filter having \(H(f) = Ke^{-a^2f^2} \).

9.3–5 Do Prob. 9.3–3 with an ideal BPF having gain \(K \) and delay \(t_0 \) over the frequency range \(f_0 - B/2 \leq |f| \leq f_0 + B/2 \).

9.3–6 Do Prob. 9.3–3 with an ideal HPF having gain \(K \) and delay \(t_0 \) over the frequency range \(|f| \geq f_0 \).

9.3–7* Figure P9.3–7 represents a white-noise voltage source connected to a noiseless RL network. Find \(G_y(f) \), \(R_y(\tau) \), and \(y^2 \) taking \(y(t) \) as the voltage across \(R \).

9.3–8‡ Do Prob. 9.3–7 taking \(y(t) \) as the voltage across \(L \).

9.3–9 The spectral density of the current \(i(t) \) in Fig. P9.3–7 is \(G_i(f) = N_0/[2|R + j\omega L|^2] \). If the source represents thermal noise from

\[
G_v(f) = N_0/2
\]

Figure P9.3–7
CHAPTER 9 • Random Signals and Noise

the resistance, then the equipartition theorem of statistical mechanics requires that \(\frac{1}{2}L_i^2 = \frac{1}{2}kT \). As a consequence, show that \(N_{0c} = 4RkT \), in agreement with Eq. (7).

9.3–10* Thermal noise from a 10 kΩ resistance at room temperature is applied to an ideal LPF with \(B = 2.5 \) MHz and unit gain. The filtered noise is applied to a full-wave rectifier, producing \(z(t) = |y(t)| \). Calculate the mean and RMS value of \(z(t) \).

9.3–11‡ Do Prob. 9.3–10 with a half-wave rectifier, so that \(z(t) = 0 \) for \(y(t) < 0 \).

9.3–12 Thermal noise from a 10 kΩ resistance at room temperature is applied to an ideal LPF with \(B = 2.5 \) MHz and unit gain. The filtered noise voltage is then applied to a delay line producing \(z(t) = y(t - T) \). Use Eqs. (14) and (15), to find the joint PDF of the random variables \(Y = y(t) \) and \(Z = z(t) \) when \(T = 1 \) µs.

9.3–13‡ Do Prob. 9.3–12 with \(T = 0.1 \) µs.

9.3–14 In Sect. 9.3, it was stated that maximum power is delivered to the load when \(Z_L = Z_i^* \). Consider an antenna that has an impedance of \(Z_L = 50 + j75 \) with the transmitter having \(Z_s = 300 \) and \(f_c = 21 \) MHz. Describe the means to deliver maximum power from the transmitter to the antenna.

9.3–15* Find \(B_N \) for the gaussian LPF in Prob. 9.3–4. Compare \(B_N \) with the 3 dB bandwidth \(B \).

9.3–16 Impulse noise, which occurs in some communication systems, can be modeled as the random signal

\[
x(t) = \sum_{k=-\infty}^{\infty} A_k \delta(t - T_k)
\]

where the \(A_k \) and \(T_k \) are independent sets of random variables. The impulse weights \(A_k \) are independent and have zero mean and variance \(\sigma^2 \). The delay times \(T_k \) are governed by a Poisson process such that the expected number of impulses in time \(T \) equals \(\mu T \). Use Eq. (7), Sect. 9.2 to show that impulse noise has a constant spectral density given by \(G_x(f) = \mu \sigma^2 \).

9.4–1* Calculate \((S/N)_B \) in dB for a baseband system with \(T_N = T_0 \), \(W = 4 \) MHz, and \(S_B = 0.02 \mu W \).

9.4–2 Calculate \((S/N)_B \) in dB for a baseband system with \(T_N = 5T_0 \), \(W = 2 \) MHz, and \(S_B = 0.004 \mu W \).

9.4–3 A baseband analog transmission system with \(W = 5 \) kHz has \((S/N)_B = 46 \) dB when \(S_T = 100 \) mW. If the receiver bandwidth is changed accordingly, what value of \(S_T \) is appropriate to (a) upgrade the system for high-fidelity audio; (b) downgrade the system for telephone-quality voice?
9.4–4 Consider an AWGN baseband transmission system with \(W = 10 \) kHz. Express \((S/N)_D \) in a form like Eq. (8), when the receiving filter is: (a) a first-order LPF with \(B = 15 \) kHz; (b) a second-order Butterworth LPF with \(B = 12 \) kHz.

9.4–5 Consider a baseband system with \((S/D)_D = 30 \) dB, \(W = 3 \) kHz, \(S_T = 100 \) W. What is new value of \(W \) if the system were changed so that \((S/N)_D = 10 \) dB, and \(W = 100 \) Hz?

9.4–6 Consider a baseband system carrying a voice messages with a given \((S/N)_D \), and \(W \) over a wireless link at a carrier frequency \(f_c \). Let’s assume the noise figure of the receiver and channel cannot be changed. Describe all possible means to increase the \((S/N)_D \).

9.4–7* Consider a baseband transmission system with additive white noise and a distorting channel having \(|H_C(f)|^2 = 1/(1 + (f/W)^2) \). The distortion is equalized by a receiving filter with \(|H_R(f)|^2 = [K/(1 + (f/W)^2)]^2 \Pi(f/2W) \). Obtain an expression for \((S/N)_D \) in the form like Eq. (10).

9.4–8 Do Prob. 9.4–7 with \(|H_C(f)|^2 = 1/(1 + (2f/W)^4) \).

9.4–9 A baseband signal with \(W = 5 \) kHz is transmitted 40 km via a cable whose loss is \(\alpha = 3 \) dB/km. The receiver has \(N_0 = 10 \) W. (a) Find \(S_T \) needed to get \((S/N)_D = 60 \) dB. (b) Repeat the calculation assuming a repeater at the midpoint.

9.4–10 A cable transmission system with \(L = 240 \) dB has \(m = 6 \) equal-length repeater sections and \((S/N)_D = 30 \) dB. Find the new value of \((S/N)_D \) if \(m \) is increased to 12; (b) \(m \) is decreased to 4.

9.4–11* The cable for a 400 km repeater system has \(\alpha = 0.5 \) dB/km. Find the minimum number of equal-length repeater sections needed to get \((S/N)_D \geq 30 \) dB if \(S_T/N_0W = 80 \) dB.

9.4–12 If all other parameters of a cable transmission system are fixed, show that the number of equal-length repeater sections that maximizes \((S/N)_D \) is \(m = 0.23L \) dB.

9.4–13 Given a cable system with \(\alpha = 2 \) dB/km, \(l = 3000 \) km, \((S/D)_D = 30 \) dB, \(S_N = 5S_0 \), and \(W = 3 \) kHz. What is the minimum number of repeater links to enable \(S_T \leq 100 \) W?

9.4–14‡ The open-circuit signal voltage output of an oscillator is \(A \cos 2\pi f_0 t \). The oscillator has a noiseless source resistance \(R \) and internally generated thermal noise at temperature \(T_N \). A capacitance \(C \) is connected across the output terminals to improve the signal-to-noise ratio. Obtain an expression for \(S/N \) in terms of \(C \), and find the value of \(C \) that maximizes \(S/N \).

9.5–1* A baseband pulse transmission system has \(B_N = 1/\tau \), \(T_N = T_0 \), and \(E_p = 10^{-20} \) J. Find \((\sigma_N/\lambda)^2 \).
9.5–2 Show that $\sigma_t / t_r = A \sigma_\alpha / A = \sqrt{N_0 B_N \tau / E_p}$ when $B_N \leq B_T$.

9.5–3 A baseband pulse transmission system has $\tau = 5 \mu s$, $B_T = 1 \text{ MHz}$, and $N_0 = 10^{-12} \text{ W/Hz}$. Find the minimum value of E_p so that $\sigma_\alpha \leq A/100$, and calculate the corresponding value of σ_α / τ.

9.5–4 A baseband pulse transmission system has $\tau = 50 \mu s$, $B_T = 1 \text{ MHz}$, and $N_0 = 10^{-12} \text{ W/Hz}$. Find the minimum value of E_p so that $\sigma_\alpha \leq \tau/100$, and calculate the corresponding value of σ_α / A.

9.5–5* A baseband pulse transmission system has $\tau = 1 \text{ ms}$, $B_T = 1 \text{ MHz}$, and $N_0 = 10^{-12} \text{ W/Hz}$. Find the minimum value of E_p and the corresponding value of B_N so that $\sigma_\alpha \leq A/100$ and $\sigma_\alpha \leq \tau/1000$.

9.5–6 A rectangular pulse with duration τ has been contaminated by white noise. The receiving filter is a first-order LPF with 3 dB bandwidth $B \gg 1/\tau$, rather than a matched filter. Obtain an expression for $(A/\sigma)^2$ in terms of E_p / N_0.

9.5–7 Do Prob. 9.5–6 for arbitrary B.

9.5–8* Let the shape of a received pulse be $p(t) = A(t/\tau)$. Find the characteristics of the matched filter assuming white noise. Then find the condition on t_d so that this filter can be realized.

9.5–9 Let the shape of a received pulse be $p(t) = e^{-bt}u(t)$. Find the characteristics of the matched filter assuming white noise. Then find the condition on t_d so that a good approximation of this filter can be realized.
chapter

10

Noise in Analog Modulation Systems

CHAPTER OUTLINE

10.1 Bandpass Noise
 System Models Quadrature Components Envelope and Phase Correlation Functions

10.2 Linear CW Modulation with Noise
 Synchronous Detection Envelope Detection and Threshold Effect

10.3 Angle CW Modulation with Noise
 Postdetection Noise Destination S/N FM Threshold Effect Threshold Extension by FM Feedback Detection

10.4 Comparison of CW Modulation Systems

10.5 Phase-Locked Loop Noise Performance

10.6 Analog Pulse Modulation with Noise
 Signal-to-Noise Ratios False-Pulse Threshold Effect
This chapter rounds out our study of analog modulation with an examination of system performance in the presence of contaminating noise. Our emphasis will be on CW modulation systems, but we'll also look at analog pulse modulation.

We'll begin with the properties of the bandpass noise that appears in CW modulation systems. The assumption of bandpass-filtered white noise from a stationary gaussian process leads to mathematical descriptions that we employ to investigate additive noise effects in linear and exponential modulation systems. Our work culminates in a relative comparison of the several types of CW modulation. Then we'll examine the effects of additive noise on phase-lock loops and analog pulse modulation.

Further comparisons including both CW and pulse modulation will be made in Chap. 16, based upon absolute standards derived from information theory.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Sketch the noise power spectrum at the input of a CW demodulator (Sect. 10.1).
2. Write the quadrature and envelope-and-phase expressions for bandpass noise, and relate the components to the power spectrum (Sect. 10.1).
3. Write expressions for the predetection and postdetection signal-plus-noise when a CW modulation system has additive noise (Sects. 10.2 and 10.3).
4. Sketch the noise power spectrum and calculate the noise power at the output of a CW demodulator with input bandpass noise (Sects. 10.2 and 10.3).
5. Explain the meaning and significance of threshold effect, deemphasis improvement, and wideband noise reduction (Sect. 10.3).
6. Calculate \((S/N)_D \) and the threshold level, if any, for a CW modulation system with specified parameters (Sects. 10.2 and 10.3).
7. Select a suitable analog CW modulation type, given the desired system performance and constraints (Sect. 10.4).
8. Describe the effects of additive noise on phase-locked loop performance (Sect. 10.5).
9. Determine suitable parameters for a PAM, PDM, or PPM system given the desired \((S/N)_D \) (Sect. 10.6).
10. Explain the meaning and significance of false-pulse threshold effect in PDM or PPM (Sect. 10.6).

10.1 BANDPASS NOISE

Although we must give individual attention to the effects of noise on specific types of analog modulation, all analog CW communication systems have the same general structure and suffer from bandpass noise. This section summarizes the system models and describes bandpass noise, assuming that the noise comes from an additive white gaussian noise (AWGN) process. In particular, we'll state the statistical properties of the quadrature components and the envelope and phase of bandpass noise. The stated properties are subsequently justified by studying the correlation functions.
System Models

Figure 10.1–1 depicts our generalized model of an analog CW communication system. The message $x(t)$ is a lowpass signal coming from an ergodic process with bandwidth W, normalized such that

$$ |x(t)| \leq 1 \quad S_x = \overline{x^2} = \langle x^2(t) \rangle \leq 1 $$

All message signal averages will be taken in the statistical sense over the ensemble.

The channel has transmission loss L but otherwise provides nearly distortionless transmission and negligible time delay. (A distorting channel would require equalization by a bandpass device located before the detector because demodulation is a nonlinear operation—except for synchronous detection, which permits baseband equalization.) To minimize notational changes, the modulated signal at the output of the channel will be represented by $x_c(t)$ with carrier amplitude A_c. The received signal power is then

$$ S_R = \frac{S_T}{L} = \overline{x_c^2} \quad (1) $$

The corresponding transmitted waveform is $\sqrt{L} x_c(t)$, so our previous expressions for S_T still apply but with A_c replaced by $\sqrt{L} A_c$.

We'll model the entire predetection portion of the receiver as a bandpass filter with transfer function $H_R(f)$ having unity gain over the transmission bandwidth B_T. We can ignore any predetection frequency translation since it has the same effect on signal and noise—which is also true for any predetection gain. Thus, in the usual case of superheterodyne receiver, $H_R(f)$ is the frequency response of the IF amplifier with $f_{IF} = f_c$.

Under the foregoing conditions with the assumption of additive noise at the receiver’s input, the total signal-plus-noise at the detector becomes

$$ v(t) = x_c(t) + n(t) \quad (2) $$

where $n(t)$ represents the predetection noise. Eventually, we'll recast $v(t)$ in envelope-and-phase or quadrature carrier form as

$$ v(t) = A_v(t) \cos \left[\omega_c t + \phi(t) \right] = v_i(t) \cos \omega_c t - v_q(t) \sin \omega_c t $$

![Figure 10.1–1](image-url)
Model of a CW communication system with noise.
which facilitates analysis of the demodulated signal-plus-noise $y(t)$. Lastly, the demodulated waveform goes through a lowpass filter with $H_D(f)$ to yield the final output signal $y_D(t)$ at the destination. This postdetection filtering may include deemphasis or other processing operations.

The additive form of Eq. (2) together with the reasonable assumption of statistically independent signal and noise allows us to write

$$\mu^2 = \bar{x}^2 + \bar{n}^2 = S_R + N_R$$

where $N_R = \bar{n}^2$ is the **predetection noise power**. Before discussing the signal-to-noise ratio, we’ll turn off the signal and examine N_R by itself.

Figure 10.1–2a isolates that part of the system diagram relevant to N_R. Here, we treat the channel noise plus any noise generated in the predetection portion of the receiver as being equivalent to white noise. Hence, the filtered output $n(t)$ has spectral density

$$G_n(f) = \frac{N_0}{2} |H_R(f)|^2$$

as sketched in Fig. 10.1–2b. The density parameter N_0 includes all noise referred to the input of the receiver. We then say that

Bandpass noise results when white noise passes through a bandpass filter.

Figure 10.1–2b is based upon a predetection filter with nearly square frequency response, so its noise bandwidth equals B_T and

$$G(f) = \frac{N_0}{2} H_R(f)$$

$$G_n(f) = \frac{N_0}{2} |H_R(f)|^2$$

$$N_0$$

Figure 10.1–2 Bandpass filtered white noise: (a) block diagram; (b) power spectrum.
A less selective filter would, of course, pass more noise power.

Note that the carrier frequency f_c does not necessarily fall in the center of the passband in Fig. 10.1-2b. We've written the lower cutoff as $f_c - \alpha B_T$ to include the symmetric-sideband case ($\alpha = \frac{1}{2}$) and the suppressed-sideband case ($\alpha = 0$ or 1). Needless to say, the value of B_T depends upon the message bandwidth W and the type of modulation.

From Eqs. (3) and (4), we now define the **predetection signal-to-noise ratio**

$$N_R = \int_{-\infty}^{\infty} G_n(f) df = N_0 B_T$$ \hspace{1cm} (4)

which looks similar to the destination signal-to-noise ratio $S_R/N_0 W$ defined in Sect. 9.4 relative to baseband transmission. But $(S/N)_R$ should not be confused with $S_R/N_0 W$. To bring out the distinction, we'll introduce the system parameter

$$\gamma \triangleq \frac{S_R}{N_0 W}$$ \hspace{1cm} (6)

such that

$$\left(\frac{S}{N} \right)_R = \frac{W}{B_T} \gamma$$ \hspace{1cm} (7)

and hence $(S/N)_R \leq \gamma$ since $B_T \equiv W$. You should keep in mind the interpretation that γ equals the maximum destination S/N for analog baseband transmission with identical values of S_R and N_0 at the receiver. By the same token, Eqs. (5) and (7) are actually upper bounds on $(S/N)_R$ since the various imperfections in a practical system inevitably degrade the signal-to-noise ratio to some extent.

Quadrature Components

Now let $n(t)$ be a sample function of an AWGN process. Then

$$\bar{n} = 0 \quad \bar{n}^2 = \sigma_n^2 = N_R$$

which follows from the absence of a DC component in $G_n(f)$. The shape of $G_n(f)$ in Fig. 10.1-2b suggests expressing the noise in the usual bandpass form

$$n(t) = n_i(t) \cos \omega_c t - n_q(t) \sin \omega_c t$$ \hspace{1cm} (8)

with in-phase component $n_i(t)$ and quadrature component $n_q(t)$. These components are jointly stationary and gaussian, like $n(t)$, and have the following properties:

$$\bar{n}_i = \bar{n}_q = 0 \quad \bar{n}_i(t)\bar{n}_q(t) = 0$$ \hspace{1cm} (9a)

and

$$\bar{n}_i^2 = \bar{n}_q^2 = \bar{n}_q^2 = N_R$$ \hspace{1cm} (9b)
Equation (9a) means that the random variables n_t and n_q are independent at any instant t, so their joint probability density function is the product of identical Gaussian PDFs.

The power spectral densities of the quadrature components are identical lowpass functions related to $G_n(f)$ by

$$G_{n_1}(f) = G_{n_2}(f) = G_n(f + f_c)u(f + f_c) + G_n(f - f_c)[1 - u(f - f_c)]$$ \(10\)

where the term $G_n(f + f_c)u(f + f_c)$ simply stands for the positive frequency portion of $G_n(f)$ translated downward and $G_n(f - f_c)[1 - u(f - f_c)]$ stands for the negative-frequency portion translated upward. These terms then overlap and add for $|f| \leq \alpha B_T$, as illustrated by Fig. 10.1–3a. Figure 10.1–3b shows the complete overlap in the symmetric-sideband case ($\alpha = 1/2$), and Fig. 10.1–3c shows the lack of overlap in the suppressed-sideband case ($\alpha = 0$ or 1). When $G_n(f)$ has local symmetry around $\pm f_c$, as reflected in Fig. 10.1–3b, the quadrature components are uncorrelated processes.

EXERCISE 10.1–1 Sketch $G_{n_1}(f)$ and $G_{n_2}(f)$ when $|H_R(f)|$ has the VSB shaping shown in Fig. 10.1–4 for $f > 0$ (this is similar to the actual case in analog television).
Envelope and Phase

As an alternative to Eq. (8), we also want to express bandpass noise in the form

\[n(t) = A_n(t) \cos [\omega_c t + \phi_n(t)] \] \hspace{1cm} (11)

with envelope \(A_n(t) \) and phase \(\phi_n(t) \). The standard phasor diagram in Fig. 10.1–5 relates our two sets of components. Clearly, at any instant of time,

\[A_n^2 = n_i^2 + n_q^2 \quad \phi_n = \tan^{-1} n_q / n_i \] \hspace{1cm} (12a)

and conversely

\[n_i = A_n \cos \phi_n \quad n_q = A_n \sin \phi_n \] \hspace{1cm} (12b)

These nonlinear relationships make spectral analysis of \(A_n \) and \(\phi_n \) difficult, even though we know \(G_n(f) \) and \(G_{n_q}(f) \). However, the lowpass spectrum of the quadrature components suggests that the time variations of \(A_n(t) \) and \(\phi_n(t) \) will be slow compared to \(f_c \), in agreement with the bandpass nature of \(n(t) \).

Furthermore, Eq. (12a) constitutes a rectangular-to-polar conversion of independent gaussian RVs, just like the one that led to the Rayleigh distribution. We thus conclude that the PDF of the envelope is a Rayleigh function given by

\[p_{A_n}(A_n) = \frac{A_n}{N_R} e^{-A_n^2 / 2N_R} u(A_n) \] \hspace{1cm} (13)
with mean and second moment

\[A_n = \sqrt{\pi N_R / 2}, \quad A_n^2 = 2N_R \]

The probability that \(A_n \) exceeds some specified positive value \(a \) is then

\[P(A_n > a) = e^{-a^2 / 2N_n} \quad (14) \]

These results follow from Eqs. (11)–(13) in Sect. 8.4.

The phase \(\phi_n \) has a uniform PDF over \(2\pi \) radians, independent of \(A_n \). Hence,

\[\overline{n^2} = A_n^2 \cos^2(\omega_c t + \phi_n) = A_n^2 \times \frac{1}{2} = N_R \]

which explains the factor of 2 in \(A_n^2 = 2N_R \).

EXERCISE 10.1–2 Suppose bandpass noise with \(N_R = 1 \mu W \) is applied to a one-ohm resistor. Calculate the mean and rms value of the envelope voltage. Also evaluate \(P(A_n > 2A_n) \).

Correlation Functions

The properties of the quadrature components of bandpass noise were presented without proof in order to put the important results up front. Now we'll outline the derivation of those results by drawing upon various correlation functions. This analysis brings together concepts and relations from several previous chapters to shed further light on bandpass noise.

We begin with the fictitious **lowpass equivalent** noise waveform defined by

\[n_{\text{lp}}(t) = \frac{1}{2} [n(t) + j\hat{n}(t)] e^{-j\omega_c t} \]

in which \(\hat{n}(t) \) is the Hilbert transform of the bandpass noise \(n(t) \). The lowpass nature of \(n_{\text{lp}}(t) \) is easily confirmed by deterministic Fourier transformation. But the quadrature components of \(n(t) \) should be such that

\[\frac{1}{2} [n(t) + jn_q(t)] = n_{\text{lp}}(t) \]

Thus, equating the real and imaginary parts of \(n_{\text{lp}}(t) \) yields

\[n_i(t) = n(t) \cos \omega_c t + \hat{n}(t) \sin \omega_c t \quad (15a) \]

\[n_q(t) = \hat{n}(t) \cos \omega_c t - n(t) \sin \omega_c t \quad (15b) \]

which establishes explicit relationships between the quadrature components and \(n(t) \).

This expression contains much valuable information, as follows:

1. It states the physically obvious fact that \(n_i(t) \) and \(n_q(t) \) depend entirely on \(n(t) \)—remember that \(\hat{n}(t) \) represents a linear operation on \(n(t) \).
2. If \(n(t) \) is gaussian then \(\hat{n}(t) \) is gaussian, and since Eqs. (15a) and (15b) show that the quadrature components are linear combinations of gaussian RVs at any instant, they must also be gaussian.
3. Equations (15a) and (15b) provides the starting point for correlation analysis.
4. Equations (15a) and (15b) brings out the importance of Hilbert transforms in the study of bandpass noise.

The Hilbert transform of a random signal was previously considered in Example 9.2-3. Applying those results to the case at hand, we have

\[G_n(f) = G_n(f) \quad R_n(\tau) = R_n(\tau) \quad (16a) \]

and

\[R_{dn}(\tau) = \hat{R}_n(\tau) \quad R_{nn}(\tau) = -\hat{R}_n(\tau) \quad (16b) \]

Here, \(\hat{R}_n(\tau) \) stands for the Hilbert transform of \(R_n(\tau) \), defined by \(\hat{R}_n(\tau) = h_0(\tau) * R_n(\tau) \) with \(h_0(\tau) = 1/\pi \tau \).

Having completed the necessary groundwork, we proceed to the autocorrelation function of the in-phase component \(n_i(t) \). Into the basic definition

\[R_n(t, t - \tau) = \mathbb{E}[n_i(t)n_i(t - \tau)] \]

we insert Eq. (15a) and perform some manipulations to get

\[
R_n(t, t - \tau) = \frac{1}{2} \left[\left[R_n(\tau) + R_n(\tau) \right] \cos \omega_c t + \left[R_{dn}(\tau) - R_{nn}(\tau) \right] \sin \omega_c t \\
+ \left[R_n(\tau) - R_n(\tau) \right] \cos \omega_c(2t - \tau) + \left[R_{dn}(\tau) + R_{nn}(\tau) \right] \sin \omega_c(2t - \tau) \right]
\]

This cumbersome expression then simplifies with the help of Eq. (16) to

\[R_n(t, t - \tau) = R_n(\tau) \cos \omega_c \tau + \hat{R}_n(\tau) \sin \omega_c \tau \]

which is independent of \(t \). The same result holds for the autocorrelation of \(n_q(t) \). Thus

\[R_n(\tau) = R_n(\tau) = R_n(\tau) \cos \omega_c \tau + \hat{R}_n(\tau) \sin \omega_c \tau \quad (17) \]

so the quadrature components are stationary and have identical autocorrelation and spectral density functions.

To obtain the power spectral density via Fourier transformation of Eq. (17), we note that

\[\mathcal{F}[R_n(\tau) \cos \omega_c \tau] = \frac{1}{2} [G_n(f - f_c) + G_n(f + f_c)] \]

Then, using the convolution and modulation theorems,

\[\mathcal{F}[\hat{R}_n(\tau)] = \mathcal{F}[h_0(\tau)] \mathcal{F}[R_n(\tau)] = (-j \text{sgn } f) G_n(f) \]

and

\[\mathcal{F}[\hat{R}_n(\tau) \sin \omega_c t] = \mathcal{F}[\hat{R}_n(\tau) \cos (\omega_c \tau - \pi/2)] \\
= -\frac{1}{2} [-j \text{sgn } (f - f_c) G_n(f - f_c)] + \frac{1}{2} [-j \text{sgn } (f + f_c) G_n(f + f_c)] \]
Therefore,
\[
G_n(f) = G_{n_1}(f) = \frac{1}{2}[1 + \text{sgn}(f + f_c)]G_n(f + f_c) \\
+ \frac{1}{2}[1 - \text{sgn}(f - f_c)]G_n(f - f_c)
\]
which reduces to Eq. (10) because the first term vanishes for \(f < -f_c \) whereas the second term vanishes for \(f > f_c \).

Finally, a similar analysis for the crosscorrelation of the quadrature components produces
\[
R_{n_1,n_2}(\tau) = R_n(\tau) \sin \omega_c \tau - \hat{R}_n(\tau) \cos \omega_c \tau
\]
and
\[
\mathcal{F}_z[R_{n_1,n_2}(\tau)] = j \{G_n(f + f_c)u(f + f_c) - G_n(f - f_c)[1 - u(f - f_c)]\}
\]
If \(G_n(f) \) has local symmetry around \(f = \pm f_c \), then the right-hand side of Eq. (19) equals zero for all \(f \). This means that \(R_{n_1,n_2}(\tau) = 0 \) for all \(\tau \), so the quadrature components are uncorrelated. As we said in Chap. 9, processes that are uncorrelated are not necessarily independent. However, as noted in Sect. 9.1, if the process is jointly gaussian then the quadrature components are also independent.

10.2 LINEAR CW MODULATION WITH NOISE

Now we’re prepared to deal with the situation in Fig. 10.2–1. The linearly modulated signal \(x_c(t) \) is contaminated by AWGN at the input to the receiver. Predetection bandpass filtering produces \(v(t) = x_c(t) + n(t) \) with \(x^2_c = S_R \) and \(n^2 = N_R \) so
\[
\begin{pmatrix} S \\ N \end{pmatrix}_R = \frac{S_R}{N_R} = \frac{S_R}{N_0 B_T} = \frac{W}{B_T} \gamma
\]
The bandpass noise can be expressed in quadrature form as
\[
n(t) = n_1(t) \cos \omega_c t - n_q(t) \sin \omega_c t
\]
where \(n^2_1 = n^2_q = N_R = N_0 B_T \). The demodulation operation will be represented by one of the following idealized mathematical models:
\[
y(t) = \begin{cases} v_1(t) & \text{Synchronous detector} \\ A_v(t) - \bar{A}_v & \text{Envelope detector} \end{cases}
\]

![Figure 10.2–1](image-url)
Model of receiver for CW modulation with noise.
These models presuppose perfect synchronization, and so forth, as appropriate. The term $A_v = <A_v(t)>$ reflects the DC block normally found in an envelope detector. A detection constant could be included in our models but it adds nothing in the way of generality.

The questions at hand are these: Given $x_c(t)$ and the type of detector, what’s the final signal-plus-noise waveform $y_D(t)$ at the destination? And if the signal and noise are additive at the output, what’s the destination signal-to-noise ratio $(S/N)_D$?

Synchronous Detection

An ideal synchronous detector simply extracts the in-phase component of $v(t)$. If the modulation is DSB, then $x_c(t) = A_c x(t) \cos \omega_c t$ so

$$v(t) = [A_c x(t) + n_i(t)] \cos \omega_c t - n_q(t) \sin \omega_c t \quad (1)$$

and $y(t) = v_i(t) = A_c x(t) + n_i(t)$. Thus, if the postdetection filter approximates an ideal LPF with bandwidth W,

$$y_D(t) = A_c x(t) + n_i(t) \quad (2)$$

We see that the output signal and noise are, indeed, additive, and that the quadrature noise component $n_q(t)$ has been rejected by the detector.

Furthermore, if the predetection filter has a relatively square response with bandwidth $B_T = 2W$ centered at f_c, then the output noise power will take the shape of Fig. 10.1–3b. Hence,

$$G_n(f) = N_0 \Pi(f/2W) \quad (3)$$

which looks like lowpass-filtered white noise. Under these conditions, we don’t need any postdetection filter beyond the LPF within the synchronous detector.

Next we obtain the postdetection S/N from Eq. (2) by taking the mean square values of the signal and noise terms. Upon noting that $N_D = \bar{n}_f^2$ and $S_D = A_c^2 \bar{x}_c^2 = A_c^2 S_x$, whereas $S_R = \bar{x}_c^2 = A_c^2 S_x / 2$, we get

$$\left(\frac{S}{N} \right)_D = \frac{S_D}{N_D} = 2S_R \quad (4a)$$

or, since $B_T = 2W$,

$$\left(\frac{S}{N} \right)_D = \frac{S_R}{N_0 W} = \gamma \quad \text{DSB} \quad (4b)$$

Therefore, insofar as noise is concerned, DSB with ideal synchronous detection has the same performance as analog baseband transmission.

You might have suspected a different result in view of the predetection noise power $N_R = N_0 B_T = 2N_0 W$. However, the signal sidebands add in a coherent fashion, when translated to baseband, whereas the noise sidebands add incoherently. The sideband coherence in synchronous detection of DSB exactly counterbalances the double-sideband noise power passed by the predetection filter.
The preceding analysis is readily adapted to the case of an AM signal \(x_c(t) = A_c[1 + x(t)] \cos \omega_c t \), in which we’ve taken \(\mu = 1 \) for simplicity. If the synchronous detector includes an ideal DC block, then \(y_D(t) \) will be as given in Eq. (2), so \(S_D = A_c^2 S_x \) and \(N_D = \pi n^2 \). But when we account for the unmodulated carrier power in \(S_R = A_c^2(1 + S_x)/2 \) we find that \(S_D = 2S_a S_b/(1 + S_e) \) and

\[
\frac{S}{N}_D = \frac{2S_x}{1 + S_x} \frac{S}{N}_R = \frac{S_x}{1 + S_x} \gamma \quad \text{AM} \quad (5)
\]

This ratio is bounded by \((S/N)_D \leq \gamma/2 \) since \(S_x \leq 1 \).

Full-load tone modulation corresponds to \(S_x = 1/2 \) and \((S/N)_D = \gamma/3 \), which is about 5 dB below that of DSB with the same parameters. More typically, however, \(S_x \approx 0.1 \) and AM would be some 10 dB inferior to DSB. AM broadcasting stations usually combat this effect with special techniques such as volume compression and peak limiting of the modulating signal to keep the carrier fully modulated most of the time. These techniques actually distort \(x(t) \).

For SSB modulation (or VSB with a small vestige) we have \(x_c(t) = (A_c/2)[x(t) \cos \omega_c t \pm \dot{x}(t) \sin \omega_c t] \) with \(B_T = W \) and \(S_R = A_c^2 S_x/4 \). Synchronous detection rejects the quadrature component of both the signal and noise, leaving

\[
y_D(t) = \frac{1}{2}A_c x(t) + n_D(t) \quad (6)
\]

so \(S_D = A_c^2 S_x/4 = S_R \). Since \(f_c \) falls at either edge of an ideal predetection filter, \(G_n(f) \) has the shape of Fig. 10.1–3c. Hence,

\[
G_n(f) = \frac{N_0}{2} \Pi(f/2W) \quad (7)
\]

and \(N_D = \pi n^2 = N_0 W \). Therefore,

\[
\left(\frac{S}{N} \right)_D = \left(\frac{S}{N} \right)_R = \gamma \quad \text{SSB} \quad (8)
\]

which shows that SSB yields the same noise performance as analog baseband or DSB transmission.

Finally, consider VSB plus carrier. If the vestigial band is small compared to \(W \), then the predetection and postdetection noise will be essentially the same as SSB. But the signal will be essentially the same as AM with all the information-bearing power in one sideband. Hence,

\[
\left(\frac{S}{N} \right)_D = \frac{S_x}{1 + S_x} \left(\frac{S}{N} \right)_R = \frac{S_x}{1 + S_x} \gamma \quad \text{VSB + C} \quad (9)
\]

assuming that \(B_T = W \) and \(\mu = 1 \).

To summarize the results in Eqs. (2)–(9), we state the following general properties of synchronously detected linear modulation with noise:

1. The message and noise are additive at the output if they are additive at the detector input.
2. If the predetection noise spectrum is reasonably flat over the transmission band, then the destination noise spectrum is essentially constant over the message band.

3. Relative to $(S/N)_D$, suppressed-sideband (SSB) modulation has no particular advantage over double-sideband modulation because the coherence property of double sideband compensates for the reduced predetection noise power of single sideband.

4. Making due allowance for the “wasted” power in unsuppressed-carrier systems, all types of linear modulation have the same performance as baseband transmission on the basis of average transmitted power and fixed noise density.

These statements presume nearly ideal systems with fixed average power.

Comparisons based on peak envelope power indicate that SSB yields a postdetection S/N about 3 dB better than DSB and 9 dB better than AM, assuming a reasonably smooth modulating signal. But SSB is inferior to DSB if the message has pronounced discontinuities causing large envelope “horns,” or peaks.

ExERCISE 10.2–1

Suppose the predetection filter for a USSB signal actually passes $f_c - W/4 \leq |f| \leq f_c + W$. Use Fig. 10.1–3a to sketch the postdetection noise power spectrum. Then show that $(S/N)_D$ will be about 1 dB less than the value predicted by Eq. (8).

Envelope Detection and Threshold Effect

Inasmuch as AM is normally demodulated by an envelope detector, we should examine how this differs from synchronous detection when noise is present. At the detector input we have

$$v(t) = A_c[1 + x(t)] \cos \omega_c t + [n_i(t) \cos \omega_c t - n_q(t) \sin \omega_c t] \quad (10)$$

where we’re still taking $\mu = 1$. The phasor construction of Fig. 10.2–2 shows that the resultant envelope and phase are

$$A_v(t) = \sqrt{A_c[1 + x(t)]^2 + n_i(t)^2 + n_q(t)^2} \quad (11)$$

$$\phi_v(t) = \tan^{-1} \frac{n_q(t)}{A_c[1 + x(t)] + n_i(t)}$$

Figure 10.2–2 Phasor diagram for AM plus noise with $(S/N)_e \gg 1$.
Clearly, further understanding calls for some simplifications, so let’s assume that the signal is either very large or very small compared to the noise.

Taking the signal to dominate, say then

\[A_c [1 + x(t)] \]

will be large compared to \(n_i(t) \) and \(n_q(t) \), at least most of the time. The envelope can then be approximated by

\[An(t) = A_c [1 + x(t)] + n_i(t) \] \hspace{1cm} (12)

which shows the envelope modulation due to noise, similar to interference modulation. An ideal envelope detector reproduces the envelope minus its DC component, so

\[y_0(t) = An(t) - \overline{An} = A_c x(t) + n_i(t) \]

which is identical to that of a synchronous detector. The postdetection S/N is then as previously given in Eq. (5). Likewise, Eq. (9) will hold for envelope detection of VSB + C.

However, bear in mind that these results hold only when \(A_c^2 \gg \overline{n} \). Since \(A_c^2 / \overline{n} \) is proportional to \(S_p/N_0B \), an equivalent requirement is \((S/N)_0 \gg 1 \). (There is no such condition with synchronous detection.) Thus, providing that the predetection signal-to-noise ratio is large, envelope demodulation in the presence of noise has the same performance quality as synchronous demodulation.

At the other extreme, with \((S/N)_r \ll 1 \), the situation is quite different. For if \(A_c^2 \ll \overline{n} \), the noise dominates in a fashion similar to strong interference, and we can think of \(n_i(t) \) as modulating \(n(t) \) rather than the reverse. To expedite the analysis of this case, \(n(t) \) is represented in envelope-and-phase form

\[n(t) = n_i(t) \cos (\omega_n t + \phi_n(t)) \]

leading to the phasor diagram of Fig. 10.2–3. In this figure the noise phasor is the reference because we are taking \(n(t) \) to be dominant. The envelope is then approximated by the horizontal component, so

\[An(t) = A_n(t) + A_c [1 + x(t)] \cos \phi_n(t) \] \hspace{1cm} (13)

from which

\[y(t) = A_n(t) + A_c x(t) \cos \phi_n(t) - \overline{An} \] \hspace{1cm} (14)

where \(\overline{An} = \sqrt{\overline{n} N_0} / 2 \).

The principal output component is obviously the noise envelope \(A_n(t) \), as expected. Furthermore, there is no term in Eq. (14) strictly proportional to the message \(x(t) \).

Figure 10.2–3 Phasor diagram for AM plus noise with \((S/N)_r \ll 1 \).
Though signal and noise were additive at the input, the detected message term is multiplied by noise in the form of \(\cos \phi_n(t) \), which is random. The message is therefore hopelessly mutilated, or corrupted, and its information has been lost. Under these circumstances, an output signal-to-noise ratio is difficult to define, if not meaningless.

The corruption or loss of message at low predetection signal-to-noise ratios is called threshold effect. The name comes about because there is some value of \((S/N)_R \) above which message corruption is negligible and below which system performance rapidly deteriorates.

With synchronous detection, the output signal and noise are always additive. True, the message is buried in noise if \((S/N)_R \ll 1 \), but the essential identity of \(x(t) \) is preserved.

Actually, the threshold is not a unique point unless some convention is established for its definition. Generally speaking, threshold effects are minimal if \(A_c \gg A_n \) most of the time. To be more specific, we define the threshold level as that value of \((S/N)_R \) for which \(A_c \geq A_n \) with probability 0.99. Then

\[
\left(\frac{S}{N} \right)_{R_{\text{th}}} = 4 \ln 10 = 10
\]

(15a)

or, since \((S/N)_R = \gamma/2 \),

\[
\gamma_{\text{th}} = 8 \ln 10 = 20
\]

(15b)

If \((S/N)_R < (S/N)_{R_{\text{th}}} \) (or \(\gamma < \gamma_{\text{th}} \)), message corruption must be expected, along with the consequent loss of information.

Looking at the value of \((S/N)_{R_{\text{th}}} \), and recalling that \((S/N)_D < (S/N)_R \) leads to a significant conclusion:

Threshold effect is usually not a serious limitation for AM broadcasting.

Since audio transmission of reasonable listening quality demands a postdetection signal-to-noise ratio of 30 dB or more, so \((S/N)_R \) is well above the threshold level. In other words, additive noise obscures the signal long before multiplicative noise obliterates. On the other hand, sophisticated processing techniques exist for recovering digital signals buried in additive noise. Hence, if AM is used for digital transmission, synchronous detection may be necessary to avoid threshold effects.

Lastly, let's consider how an envelope detector can act in a synchronous fashion and why this requires large \((S/N)_R \). Assuming the input noise is negligible, the diode in an envelope detector functions as a switch, closing briefly on the carrier peaks of the proper polarity; therefore the switching is perfectly synchronized with the carrier.
When noise dominates, however, the switching is controlled by the noise peaks and synchronism is lost. The latter effect never occurs in true synchronous detectors, where the locally generated carrier can always be much greater than the noise.

EXERCISE 10.2–2 Use Eq. (14), Sect. 10.1, to derive the threshold level in Eq. (15a). Specifically, show that if \(S_x = 1 \), then \(P(A_c \geq A_n) = 0.99 \) requires \((S/N)_R = 4 \ln 10 \approx 10 \).

10.3 ANGLE CW MODULATION WITH NOISE

This section deals with noise in analog PM and FM systems. The demodulation operation will be represented by

\[
y(t) = \begin{cases}
\phi(t) & \text{Phase detector} \\
\frac{1}{2\pi} \hat{\phi}(t) & \text{Frequency detector}
\end{cases}
\]

As we saw in Chap. 5, the inherent nonlinear nature of angle modulation leads to analytic difficulties—all the more so when noise must be considered. We’ll therefore begin with the large signal condition \((S/N)_R \gg 1 \) to determine the postdetection noise characteristics and signal-to-noise ratios for PM and FM. Our efforts here pay off in results that quantify the valuable wideband noise reduction property, a property further enhanced by postdetection FM deemphasis filtering.

Importantly, wideband noise reduction involves a threshold effect that, unlike the AM case, may pose a significant performance limitation. We’ll qualitatively discuss operation near threshold, and take a brief look at the FM feedback receiver as one technique for threshold extension.

Postdetection Noise

The predetection portion of an angle modulation receiver has the structure previously diagrammed in Fig. 10.2–1. The received signal is

\[
x_c(t) = A_c \cos(\omega_c t + \phi(t))
\]

where \(\phi(t) = \phi_\Delta x(t) \) for a PM wave or \(\hat{\phi}(t) = 2\pi f_\Delta x(t) \) for an FM wave. In either case, the carrier amplitude remains constant so

\[
S_R = \frac{1}{2} A_c^2 \left(\frac{S}{N} \right)_R = \frac{A_c^2}{2N_0 B_f}
\]

and \((S/N)_R \) is often called the **carrier-to-noise ratio** (CNR). The predetection BPF is assumed to have a nearly ideal response with bandwidth \(B_f \) centered at \(f_c \).

Figure 10.3–1 portrays our model for the remaining portion of the receiver, with the detector input \(\nu(t) = x_c(t) + n(t) = A_v(t) \cos(\omega_v t + \phi_v(t)) \). The limiter suppresses
any amplitude variation represented by $A_v(t)$. To find the signal and noise contained in $\phi_n(t)$, we express $n(t)$ in envelope-and-phase form and write

$$v(t) = A_v(t) \cos [\omega_c t + \phi_n(t)] + A_n(t) \cos [\omega_c t + \phi(t)]$$

(2)

The phasor construction of Fig. 10.3–2 then shows that

$$\phi_n(t) = \phi(t) + \tan^{-1} \frac{A_n(t) \sin [\phi_n(t) - \phi(t)]}{A_c + A_n(t) \cos [\phi_n(t) - \phi(t)]}$$

(3)

The first term of $\phi_n(t)$ is the signal phase by itself, but the contaminating second term involves both noise and signal. Clearly, this expression is very unclear and we can't go much further without some simplifications.

A logical simplification comes from the large-signal condition $(S/N)_R \gg 1$, so $A_c \gg A_n(t)$ most of the time and we can use the small-argument approximation for the inverse tangent function. A less obvious simplification ignores $\phi(t)$ in Eq. (3), replacing $\phi_n(t) - \phi(t)$ with $\phi_n(t)$ alone. We justify this step for purposes of noise analysis by recalling that ϕ_n has a uniform distribution over 2π radians; hence, in the sense of ensemble averages, $\phi_n - \phi$ differs from ϕ_n only by a shift of the mean value. With these two simplifications Eq. (3) becomes

$$\phi_n(t) = \phi(t) + \psi(t)$$

(4)

where

$$\psi(t) = \frac{A_n \sin \phi_n(t)}{A_c} = \frac{1}{\sqrt{2S_R}} n_q(t)$$

(5)

in which we've substituted $n_q = A_n \sin \phi_n$ and $S_R = A_c^2/2$.

Figure 10.3–1 Model for detection of angle modulation plus noise.

Figure 10.3–2 Phasor diagram of angle modulation plus noise.
Equation (4) says that the signal phase $\phi(t)$ and the equivalent phase noise $\psi(t)$ are additive under the large-signal condition. Equation (5) brings out the fact that $\psi(t)$ depends on the quadrature component of $n(t)$ and decreases with increasing signal power.

Now let $\phi(t) = 0$ and consider the resulting noise $\psi(t)$ at the output of a phase detector. The PM postdetection noise power spectrum has the shape of $G_{\nu}(f)$ in Fig. 10.1-3b, but multiplied by $1/2\pi$ because $\overline{\psi^2} = \overline{n^2}/2\pi$. Hence,

$$G_{\psi}(f) = \frac{N_0}{2\pi} \Pi\left(\frac{f}{B_T}\right)$$

which is essentially flat over $|f| \leq B_T/2$, as sketched in Fig. 10.3-3.

Since $B_T/2$ exceeds the message bandwidth W, save for the special case of NBPM, the receiver should include a postdetection filter with transfer function $H_D(f)$ to remove out-of-band noise. If $H_D(f)$ approximates the response of an ideal LPF with unit gain and bandwidth W, then the output noise power at the destination will be

$$N_D = \int_{-W}^{W} G_{\psi}(f) df = \frac{N_0W}{S_R} \quad \text{PM}$$

The shaded area in Fig. 10.3-3 equals N_D.

Next consider a frequency detector with input $\phi_n(t) = \psi(t)$, so the output is the instantaneous frequency noise

$$\xi(t) \triangleq \frac{1}{2\pi} \psi(t) = \frac{1}{2\pi \sqrt{2\pi}} \overline{\nu}\iota(t)$$

Thus, from Eq. (21), Sect. 9.2, we get the FM postdetection noise power spectrum

$$G_{\xi}(f) = (2\pi f)^2 \frac{1}{8\pi^2 S_R} G_{\nu}(f) = \frac{N_0 f^2}{2\pi} \Pi\left(\frac{f}{B_T}\right)$$

This parabolic function sketched in Fig. 10.3-4 has components beyond $W < B_T/2$, like PM, but increases as f^2.

![Fig. 10.3-3](image-url)
PM postdetection noise spectrum.
If we again take the postdetection filter to be an essentially ideal LPF that passes the shaded region in Fig. 10.3–4, the destination noise power will be

\[N_D = \int_{-W}^{W} G_\xi(f) df = \frac{N_0 W^3}{3S_h} \quad \text{FM} \quad (10) \]

However, if we also incorporate deemphasis filtering such that \(|H_D(f)| = \frac{|H_{de}(f)|\Pi(f/2W)}{|H_{de}(f)|} = [1 + (f/B_{de})^2]^{-1/2}\), then

\[N_D = \int_{-W}^{W} |H_{de}(f)|^2 G_\xi(f) df = \frac{N_0 B_{de}^2}{S_h} \left[\frac{W}{B_{de}} - \tan^{-1}\left(\frac{W}{B_{de}}\right) \right] \quad (11a) \]

In the usual case where \(W/B_{de} \gg 1\), Eq. (11a) simplifies to

\[N_D = N_0 B_{de}^2 W/S_h \quad \text{Deemphasized FM} \quad (11b) \]

since \(\tan^{-1}(W/B_{de}) = \pi/2 \ll W/B_{de}\).

Let's summarize and comment on our results up to this point as follows:

1. The postdetection noise spectral densities in PM and FM have out-of-band components that call for postdetection filtering.
2. The PM noise spectrum is flat, like linear modulation except for the out-of-band components.
3. The FM noise spectrum increases parabolically, so higher baseband signal frequencies suffer more noise contamination than lower frequencies. Deemphasis filtering compensates for this effect, provided that the message has been preemphasized at the transmitter.
4. The destination noise power \(N_D\) in PM and FM decreases as \(S_h\) increases, a phenomenon known as noise quieting. You may hear noise quieting on an FM radio with the volume turned up when you tune between stations.

Find the deemphasized noise spectrum \(|H_{de}(f)|^2 G_\xi(f)|\) without a lowpass cutoff for \(|f| > W\). Then estimate the total area \(N_D\) assuming \(B_T \gg W \gg B_{de}\). Compare your result with Eq. (11b).
Destination S/N

Now we can calculate the signal-to-noise ratios for PM, FM, and deemphasized FM. We continue the large-signal condition \((S/N)_R \gg 1\) so our previous results for \(N_0\) still hold. The presence of a signal phase \(\phi(t)\) does not void those results even though we replaced \(\phi_n(t) - \phi(t)\) with \(\phi_n(t)\) in Eq. (3). Had we included \(\phi(t)\) in the phase noise, a more complicated analysis would have revealed that the postdetection noise spectrum includes additional components that fall outside the message band and are rejected by \(H_D(f)\).

The demodulated signal plus noise in a PM system with \(\phi(t) = \phi_\Delta x(t)\) is

\[
y(t) = \phi_\Delta(t) = \phi_\Delta x(t) + \psi(t)
\]

The postdetection filter passes the signal term \(\phi_\Delta x(t)\) so \(S_D = \phi_\Delta^2 x^2 = \phi_\Delta^2 S_x\), and the output noise power \(N_D\) is given by Eq. (7). Hence,

\[
\left(\frac{S}{N} \right)_D = \frac{\phi_\Delta^2 S_x}{(N_0 W/S_R)} = \phi_\Delta^2 S_x \frac{S_R}{N_0 W} = \phi_\Delta^2 S_x \gamma \quad \text{PM} \tag{12}
\]

Since \(\gamma\) equals the output S/N for analog baseband transmission (or suppressed-carrier linear modulation) with received power \(S_R\), bandwidth \(W\), and noise density \(N_0\), we see that PM gives an improvement over baseband of exactly \(\phi_\Delta^2 S_x\). But in view of the ambiguity constraint \(\phi_\Delta \leq \pi\), the PM improvement is no greater than \(\phi_\Delta^2 S_{x_{\text{max}}} = \pi^2\), or about 10 dB at best. In fact if \(\phi_\Delta^2 S_x < 1\), then PM performance is inferior to baseband but the transmission bandwidth is still \(B_T \approx 2W\).

The demodulated signal plus noise in an FM system with \(\phi(t) = 2\pi f_\Delta x(t)\) is

\[
y(t) = \frac{1}{2\pi} \phi_\Delta(t) = f_\Delta x(t) + \xi(t)
\]

The postdetection filter passes the signal term \(f_\Delta x(t)\) so \(S_D = f_\Delta^2 S_x\), and \(N_D\) is given by Eq. (10). Hence,

\[
\left(\frac{S}{N} \right)_D = \frac{f_\Delta^2 S_x}{(N_0 W^3/3S_R)} = 3 \left(\frac{f_\Delta}{W} \right)^2 S_x \frac{S_R}{N_0 W}
\]

in which we spot the deviation ratio \(D = f_\Delta/W\). We therefore write

\[
\left(\frac{S}{N} \right)_D = 3D^2 S_x \gamma \quad \text{FM} \tag{13}
\]

and it now appears that \((S/N)_D\) can be made arbitrarily large by increasing \(D\) without increasing the signal power \(S_R\)—a conclusion that requires further qualification and will be reexamined shortly.

Meanwhile, recall that the transmission bandwidth requirement \(B_T\) increases with the deviation ratio. Therefore, Eq. (13) represents wideband noise reduction in that we have the latitude to
Exchange increased bandwidth for reduced transmitter power while keeping \((S/N)_D\) fixed.

To emphasize this property, take the case of wideband FM with \(D \gg 1\) and \(B_T = 2f_a \gg W\). Then \(D = B_T/2W\) and Eq. (13) becomes

\[
\left(\frac{S}{N}\right)_D = \frac{3}{4} \left(\frac{B_T}{W}\right)^2 S_\gamma \quad \text{WBFM}
\]

which shows that \((S/N)_D\) increases as the square of the bandwidth ratio \(B_T/W\). With smaller deviation ratios, the break-even point compared to baseband transmission occurs when \(3D^2S_x = 1\) or \(D = 1/\sqrt{3S_x} \approx 0.6\). The dividing line between NBFM and WBFM is sometimes designated to be \(D = 0.6\) for this reason.

Finally, if the receiver includes deemphasis filtering and \(B_{de} \ll W\), the output noise is further reduced in accordance with Eq. (11b). Thus,

\[
\left(\frac{S}{N}\right)_D \approx \left(\frac{f_a}{B_{de}}\right)^2 S_\gamma \quad \text{Deemphasized FM}
\]

and we have a deemphasis improvement factor of about \((W/B_{de})^2/3\). This improvement requires preemphasis filtering at the transmitter and may carry a hidden penalty. For if the message amplitude spectrum does not roll off at least as fast as \(1/f\), like an audio signal does, then preemphasis increases the deviation ratio and the transmission bandwidth requirement. Modern, heavily processed broadcast FM audio fails to roll off as \(1/f\) and thus requires significant efforts to limit the overall transmitter frequency deviation to allowable levels. The practical result is somewhat distorted audio for the listener.

Just how much can be gained from wideband noise reduction is well illustrated with the broadcast FM parameters \(f_a = 75\) kHz, \(W = 15\) kHz, and \(D = 5\). Taking \(S_x = 1/2\) for a representative value, Eq. (13) gives

\[
(S/N)_D = (3 \times 5^2 \times 1/2)\gamma = 38\gamma
\]

or about 16 dB better than analog baseband transmission. Deemphasis filtering with \(B_{de} = 2.1\) kHz increases \((S/N)_D\) to about 640\(\gamma\). Thus, other factors being equal, a 1 W FM system with deemphasis could replace a 640-W baseband system. The cost of this transmitted power reduction is increased bandwidth, since FM with \(D = 5\) requires \(B_x = 14W\).

But several practical factors work against full realization of increased bandwidth in exchange for reduced transmitter power \(S_T\). And indeed the goal of FM broadcasting is maximum \((S/N)_D\) rather than minimum \(S_T\). However, other applications involve minimizing \(S_T\) or squeezing as much as possible from every available transmitted watt. The large-signal condition \((S/N)_R \gg 1\) then poses a serious limitation for such applications, and the FM threshold effect becomes a matter of grave concern.

\[\text{EXAMPLE 10.3–1}\]
EXERCISE 10.3–2 Calculate the minimum transmitted power needed when a PM system replaces the 1 W FM system in Example 10.3–1 and the value of \((S/N)_D\) remains the same.

FM Threshold Effect

The small-signal condition \((S/N)_R \ll 1\) can be represented by a phasor diagram like Fig. 10.3–2 with signal and noise phasors interchanged. Then, since \(A_n(t) \gg A_c\) most of the time, the resultant phase at the detector input is

\[
\phi_n(t) = \phi_n(t) + \frac{A_c \sin [\phi(t) - \phi_n(t)]}{A_n(t)}
\]

(16)

The noise now dominates and the message, contained in \(\phi(t)\), has been corrupted beyond all hope of recovery.

Actually, significant degradation begins to occur when \((S/N)_R = 1\) and \(A_n = A_c\). With phasors of nearly equal length, we have a situation similar to cochannel interference when \(\rho = A/I/A_c \approx 1\). Small noise variations may then produce large spikes in the demodulated FM output. The phasor diagram in Fig. 10.3–5 illustrates this point.

Figure 10.3–5 FM near threshold: (a) phasor diagram; (b) instantaneous phase and frequency.
taking φ(t) = 0 and φ_n(t) = −π so φ_n(t) = −π. If the variations of A_n(t) and φ_n(t) follow the dashed locus from t_1 to t_2, then φ_n(t) = +π. Correspondingly, the waveform φ_n(t) in Fig. 10.3–5b has a step of height 2π and the output y(t) = φ_n(t)/2π has a unit-area spike. These spikes would be heard on an FM radio as a crackling or clicking sound that masks the signal.

We infer from this qualitative picture that the output noise spectrum is no longer parabolic but tends to fill in at DC, the output spikes producing appreciable low-frequency content. This conclusion has been verified through detailed analysis using the “click” approach as refined by Rice (1948). The analysis is complicated (and placed beyond our scope) by the fact that the spike characteristics change when the carrier is modulated—called the modulation-suppression effect. Thus, quantitative results are obtained only for specific modulating signals. In the case of tone modulation, the total output noise becomes

$$N_D = N_0 \frac{W^3}{3S_h} \left[1 + \frac{12D}{\pi} \gamma e^{-(W/\gamma)} \right]$$

(17)

where the second term is the contribution of the spikes. See Rice (1948) and Stumpers (1948) for the original work.

Figure 10.3–6 shows (S/N)_D in decibels plotted versus γ in decibels for two values of the deviation ratio D, taking tone modulation and N_0 given by Eq. (17). The rather sudden drop-off of these curves is the FM threshold effect, traced to the exponential factor in Eq. (17). Observation of the curves for D = 2 versus D = 5 shows that the threshold is higher for the more deviated signal. Below threshold, the noise effectively “captures,” or overrides, the desired FM signal. We see that
When the system is operating near the “knee” of a curve, small variations of received signal power cause sizable changes in the output signal—one moment it’s there, the next moment it’s gone.

Below threshold, noise captures the output just like strong cochannel interference. Experimental studies indicate that noise corruption is negligible in most cases of interest if \((S/N)_R \geq 10\) or thereabouts. Hence, we define the threshold point to be at

\[
(S/N)_{\text{th}} = 10 \tag{18}
\]

Equivalently, since \((S/N)_R = (W/B_T)\gamma\),

\[
\gamma_{\text{th}} = 10 \frac{B_T}{W} = 20M(D) \tag{19a}
\]

\[= 20(D + 2) \quad D > 2 \tag{19b}
\]

where use has been made of the FM bandwidth equation \(B_T = 2M(D)W = 2(D + 2)W\). Equations (18) and (19) also apply to PM with \(D\) replaced by \(f_0/2\).

Figure 10.3–6 correctly demonstrates that FM performance above threshold is quite impressive—after all, baseband transmission at best gives \((S/N)_D = \gamma\). And these curves do not include the additional improvement afforded by deemphasis filtering. But observe what happens if we attempt to make \((S/N)_D\) arbitrarily large by increasing only the deviation ratio while holding \(\gamma\) fixed, say at 20 dB. With \(D = 2\) \((B_T = 7W)\) we are just above threshold and \((S/N)_D = 28 \text{ dB}\). But with \(D = 5\) \((B_T = 14W)\) we are below threshold, and the output signal is useless because of multiplicative noise corruption. We therefore cannot achieve an unlimited exchange of bandwidth for signal-to-noise ratio, and system performance may actually deteriorate with increased deviation.

Swapping bandwidth in favor of reduced signal power is likewise restricted. Suppose, for example, that a 30 dB signal-to-noise ratio is desired with a minimum of transmitted power but the transmission bandwidth can be as large as \(B_T = 14W\). Were it not for threshold effect, we could use FM with \(D = 5\) and \(\gamma = 14 \text{ dB}\), a power saving of 16 dB compared to baseband. But the threshold point for \(D = 5\) is at \(\gamma_{\text{th}} = 22 \text{ dB}\), for which \((S/N)_D = 37 \text{ dB}\). Thus,

The design may be dictated by the threshold point rather than the desired signal-to-noise ratio.

Correspondingly, the potential power reduction may not be fully realized.

In view of these considerations, it’s useful to calculate \((S/N)_D\) at the threshold point. Thus, again omitting deemphasis, we substitute Eq. (19) into Eq. (13) to get
angle CW Modulation with Noise

\[
\left(\frac{S}{N} \right)_{D_{th}} = 3D^2 S_x \gamma_{th} \tag{20a}
\]

\[
\approx 60D^2(D + 2)S_x \quad D > 2 \tag{20b}
\]

which equals the minimum value of \((S/N)_D \) as a function of \(D \). Given a specified value for \((S/N)_D \) and no bandwidth constraint, we can solve Eq. (20) for the deviation ratio \(D \) that yields the most efficient performance in terms of signal power. Of course, some allowance must be made for possible signal fading since it is unadvisable to operate with no margin relative to the threshold point.

Minimum Power and Threshold

Suppose a minimum-power FM system is to be designed such that \((S/N)_D \approx 50 \text{ dB} \), given \(S_x = \frac{3}{2}, W = 10 \text{ kHz}, N_0 = 10^{-8} \text{ W/Hz} \), and no constraint on \(B_T \). Temporarily ignoring threshold, we might use Eq. (13) to get \(10^5 = 1.5D^2 \gamma \) so \(\gamma \approx 296 \) when \(D = 15 \). But taking threshold into account with the stated values and the assumption that \(D > 2 \), Eq. (20) becomes \(10^5 \approx 60D^2(D + 2)/2 \), and trial-and-error solution yields \(D \approx 15 \) so \(B_T = 2(D + 2)W = 340 \text{ kHz} \). Then, from Eq. (19a), \(S_R/N_0W \geq \gamma_{th} = 10 \times 34 = 340 \), which requires \(S_R \geq 340N_0W = 34 \text{ mW} \).

Find the minimum useful value of \((S/N)_D \) for a deemphasized FM system with \(B_T = 5W, f_\Delta = 10B_{de}, \) and \(S_x = \frac{1}{2} \).

Threshold Extension by FM Feedback Detection

Since the threshold limitation yields a constraint on the design of minimum-power analog FM systems, there has been interest in threshold extension techniques. Long ago Chaffee (1939) proposed a means for extending the FM threshold point using a frequency-following or frequency-compressive feedback loop in the receiver, called an FM feedback (FMFB) receiver.

The FM FB receiver diagrammed in Fig. 10.3–7 embodies features of a phase-locked loop within the superheterodyne structure. Specifically, the superhet’s LO has been replaced by a VCO whose free-running frequency equals \(f_x = f_{IF} \). The control voltage for the VCO comes from the demodulated output \(y_0(t) \). If the loop has sufficient gain \(K \) and \((S/N)_D \) is reasonably large, then the VCO tracks the instantaneous phase of \(x_c(t) \). This tracking action reduces the frequency deviation from \(f_\Delta \) to \(f_\Delta/(1 + K) \), as well as translating the signal down to the IF band. Thus, if \(K \) is such that \(f_\Delta/(1 + K)W < 1 \), then the IF input becomes a narrowband FM signal and the IF bandwidth need be no larger than \(B_\text{IF} \approx 2W \).

VCO tracking likewise reduces the noise frequency deviation by the same factor, so \((S/N)_D \) equals that of a conventional receiver when \((S/N)_R \ll 1 \). But note that
since threshold effects now depend primarily on the value of \((S/N)_D\), the threshold level has been extended down to a lower value. Experimental studies confirm a threshold extension of 5–7 dB for FMFB receivers—a significant factor for minimum-power designs. A conventional receiver with a PLL demodulator also provides a few dB of threshold extension and has the advantage of simpler implementation.

10.4 Comparison of CW Modulation Systems

At last we’re in a position to make a meaningful comparison of the various types of analog CW modulation. Table 10.4–1 summarizes the points to be compared: normalized transmission bandwidth \(b = B_T/W\), destination signal-to-noise ratio \((S/N)_D\) normalized by \(\gamma\), threshold point if any, DC (or low-frequency) response and instrumentation complexity. The table also includes baseband transmission for reference purposes. As before, we have used \(\gamma = S_R/N_0W\), where \(S_R\) is the received signal power, \(W\) is the message bandwidth, and \(N_0 = kT_0\) is the noise density referred to the receiver input. We have also used \(S_x = \langle x^2(t) \rangle\), where \(x(t)\) is the message. Nearly ideal systems are assumed, so the values of \((S/N)_D\) are upper bounds.

Of the several types of linear modulation, suppressed carrier methods are superior to conventional AM on at least two counts: signal-to-noise ratios are better, and there is no threshold effect. When **bandwidth conservation** is important, single sideband and vestigial sideband are particularly attractive. But you seldom get something for nothing in this world, and the price of efficient linear modulation is the increased complexity of instrumentation, especially at the receiver. Synchronous detection, no matter how it’s accomplished, requires sophisticated circuitry compared to the envelope detector. For **point-to-point communication** (one transmitter, one receiver) the price might be worthwhile. But for **broadcast communication** (one transmitter, many receivers) economic considerations tip the balance toward the simplest possible receiver, and hence envelope detection. However, in recent years the integrated circuit (IC) has greatly reduced the cost penalty of more complex receiver circuitry. Similarly, software defined radio technology will influence the choice of modulation systems.

From an instrumentation viewpoint AM is the least complex linear modulation, while suppressed-carrier VSB, with its special sideband filter and synchronization...
requirements, is the most complex. Of DSB and SSB (in their proper applications) the latter is less difficult to instrument because synchronization is not so critical. In addition, improved filter technology has made the required sideband filters more readily available. Similarly, VSB + C is classed as of "moderate" complexity, despite the vestigial filter, since envelope detection is sufficient.

Compared to baseband or linear modulation, angle modulation can provide substantially increased values of \((S/N)_b\) — especially FM with deemphasis — with only moderately complex circuitry. Figure 10.4-1 illustrates this in a form similar to Fig. 10.3-6 (again taking \(S_x = 1/2\)) except that a representative 12 dB deemphasis improvement has been added to the FM curves and performance below threshold is omitted. All curves are labeled with the bandwidth ratio \(b\).

Clearly, for equal values of \(b\), FM is markedly superior to PM insofar as noise performance is concerned. And as long as the system is above threshold, the improvement can be made arbitrarily large by increasing \(b\), whereas PM is limited to \(b \leq 10\) since \(\phi_a \leq \pi\). The penalty for the FM improvement is excessive transmission bandwidth. Therefore, wideband angle modulation is most appropriate when extremely clean output signals are desired and bandwidth conservation is a secondary factor. At microwave frequencies, both the noise-reduction and constant-amplitude properties

Table 10.4-1 Comparison of CW modulation systems

<table>
<thead>
<tr>
<th>Type</th>
<th>(b = B_p/W)</th>
<th>((S/N)_b = \gamma)</th>
<th>DC</th>
<th>Complexity</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseband</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>No(^1)</td>
<td>Minor No modulation</td>
</tr>
<tr>
<td>AM</td>
<td>2</td>
<td>(\frac{\mu^2S_x}{1 + \mu^2S_x})</td>
<td>20</td>
<td>No</td>
<td>Minor Envelope detection</td>
</tr>
<tr>
<td>DSB</td>
<td>2</td>
<td>1</td>
<td>...</td>
<td>Yes</td>
<td>Major Synchronous detection</td>
</tr>
<tr>
<td>SSB</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>No</td>
<td>Moderate Synchronous detection</td>
</tr>
<tr>
<td>VSB</td>
<td>1+</td>
<td>1</td>
<td>...</td>
<td>Yes</td>
<td>Major Synchronous detection</td>
</tr>
<tr>
<td>VSB + C</td>
<td>1+</td>
<td>(\frac{\mu^2S_x}{1 + \mu^2S_x})</td>
<td>20</td>
<td>Yes(^2)</td>
<td>Moderate Envelope detection</td>
</tr>
<tr>
<td>PM(^3)</td>
<td>2M ((\phi_a))</td>
<td>(\phi_j S_x)</td>
<td>10b</td>
<td>Yes</td>
<td>Moderate Phase detection, constant amplitude (\phi_a \leq \pi)</td>
</tr>
<tr>
<td>FM(^3,4)</td>
<td>2M (D)</td>
<td>3D (\cdot) (S_x)</td>
<td>10b</td>
<td>Yes</td>
<td>Moderate Frequency detection, constant amplitude</td>
</tr>
</tbody>
</table>

\(^1\)Unless direct coupled.
\(^2\)With electronic DC restoration.
\(^3\)\(b = 2\).
\(^4\)Deemphasis not included.
are advantageous. As to power conservation, FM with moderate values of b does offer a saving over linear modulation, threshold limitations notwithstanding.

Regarding transmission of modulating signals having significant low-frequency components, we have already argued the superiority of DSB and VSB. For facsimile and video, electronic DC restoration makes envelope-detected VSB possible and desirable. (AM could be used in this way, but the bandwidth is prohibitive. Suppressed-carrier single sideband is virtually out of the question.) Also we noted previously that a balanced discriminator has excellent low-frequency response; hence, the low-frequency performance of FM can equal that of DSB or VSB, and without troublesome synchronization. For similar reasons, high-quality instrumentation-type magnetic-tape recorders are often equipped with an FM mode in which the input is recorded as a frequency-modulated wave.

Not shown in the table is relative system performance in the face of time-varying transmission characteristics, frequency-selective fading, multiple-path propagation, and so forth. An unstable transmission medium has a multiplicative effect, which is particularly disastrous for envelope detection. (Late-night listeners to distant AM stations are familiar with the garbled result.) Similarly, transmission instabilities often preclude wideband modulation.

To summarize briefly is impossible. There is no universal solution to all communication problems. The communication engineer must therefore approach each new task with an open mind and a careful review of all available information.
10.5 PHASE-LOCKED LOOP NOISE PERFORMANCE

In Chapter 7, we assumed the PLL input was noise free. This is usually not the case, so we now want to consider the effects of additive white noise on PLL performance.

Let's augment the linearized models of Figs. 7.3–8b and 7.3–8c with a noise source as shown in Fig. 10.5–1. The output of the second summer is the phase error \(e(t) \). Since the system is linear, we can also consider the signal and noise inputs separately, and so with just the noise input, the power spectral density (PSD) of the VCO output phase is

\[
G_{\phi_e}(f) = |H_L(f)|^2 G_n(f)
\]

(1)

where \(G_n(f) \) is the PSD of the noise and \(H_L(f) \) is the PLL closed loop transfer function previously derived in Sect. 7.3. If the noise source is white, then \(G_n(f) = N_0/2 \) and the VCO output variance (or noise) becomes

\[
\sigma_{\phi_e}^2 = N_0 \int_0^\infty |H_L(f)|^2 \ df
\]

(2)

Since we have assumed the input \(\phi(t) = 0 \) then the phase error noise becomes \(\sigma_e^2 = \sigma_{\phi_e}^2 \). Given that the noise equivalent bandwidth is

\[
B_N = \frac{1}{g} \int_0^\infty |H_L(f)|^2 \ df
\]

(3)

and assuming that \(g = 1 \), the phase error noise becomes

\[
\sigma_e^2 = N_0 B_N
\]

(4)

This phase noise represents the amount of variation, or jitter, contained in the VCO output and is called phase jitter.

When Eqs. (3) and (4) are examined closely, we see that phase jitter decreases with narrower loop bandwidths. Therefore loop bandwidth versus phase jitter becomes another trade-off we have to deal with. Decreasing the loop bandwidth will
decrease phase jitter, but adversely affects the ability of the system to track the input signal's phase variations.

If we assume the input signal is sinusoidal with amplitude A_c, then we can express the loop's signal-to-noise ratio by

$$\gamma = \frac{A_c^2}{\sigma_e^2}$$ \hspace{1cm} (5)

Equations (4) and (5) assume a linear PLL model with a relatively high signal-to-noise ratio. If this is not the case, a better approximation for phase-jitter for a first-order PLL is given by Viterbi (1966) as

$$\sigma_e^2 = \int_{-\pi}^{\pi} \phi^2 \frac{\exp(\gamma \cos \phi)}{2\pi J_0(\gamma)} d\phi$$ \hspace{1cm} (6)

where $J_0(\gamma)$ is the zeroth-order modified Bessel function of the first kind.

10.6 ANALOG PULSE MODULATION WITH NOISE

Finally, we take a brief look at analog pulse modulation with noise. For simplicity, we'll assume that the pulse-modulated signal has been sent at baseband, so there will be no CW modulation and no bandpass noise. Instead, the predetection noise will have a lowpass spectrum.

Signal-to-Noise Ratios

Regardless of the particular circuitry employed in the receiver, demodulating an analog pulse-modulated wave boils down to message reconstruction from sample values. A generalized demodulator would therefore consist of a pulse converter that transforms the pulse-modulated wave into a train of weighted impulses from which an ideal LPF reconstructs the message. Figure 10.6–1 diagrams this demodulation model including additive noise.

![Figure 10.6–1](image)

Figure 10.6–1 Model for demodulation of analog pulse modulation with noise.
A noise-limiting filter at the input passes the received pulsed signal \(x_p(t) \) plus lowpass noise \(n(t) \), so \(v(t) = x_p(t) + n(t) \). The converter measures the amplitude, duration, or position of each pulse in \(v(t) \) and generates

\[
y_{d}(t) = \sum_{k} \left[\mu_p x(kT_s) + \epsilon_k \right] \delta(t - kT_s)
\]

where \(\mu_p \) is the modulation constant relating \(x(kT_s) \) to \(x_p(t) \) and \(\epsilon_k \) is the measurement error induced by the noise. We’ll assume for convenience that the reconstruction filter has bandwidth \(B = f_s/2 \), gain \(K = 1/2B \), and zero time delay. Hence, the impulse-train input \(y_d(t) \) produces the final output

\[
y_0(t) = \sum_{k} \left[\mu_p x(kT_s) + \epsilon_k \right] \text{sinc}(f_s t - k) = \mu_p x(t) + n_0(t)
\]

with

\[
n_0(t) = \sum_{k} \epsilon_k \text{sinc}(f_s t - k)
\]

which represents the noise at the destination.

Since the errors \(\epsilon_k \) are proportional to sample values of the lowpass noise \(n(t) \) spaced by \(T_s \), and since the noise-limiting filter has \(B_n > 1/T_s \), the values of \(\epsilon_k \) will be essentially uncorrelated and will have zero mean. We can therefore write the destination noise power as \(N_0 = \bar{n}_0^2 = \epsilon_k^2 = \sigma^2 \) and the signal power is \(S_0 = \mu_p x^2 = \mu_p^2 S_x \). Hence,

\[
\left(\frac{S}{N} \right)_D = \frac{S_0}{N_0} = \frac{\mu_p^2}{\sigma^2} S_x
\]

which expresses the destination signal-to-noise ratio in terms of the error variance \(\sigma^2 \) caused by reconstruction from noisy samples. Our next task is to determine \(\mu_p^2 \) and \(\sigma^2 \) for specific types of analog pulse modulation.

A PAM signal contains the message samples in the modulated pulse amplitude \(A_0(1 + \mu x(kT_s)) \), so the modulation constant is \(\mu_p = A_0 \mu \equiv A_0 \). From Sect. 9.5, the amplitude error variance is \(\sigma_p^2 = \sigma_p^2 = N_0 B_N \). Thus, under the best conditions of maximum modulation (\(\mu = 1 \)) and minimum noise bandwidth (\(B_N = 1/2\tau \)), we have

\[
\left(\frac{S}{N} \right)_D = \frac{2 A_0^2 \tau}{N_0} S_x
\]

where \(\tau \) is the pulse duration.

When \(\mu = 1 \) and \(x(t) \) has no DC component, the average energy per modulated pulse is \(A_0^2 [1 + x(kT_s)]^2 \tau = A_0^2 (1 + S_x) \tau \). Multiplying this average energy by the pulse rate \(f_s \) gives the received signal power \(S_R = f_s A_0^2 (1 + S_x) \tau \). We thus obtain our final result in the form
This result shows that \(\frac{S}{N} \) \(D \) \(H_1 \) \(3 \) dB below unmodulated baseband transmission—just like AM CW modulation. The maximum value is seldom achieved in practice, nor is it sought after. The merit of PAM resides in its simplicity for multiplexing, not in its noise performance.

However, PPM and PDM do offer some improvement by virtue of wideband noise reduction. For if \(B_N = B_T \), the time-position error variance is \(\sigma^2 = \frac{S}{N_0} = N_0/(4B_A^2) \). Since the pulse amplitude \(A \) is a constant, the received power can be written as \(S_r = f_A^2 \tau_0 \), where \(\tau_0 \) denotes the average pulse duration in PDM or the fixed pulse duration in PPM. Eq. (3) then becomes

\[
\left(\frac{S}{N} \right)_D = \frac{S_x}{1 + \frac{S}{N_0}} \frac{2S_r}{f_s} = \frac{S_x}{1 + \frac{S}{N_0}} \left(\frac{2W}{f_s} \right) \gamma
\]

PAM

(4)

This expression reveals that \(\frac{S}{N} \) \(D \) \(H_1 \) increases with increasing transmission bandwidth \(B_T \). The underlying physical reason should be evident from Fig. 9.5–2, with \(t_r = 1/2B_T \).

The PPM modulation constant is the maximum pulse displacement, so \(\mu_p = t_0 \). The parameters \(t_0 \) and \(\tau_0 \) are constrained by

\[
t_0 \leq T_s \frac{T_0}{2} \quad \tau_0 \geq 2t_r = \frac{1}{B_T}
\]

and \(f_s = 1/T_s \approx 2W \). Taking all values to be optimum with respect to noise reduction, we obtain the upper bound

\[
\left(\frac{S}{N} \right)_D \leq \frac{1}{8} \left(\frac{B_T}{W} \right)^2 \frac{S_x}{\gamma}
\]

PPM

(6)

Hence, PPM performance improves as the square of the bandwidth ratio \(B_T/W \). A similar optimization for PDM with \(\mu_p = \mu \tau_0 \leq \tau_0 \) yields the less-impressive result

\[
\left(\frac{S}{N} \right)_D \leq \frac{1}{2} \frac{B_T}{W} \frac{S_x}{\gamma}
\]

PDM

(7)

To approach the upper bound, a PDM wave must have a 50 percent duty cycle so that \(\tau_0 = T_r/2 \).

Practical PPM and PDM systems may fall short of the maximum values predicted here by 10 dB or more. Consequently, the noise reduction does not measure up to that of wideband FM. Remember, though, that the average power \(S_R \) comes from short-duration high-power pulses rather than being continuously delivered as in CW modulation. Transmitter power-supply considerations may therefore favor pulsed operation in some circumstances.
Explain why a single-channel PDM system must have $\mu \tau_0 \leq 1/4W$. Then derive Eq. (7) from Eq. (5) with $\mu_p = \mu \tau_0$.

False-Pulse Threshold Effect

Suppose you try to increase the value of $(S/N)_D$ in a PDM or PPM system by making B_T very large. Since n^2 increases with B_T, the noise variations in $v(t) = x_0(t) + n(t)$ will eventually dominate and be mistaken for signal pulses. If these false pulses occur often, the reconstructed waveform has no relation to $x(t)$ and the message will have been completely lost. Hence, pulse-time modulation involves a false-pulse threshold effect, analogous to the threshold effect in wideband FM. This effect does not exist in PAM with synchronization because we always know when to measure the amplitude.

To determine the threshold level, we'll say that false pulses are sufficiently infrequent if $P(n \geq A) \leq 0.01$. For gaussian noise with $\sigma_n^2 = n^2 = N_0B_T$, the corresponding threshold condition is approximately $A \geq 2\sigma_n$, so the pulse must be strong enough to “lift” the noise by at least twice its rms value. (This is the same condition as the tangential sensitivity in pulsed radar systems.) Using the fact that $A^2 = S/R_0f_s$, we have $S/R_0f_s \geq 4N_0B_T$ or

$$\gamma_{th} = \left(\frac{S}{N_0W} \right)_{min} = 4\tau_0f_sB_T/W \geq 8$$

This threshold level is appreciably less than that of FM, so PPM could be advantageous for those situations where FM would be below its threshold point.

10.7 Questions and Problems

Questions

1. What is the advantage of an envelope detector over the synchronous detector?

2. What type of detector would you choose for reception of weak AM signals? Why?

3. Describe a method to increase the $(S/N)_D$ for AM without increasing S_T or violating the maximum limits on the message amplitude or modulation index.

4. Why did the original astronauts have to be proficient in Morse code to communicate via on-off keying?

5. At what point is it no longer possible to improve $(S/N)_D$ using FM?

6. Explain why FM station reception has a distinct cutoff when going beyond the listening range.

7. What licensing implications does neglecting FM’s threshold effect and the FCC’s maximum radiated power limit of 75 nW/MHz hold for local broadcast of FM signals?
8. Why does PM have limited ability for increases in SNR at the destination?
9. Why are FM broadcast signals less noisy than AM ones?
11. As compared to AM broadcast signals, why does FM have a sharp threshold with respect to signal reception?
12. What parameter(s) limit the ability of FM to provide an increase to \((S/N)_D\)?
13. List and briefly describe means to send the same information over a channel that results in increased \((S/N)_D\).
14. What advantage does AM have over other modulation types?
15. Why does DSB have the same \((S/N)_D\) as SSB, even though \(B_{\text{DSB}} = 2B_{\text{SSB}}\)?
16. What modulation type(s) would you choose if you had to conserve bandwidth but have the highest S/N?
17. What modulation type(s) would you choose if you had to transmit messages with significant DC or low-frequency content?
18. List at least two causes of why a PLL would be unable to “lock on” and provide a reference signal for detecting AM or DSB.

Problems

10.1–1 White noise with \(N_0 = 10\) is applied to a BPF having \(|H_R(f)|^2\) as plotted in Fig. P10.1–1. Sketch \(G_n(f)\) taking \(f_c = f_1\), and show therefrom that \(\frac{n_i}{n} = n^2\).

![Figure P10.1–1](image)

10.1–2 Do Prob. 10.1–1, taking \(f_c = f_2\).

10.1–3* White noise is applied to a tuned circuit whose transfer function is

\[
H(f) = \left[1 + j \frac{4}{3} \left(\frac{f - f_c}{f_c - f} \right)\right]^{-1}
\]

Evaluate \(G_n(f) = N_0\) at \(f/f_c = 0, \pm 0.5, \pm 1, \pm 1.5, \text{ and } \pm 2\). Then plot \(G_n(f)\).

10.1–4 The BPF in Fig. 10.1–2 will have **local symmetry** around \(\pm f_c\) if its lowpass equivalent function \(H_{\text{lp}}(f) \triangleq H_R(f + f_c)u(f + f_c)\) has the even-symmetry
property \(|H_{cp}(f)| = |H_{cp}(f)|\). (a) Let \(G_{cp}(f) = (N_y/2)|H_{cp}(f)|^2\) and show that we can write

\[G_n(f) = G_{cp}(f - f_c) + G_{cp}(f + f_c) = \begin{cases} G_{cp}(f - f_c) & f > 0 \\ G_{cp}(f + f_c) & f < 0 \end{cases}\]

(b) Use this result to show that \(G_n(f) = 2G_{cp}(f)\).

10.1–5 A tuned circuit with \(Q = f_c/B_T \gg 1\) approximates the local-symmetry property in Prob. 10.1–4, and has \(H_R(f) = 1/[1 + j2(f - f_c)/B_T]\) for \(f > 0\).

(a) Find \(G_{Rn}(f)\). (b) Evaluate \(n^2\) by calculating \(n^2\).

10.1–6 Let \(y(t) = 2n(t) \cos (\omega_c t + \theta)\), where \(n(t)\) is bandpass noise centered at \(f_c\).

Show that \(y(t)\) consists of a lowpass component and a bandpass component. Find the mean value and variance of each component in terms of the properties of \(n(t)\).

10.1–7* Bandpass gaussian noise with \(\sigma_n = 2\) is applied to an ideal envelope detector, including a DC block. Find the PDF of the output \(y(t)\) and calculate \(\sigma_y\).

10.1–8 Bandpass gaussian noise with variance \(\sigma_n^2\) is applied to an ideal square-law device, producing \(y(t) = A_p^2(t)\). Find \(\bar{y}, \overline{y^2}\), and the PDF of \(y(t)\).

10.1–9 Let \(\nu(t) = \frac{1}{2}(v(t) + j\hat{v}(t))e^{-j\omega_c t}\). Assuming that \(\nu(t)\) is Fourier transformable, show that \(V_{\nu_{cp}}(f) = \mathcal{F}[\nu_{cp}(t)] = V(f + f_c)u(f + f_c)\). Then sketch \(V_{\nu_{cp}}(f)\), taking \(V(f)\) as in Fig. P10.1–1 with \(f_c = f_1 + b\).

10.1–10* Let \(H_R(f)\) in Fig. 10.1–2 be an ideal BPF with unit gain and let \(\alpha = \frac{1}{2}\) so \(f_c\) is the center frequency. Find \(R_n(\tau)\) and \(R_n(\tau)\) by taking the inverse transform of \(G_n(f)\) and \((-j\ \text{sgn}\ f)G_n(f)\). Then obtain \(R_n(\tau)\) from Eq. (17) and confirm that it equals the inverse transform of \(G_n(f)\).

10.1–11 Do Prob. 10.1–10 with \(\alpha = 0\), so \(f_c\) is the lower cutoff frequency.

10.1–12 Suppose \(G_n(f)\) has local symmetry around \(\pm f_c\), as detailed in Prob. 10.1–4. Write the inverse transforms of \(G_n(f)\) and \(G_n(f)\) to show that \(R_n(\tau) = R_n(\tau)\) and \(R_n(\tau) = R_n(\tau)\) for all \(\tau\) using: (a) the correlation relations in Prob. 10.1–12; (b) the spectral relations in Prob. 10.1–4.

10.1–13 Derive Eq. (17) starting from \(E[n_q(t)n_q(t - \tau)]\).

10.1–14 Derive Eq. (18) starting from \(E[n_q(t)n_q(t - \tau)]\).

10.1–15 Let \(G_n(f)\) have local symmetry around \(\pm f_c\). Prove that \(R_n(\tau) = 0\) for all \(\tau\) using: (a) the correlation relations in Prob. 10.1–12; (b) the spectral relations in Prob. 10.1–4.

10.1–16* Let \(H_R(f)\) in Fig. 10.1–2 be an ideal BPF with unit gain and let \(\alpha = 0\), so \(f_c\) is the lower cutoff frequency. Use Eq. (19) to find \(R_n(\tau)\).

10.1–17 Do Prob. 10.1–16 with \(\alpha = 1/4\), so the lower cutoff frequency is \(f_c = B_T/4\).

10.1–18 What is the expression for the output of a synchronous detector if the input is bandpass gaussian noise?
10.2–1* A DSB signal plus noise is demodulated by synchronous detection. Find S/N_0 in dB given that $S_p = 20$ nW, $W = 5$ MHz, and $\mathcal{T}_N = 10\mathcal{T}_o$.

10.2–2 An AM signal plus noise is demodulated by synchronous detection. Find $(S/N)_b$ in dB given that $S_x = 0.4$, $S_p = 20$ nW, $W = 5$ MHz, $\mu = 1$, and $\mathcal{T}_N = 10\mathcal{T}_o$.

10.2–3 A DSB signal plus noise is demodulated by a product detector with phase error ϕ'. Take the local oscillator signal to be $2 \cos (\omega t + \phi')$ and show that $(S/N)_b = \gamma \cos^2 \phi'$.

10.2–4 Rewrite Eqs. (4b) and (5) in terms of $\gamma = S_p/N_0 W$, where S_p is the peak envelope power of the DSB or AM signal.

10.2–5* Let $x_1(t)$ and $x_2(t)$ have quadrature multiplexing, where $x_1(t)$ and $x_2(t)$ are independent signals and $x_1^2 = x_2^2$. Assume an ideal receiver with AWGN and two synchronous detectors. Find the output signal plus noise for each channel, and express $(S/N)_b$ in terms of γ.

10.2–6 Explain why an SSB receiver should have a nearly rectangular BPF with bandwidth $B_b = W$, whereas predetection filtering is not critical for DSB.

10.2–7 Modify Eq. (8) for LSSB when $|H_R(f)|^2$ has the shape in Fig. P10.1–1 with $f_2 = f_c$ and $2b = W$.

10.2–8 Some receivers have additive "one-over-{f}"(1/f) noise with power spectral density $G(f) = N_0 f_c / 2 |f|$ for $f > 0$. Obtain the resulting expressions for $(S/N)_b$ in terms of γ and W/f_c for USSB and DSB modulation. Compare your results when $W/f_c = 1/5$ and 1/50.

10.2–9‡ When a demodulated signal includes multiplicative noise or related effects, the postdetection S/N cannot be defined unambiguously. An alternative performance measure is then the normalized mean-square error $e^2 \triangleq E\{[(x(t) - K y_0(t))^2]/S_x$ where K is chosen such that $K y_0(t) = x(t)$ in absence of multiplicative effects. Find $y_0(t)$ and show that $e^2 = 2[1 - \cos \phi] + 1/\gamma$ when a USSB signal with AWGN is demodulated by a product detector whose local-oscillator signal is $2 \cos (\omega t + \phi(t))$, where $\phi(t)$ is a slowly drifting random phase. Hint: $x^2 = x^2$ and $x x = -R_x(0) = 0$ since $R_x(\tau)$ is an odd function.

10.2–10 Explain why an AM receiver should have a nearly rectangular BPF with bandwidth $B_b = 2W$ for envelope detection, whereas predetection filtering is not critical for synchronous detection.

10.2–11* An AM system with envelope detection is operating at the threshold point. Find the power gain in dB needed at the transmitter to get up to $(S/N)_b = 40$ dB with full-load tone modulation.

10.2–12 An AM system with envelope detection has $(S/N)_b = 30$ dB under full-load tone-modulation conditions with $W = 8$ kHz. If all bandwidths are
increased accordingly, while other parameters are held fixed, what is the largest useable value of W?

10.2–13† Consider an AM system with envelope detection operating below threshold. Find ϵ^2 defined in Prob. 10.2–9 assuming that $y_d(t) = y(t)$, $\ddot{x}^2 = 1$, and $\dddot{x} = 0$. Express your answer in terms of γ.

10.2–14 Given a DSB system with $S_T = 100$ W, $S_x = 0.9$, and $(S/N)_D = 30$ dB. What is S_T for an equivalent AM with $\mu = 0.95$?

10.2–15 Prove Eqs. (2) and (12).

10.2–16 A receiver with a synchronous detector receives a barely intelligible message since the $(S/N)_D = 4$ dB. It has been determined that the transmitter has $S_T = 100$ W, $\mu = 0.9$, and $S_x = 0.5$. What is the minimum value of S_T if envelope detection were used.

10.2–17 A $S_T = 100$ DSB transmitter produces a barely intelligible signal such that $(S/N)_D = 4$ dB. What would be the necessary power for an AM transmitter with $\mu = 0.9$, and $S_x = 0.5$?

10.3–1* An exponentially modulated signal plus noise has $S_R = 10$ nW, $W = 500$ kHz, and $\mathcal{F}_N = 10 \mathcal{F}_0$. Find the value of N_0 for PM detection, FM detection, and deemphasized FM detection with $B_{de} = 5$ kHz.

10.3–2 Suppose an nth-order Butterworth LPF is used for the postdetection filter in an FM receiver. Obtain an upper bound on N_D and simplify for $n \gg 1$.

10.3–3 Find $G_j(f)$ when the predetection BPF in an FM receiver has $H_R(f)$ as given in Prob. 10.1–5. Then calculate N_D and simplify taking $B_T \gg W$.

10.3–4 An FM signal plus noise has $S_R = 1$ nW, $W = 500$ kHz, $S_x = 0.1$, $f_a = 2$ MHz, and $\mathcal{F}_N = 10 \mathcal{F}_0$. Find $(S/N)_D$ in dB for FM detection and for deemphasized FM detection with $B_{de} = 5$ kHz.

10.3–5 Obtain an expression for $(S/N)_D$ for PM with deemphasis filtering. Simplify your result taking $B_{de} \gg W$.

10.3–6* The signal $x(t) = \cos 2\pi 200t$ is sent via FM without preemphasis. Calculate $(S/N)_D$ when $f_a = 1$ kHz, $S_R = 500N_0$, and the postdetection filter is an ideal BPF passing $100 \leq |f| \leq 300$ Hz.

10.3–7 Obtain an expression for $(S/N)_D$ for FM with a gaussian deemphasis filter having $|H_{de}(f)|^2 = e^{-(f/f_a)^2}$. Calculate the resulting deemphasis improvement factor when $B_{de} = W/7$.

10.3–8 A certain PM system has $(S/N)_D = 30$ dB. Find the new value of $(S/N)_D$ when the modulation is changed to preemphasized FM with $B_{de} = W/10$, while B_T and all other parameters are held fixed.

10.3–9 Modify Eq. (20) to include deemphasis filtering and rework the calculations in Ex. 10.3–2.
10.3–10* Obtain an expression like Eq. (20) for PM, and determine the upper bound on \((S/N)_0\) at threshold.

10.3–11 Consider the FM FB receiver in Fig. 10.3–7. Let \(v(t)\) be a noise-free FM signal with deviation ratio \(D\) and take the VCO output to be \(2 \cos ([\omega_c - \omega_f]t + K \phi_0(t))\) where \(\phi_0(t) = 2\pi y_0(t)\). Show that the deviation ratio of the IF signal is \(D_{IF} = D/(1 + K)\).

10.3–12 Let's assume you are allowed to broadcast without a license if you stay below the ambient level of radiation is 75 nW/MHz. Measurements have determined that in the general listening area, an ordinary DSB transmission is received with \((S/N)_R = 30\) dB, \(W = 3\) kHz, and \(S_R = 1\) \(\mu\)W. Design an FM system that will enable unlicensed broadcasting for \(W = 3\) kHz messages.

10.3–13 What is the maximum value of \(N_0\) for an FM cell phone whereby \(S_T \leq 3\) W, \(f_3 = 12\) kHz, \(W = 3\) kHz, \(S_x = 0.5\), \(f = 850\) MHz, and cell to tower distance is 1.6 km?

10.4–1* An analog communication system has \(\bar{x}^2 = 1/2\), \(W = 10\) kHz, \(N_0 = 10^{-13}\) W/Hz, and transmission loss \(L = 100\) dB. Calculate \(S_T\) needed to get \((S/N)_0 = 40\) dB when the modulation is (a) SSB; (b) AM with \(\mu = 1\) and \(\mu = 0.5\); (c) PM with \(\phi_\Delta = \pi\); (d) FM with \(D = 1, 5, \) and 10. Omit deemphasis in the FM case, but check for threshold limitations.

10.4–2 Do Prob. 10.4–1 with \(\bar{x}^2 = 1\) and \(W = 20\) kHz.

10.4–3 An analog communication system has \(\bar{x}^2 = 1/2\), \(W = 10\) kHz, \(S_T = 10\) W, and \(N_0 = 10^{-13}\) W/Hz. Calculate the path length corresponding to \((S/N)_0 = 40\) dB for a transmission cable with loss factor \(\alpha = 1\) dB/km when the modulation is (a) SSB; (b) AM with \(\mu = 1\); (c) FM with \(D = 2\) and 8.

10.4–4 Do Prob. 10.4–3 for line-of-sight radio transmission at \(f_c = 300\) MHz with antenna gains of 26 dB at transmitter and receiver.

10.4–5* A signal with \(\bar{x}^2 = 1/2\) is transmitted via AM with \(\mu = 1\) and \((S/N)_0 = 13\) dB. If the modulation is changed to FM (without deemphasis) and the bandwidths are increased accordingly while other parameters remain fixed, what's the largest usable deviation ratio and the resulting value of \((S/N)_0\)?

10.4–6† A frequency-division multiplexing system has USSB subcarrier modulation and FM carrier modulation without preemphasis. There are \(K\) independent input signals, each having bandwidth \(W_0\), and the subcarrier frequencies are \(f_k = (k - 1)W_0\), \(k = 1, 2, \ldots K\). The baseband signal at the FM modulator is \(x_k(t) = \sum \alpha_k x_k(t)\), where the \(\alpha_k\) are constants and \(x_k(t)\) is the \(k\)th subcarrier signal, each having \(\bar{x}^2_k = 1\). The discriminator at the receiver is followed by a bank of BPFs and synchronous detectors.
Use the property that the predetection and postdetection S/N are equal for SSB to show that the output of the kth channel has $(S/N)_k = f_k^2 \alpha_k^2 / N_k$ where $N_k = (3k^2 - 3k + 1)N_d W_0^3 / 3S_k$.

10.4–7* In the system described in Prob. 10.4–6, the α_k are chosen such that $x_k^2 = 1$ and all channels have the same output S/N. Obtain expressions for α_k and $(S/N)_k$ under these conditions.

10.4–8* Consider an FM stereo multiplexing system where, for purposes of analysis, the preemphasis filtering may be done after matrixing and the deemphasis filtering before matrixing. Let the input signals before preemphasis be $x_1(t) = x_1(t) + x_k(t)$ and $x_2(t) = x_1(t) - x_k(t)$, and let the deemphasized outputs before matrixing be $y_1(t) = f_1 x_1(t) + n_1(t)$ and $y_2(t) = f_2 x_2(t) + n_2(t)$ so the final outputs are $y_1(t) \pm y_2(t)$. (a) Show that the power spectral density of $n_2(t)$ is $H_{f_2}(f)^2(N_d/\beta_k)(f^2 + f_2^2)(f/2W)$ where $f_0 = 38$ kHz, and that $n_2^2 \gg \beta_k^2$ when $W = 15$ kHz and $B_{de} = 2.1$ kHz. (b) Taking $x_kx_k = \beta$ and $x_k^3 = x_k^2 = 1/3$—so that $x_k^2 = 1$ if the pilot is small—show that $(S/N)_k$ for each channel in stereo transmission is about 20 dB less than $(S/N)_0$ for monaural transmission.

10.4–9* Given a voice DSB signal with $S_T = 100$ W such that $(S/N)_0 = 30$ dB. What output power would be required for a backup system using binary on-off keyed system with $W = 100$ Hz, and $(S/N)_0 = 15$ dB?

10.4–10 The original advanced phone systems (AMPS) used FM with $f_0 = 12$ kHz and $S_T \leq 3$ W. Assuming $(S/N)_0 = 30$ dB, $W = 3$ kHz and $S_k = 1$, what would be S_T for the equivalent DSB system.

10.4–11 Do Prob. 10.4–10 except for AM with $\mu = 0.90$.

10.4–12 Show why AM and SSB are not suitable for transmitting messages with DC or low-frequency content.

10.6–1* A single-channel PPM signal plus noise has $S_x = 0.4$, $S_R = 10$ nW, $W = 500$ kHz, $f_s = 1.2$ MHz, $t_0 = \tau_0 = 0.1T_s$, $B_T = 10$ MHz, and $\beta_N = 10T_b$. Find the value of $(S/N)_0$ in decibels.

10.6–2 A single-channel PDM signal plus noise has $S_x = 0.1$, $W = 100$ Hz, $f_s = 250$ Hz, $\mu = 0.2$, $t_0 = T_s/50$, $B_T = 3$ kHz, and $\beta_N = 50T_b$. Find the value of S_x so that $(S/N)_0 \approx 40$ dB.

10.6–3 Calculate the upper bound on $(S/N)_0$ for PPM baseband transmission with $B_T = 20$ W and compare with the actual value when $t_0 = 0.3T_s$, $\tau = 0.2T_s$, and $f_s = 2.5$W.

10.6–4 Eq. (5), also holds for each output of a PDM system if we write A^2 in terms of average power in the multiplexed waveform. Use this method to find $(S/N)_0$ for each channel of a PPM-TDM system having nine voice signals plus a marker, $S_x = 1$, $W = 3.2$ kHz, $f_s = 8$ kHz, $\tau = T_s/50$, $B_T = 400$ kHz, and the marker has duration 3τ. Express your result in terms of $\gamma/9$ since there are nine transmitted signals.
10.6–5 Consider an M-channel TDM-PPM system with guard time $T_g = \tau \geq 1/B_1$ and no synchronization marker, so $S_R = Mf_A^2\tau$. Start with Eq. (5), to show that $(S/N)_0 < (1/8)(B_1/MW)^2S_{x}(\gamma/M)$.
Baseband Digital Transmission

CHAPTER OUTLINE

11.1 Digital Signals and Systems
- Digital PAM Signals
- Transmission Limitations
- Power Spectra of Digital PAM
- Spectral Shaping by Precoding

11.2 Noise and Errors
- Binary Error Probabilities
- Regenerative Repeaters
- Matched Filtering
- Correlation Detection
- M-ary Error Probabilities

11.3 Bandlimited Digital PAM Systems
- Nyquist Pulse Shaping
- Optimum Terminal Filters
- Equalization
- Correlative Coding

11.4 Synchronization Techniques
- Bit Synchronization
- Scramblers and PN Sequence Generators
- Frame Synchronization
This chapter launches our study of digital communication systems. We’ll first describe the advantages of digital systems over analog systems. We then focus on baseband transmission to emphasize the generic concepts and problems of digital communication, with or without carrier modulation, and to bring out the differences between digital and analog transmission. Following an overview of digital signals and systems, we’ll analyze the limitations imposed by additive noise and transmission bandwidth. We’ll also look at practical design considerations such as regenerative repeaters, equalization, and synchronization.

The obvious question we should ask is: what do we gain with digital systems over analog ones? After all, an analog system can be implemented with relatively few components, whereas a digital system requires significantly more hardware. For example, a simple analog LPF is implemented with a resistor and capacitor. The equivalent digital implementation requires an analog-to-digital converter (ADC), digital signal processor (DSP), digital-to-analog converter (DAC), and an LPF for antialiasing. Nonetheless, despite the apparent increase in hardware complexity, we gain the following advantages:

1. **Stability.** Digital systems are inherently time invariant. Key system parameters are embedded in algorithms that change only if reprogrammed, making for greater accuracy in signal reproduction. With analog hardware, the signal and its parameters are subject to change with component aging, external temperatures, and other environmental factors.

2. **Flexibility.** Once digital hardware is in place, we have a great deal of flexibility in changing the system. This enables us to employ a multitude of signal processing algorithms to more efficiently (a) improve signal fidelity, (b) do error correction/detection for data accuracy, (c) perform encryption for privacy and security, (d) employ compression algorithms to remove redundancies, and (e) allow for multiplexing of various types of signals such as voice, picture, video, text, and so on. Furthermore, an algorithm can be easily and remotely modified.

3. **Reliable reproduction.** An analog message traveling through a channel becomes degraded by distortion and noise. While we can employ amplifiers (repeaters) to boost the signal, they amplify the noise as well as the signal and can only increase distortion. Thus distortion becomes cumulative. Making a photocopy of another photocopy is an example of this phenomenon. As we will see, with digital communication signal reproduction is extremely reliable whether we employ regenerative repeaters for a long haul digital channel or make copies of digital audio recordings.

It should be noted, however, that we can implement much of an analog communication system using digital hardware and the appropriate ADC and DAC steps, and thereby secure for an analog system many of the advantages of a digital system.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. State the advantages of digital over analog communication.
2. Identify the format of a digital PAM waveform and calculate the mean and variance of the amplitude sequence (Sect. 11.1).
3. Find and sketch the power spectrum of a digital waveform with uncorrelated message symbols (Sect. 11.1).
4. Sketch the conditional PDFs at a digital regenerator, given the noise PDF, and formulate an expression for the error probability (Sect. 11.2).
5. Calculate the equivalent bit-error probability for an optimum M-ary system with a distortionless channel and white noise (Sect. 11.2).
11.1 DIGITAL SIGNALS AND SYSTEMS

Fundamentally, a digital message is nothing more than an ordered sequence of symbols produced by a discrete information source. The source draws from an alphabet of \(M \) \(\geq 2 \) different symbols, and produces output symbols at some average rate \(r \). For instance, a typical computer terminal has an alphabet of \(M = 90 \) symbols, equal to the number of character keys multiplied by two to account for the shift key. When you operate the terminal as fast as you can, you become a discrete information source producing a digital message at a rate of perhaps \(r \approx 5 \) symbols per second. The computer itself works with just \(M = 2 \) internal symbols, represented by LOW and HIGH electrical states. We usually associate these two symbols with the binary digits 0 and 1, known as bits for short. Data transfer rates within a computer may exceed \(r = 10^8 \).

The task of a digital communication system is to transfer a digital message from the source to the destination. But finite transmission bandwidth sets an upper limit to the symbol rate, and noise causes errors to appear in the output message. Thus, signaling rate and error probability play roles in digital communication similar to those of bandwidth and signal-to-noise ratio in analog communication. As preparation for the analysis of signaling rate and error probability, we must first develop the description and properties of digital signals.

Digital PAM Signals

Digital message representation at baseband commonly takes the form of an amplitude-modulated pulse train. We express such signals by writing

\[
x(t) = \sum_k a_k p(t - kD)
\]

(1)

where the modulating amplitude \(a_k \) represents the kth symbol in the message sequence, so the amplitudes belong to a set of \(M \) discrete values. The index \(k \) ranges from \(-\infty\) to \(+\infty\) unless otherwise stated. Equation (1) defines a digital PAM signal, as distinguished from those rare cases when pulse-duration or pulse-position modulation is used for digital transmission.

The unmodulated pulse \(p(t) \) may be rectangular or some other shape, subject to the conditions

6. Relate the transmission bandwidth, signaling rate, and bit rate for an \(M \)-ary system with Nyquist pulse shaping (Sect. 11.3).
7. Determine appropriate parameters for a digital baseband system to satisfy stated specifications (Sects. 11.2 and 11.3).
8. Understand when data scrambling and synchronization are appropriate and how they are accomplished (Sect. 11.4).
9. Identify the properties of a maximal-length sequence produced from an \(n \)-bit shift register with feedback (Sect. 11.4).
10. Determine the output sequence from an \(n \)-bit shift register with given set of feedback connections and initial conditions (Sect. 11.4).
The more common notation \(R \) for bit rate risks confusion with autocorrelation functions and with information rate defined in Chap. 16.

This condition ensures that we can recover the message by sampling \(x(t) \) periodically at \(t = \frac{K D}{11005}, \frac{K D}{11005} + 1, \frac{K D}{11005} + 2, \ldots \), since

\[
x(\frac{K D}{11005}) = \sum_k a_k p(\frac{K D}{11005} - \frac{k D}{11005}) = a_k
\]

The rectangular pulse \(p(t) = \Pi(t/\tau) \) satisfies Eq. (2) if \(\tau \leq D \), as does any time-limited pulse with \(p(t) = 0 \) for \(|t| \geq D/2 \).

Note that \(D \) does not necessarily equal the pulse duration but rather the pulse-to-pulse interval or the time allotted to one symbol. Thus, the signaling rate is

\[
r = \frac{1}{D} \quad (3a)
\]

measured in symbols per second, or baud. In the special but important case of binary signaling \((M = 2)\), we write \(D = T_b \) for the bit duration and the bit rate is

\[
r_b = \frac{1}{T_b} \quad (3b)
\]

measured in bits per second, abbreviated bps or b/s. The notation \(T_b \) and \(r_b \) will be used to identify results that apply only for binary signaling.

Figure 11.1–1 depicts various PAM formats or line codes for the binary message 10110100, taking rectangular pulses for clarity. The simple on-off waveform in part a represents each 0 by an “off” pulse \((a_k = 0) \) and each 1 by an “on” pulse with amplitude \(a_k = A \) and duration \(T_b/2 \) followed by a return to the zero level. We therefore call this a return-to-zero (RZ) format. A nonreturn-to-zero (NRZ) format has “on” pulses for full bit duration \(T_b \), as indicated by the dashed lines. Internal computer waveforms are usually of this type. The NRZ format puts more energy into each pulse, but requires synchronization at the receiver because there’s no separation between adjacent pulses.

The unipolar nature of an on-off signal results in a DC component that carries no information and wastes power. The polar signal in part b has opposite polarity pulses, either RZ or NRZ, so its DC component will be zero if the message contains 1s and 0s in equal proportion. This property also applies to the bipolar signal in part c, where successive 1s are represented by pulses with alternating polarity. The bipolar format, also known as pseudo-trinary or alternate mark inversion (AMI), eliminates ambiguities that might be caused by transmission sign inversions—a problem characteristic of switched telephone links.

The split-phase Manchester format in part d represents 1s with a positive half-interval pulse followed by a negative half-interval pulse, and vice versa for the representation of 0s. This format is also called twinned binary. It guarantees zero DC component regardless of the message sequence. However, it requires an absolute sense of polarity at the receiver.

†The more common notation \(R \) for bit rate risks confusion with autocorrelation functions and with information rate defined in Chap. 16.
Finally, Fig. 11.1–1 shows a quaternary signal derived by grouping the message bits in blocks of two and using four amplitude levels to represent the four possible combinations 00, 01, 10, and 11. Thus, \(D = 2T_b \) and \(r = r_0/2 \). Different assignment rules or codes may relate the \(a_k \) to the grouped message bits. Two such codes are listed in Table 11.1–1. The Gray code has advantages relative to noise-induced errors because only one bit changes going from level to level.

Quaternary coding generalizes to \(M \)-ary coding in which blocks of \(n \) message bits are represented by an \(M \)-level waveform with

\[
M = 2^n
\]

(4a)

Since each pulse now corresponds to \(n = \log_2 M \) bits, the \(M \)-ary signaling rate has been decreased to
Table 11.1–1

<table>
<thead>
<tr>
<th>a_k</th>
<th>Natural Code</th>
<th>Gray Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3A/2</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>A/2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>−A/2</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>−3A/2</td>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

\[
r = \frac{r_b}{\log_2 M}
\]

However, increased transmitted signal power is now required to maintain the same spacing between amplitude levels.

Transmission Limitations

Now consider the linear baseband transmission system diagrammed in Fig. 11.1–2a. We’ll assume for convenience that the transmitting amplifier compensates for the transmission loss, and we’ll lump any interference together with the additive noise. After lowpass filtering to remove out-of-band contaminations, we have the signal-plus-noise waveform

\[
y(t) = \sum_k a_k \tilde{p}(t - t_d - kD) + n(t)
\]

where t_d is the transmission delay and $\tilde{p}(t)$ stands for the pulse shape with transmission distortion. Figure 11.1–2b illustrates what $y(t)$ might look like when $x(t)$ is the rectangular unipolar NRZ signal in the background.

Recovering the digital message from $y(t)$ is the task of the **regenerator**. An auxiliary synchronization signal may help the regeneration process by identifying the optimum sampling times

\[
t_k = kD + t_d
\]

If $\tilde{p}(0) = 1$ then

\[
y(t_k) = a_k + \sum_{k \neq K} a_k \tilde{p}(kD - kD) + n(t_k)
\]

whose first term is the desired message information. The last term of Eq. (5) is the noise contamination at t_k, while the middle term represents cross talk or spillover from other signal pulses—a phenomenon given the descriptive name **inter-symbol interference** (ISI). More specifically, ISI is caused when the channel’s bandwidth is relatively narrow as compared to the signal’s bandwidth. Put another way, the channel’s impulse-response function’s duration is relatively long as compared to the signal’s pulse width. The combined effects of noise and ISI may result in errors in the regenerated message. For instance, at the sample time t_k indicated in Fig. 11.1–2b, $y(t_k)$ is closer to 0 even though $a_k = A$.
We know that if $n(t)$ comes from a white-noise source, then its mean square value can be reduced by reducing the bandwidth of the LPF. We also know that low-pass filtering causes pulses to spread out, which would increase the ISI. Consequently, a fundamental limitation of digital transmission is the relationship between ISI, bandwidth, and signaling rate.

This problem emerged in the early days of telegraphy, and Harry Nyquist (1924, 1928a) first stated the relationship as follows:

Given an ideal lowpass channel of bandwidth B, it is possible to transmit independent symbols at a rate $r \leq 2B$ baud without intersymbol interference. It is not possible to transmit independent symbols at $r > 2B$.

The condition $r \leq 2B$ agrees with our pulse-resolution rule $B \geq 1/2\tau_{\text{min}}$ in Sect. 3.4 if we require $p(t)$ to have duration $\tau \leq D = 1/r$.

The second part of Nyquist's statement is easily proved by assuming that $r = 2(B + \epsilon) > 2B$. Now suppose that the message sequence happens to consist of two symbols alternating forever, such as 101010 . . . The resulting waveform $x(t)$ then is periodic with period $2D = 2/r$ and contains only the fundamental frequency $f_0 = B + \epsilon$ and its harmonics. Since no frequency greater than B gets through the channel, the output signal will be zero—aside from a possible but useless DC component.

Signaling at the maximum rate $r = 2B$ requires a special pulse shape, the sinc pulse

$$p(t) = \text{sinc} \ rt = \text{sinc} \ t/D \quad (6a)$$
having the bandlimited spectrum

\[P(f) = \mathcal{F}[p(t)] = \frac{1}{T} \pi \left(\frac{f}{f_T} \right) \] \hspace{1cm} (6b)

Since \(P(f) = 0 \) for \(|f| > r/2 \), this pulse suffers no distortion from an ideal lowpass frequency response with \(B \geq r/2 \) and we can take \(r = 2B \). Although \(p(t) \) is not time-limited, it does have periodic zero crossings at \(t = \pm \frac{D}{2}, \pm 2D, \ldots \), which satisfies Eq. (2). (See Fig. 6.1–6 for an illustration of this property.) Nyquist also derived other bandlimited pulses with periodic zero crossings spaced by \(\frac{r}{2B} \), a topic we set aside to pick up again in Sect. 11.3 after discussing noise and errors in Sect. 11.2.

Meanwhile, note that any real channel needs equalization to approach an ideal frequency response. Such equalizers often require experimental adjustment in the field because we don’t know the channel characteristics exactly. An important experimental display is the so-called \textbf{eye pattern}, which further clarifies digital transmission limitations.

Consider the distorted but noise-free polar binary signal in Fig. 11.1–3a. When displayed on a long-persistence oscilloscope with appropriate synchronization and sweep time, we get the superposition of successive symbol intervals shown in Fig. 11.1–3b. The shape of this display accounts for the name “eye pattern.” A distorted \(M \)-ary signal would result in \(M - 1 \) “eyes” stacked vertically.

Figure 11.1–4 represents a generalized binary eye pattern with labels identifying significant features. The optimum sampling time corresponds to the maximum eye opening. ISI at this time partially closes the eye and thereby reduces the \textbf{noise margin}. If synchronization is derived from the zero crossings, as it usually is, zero-crossing distortion produces \textbf{jitter} and results in nonoptimum sampling times. The slope of the eye pattern in the vicinity of the zero crossings indicates the sensitivity to timing error. Finally, any nonlinear transmission distortion would reveal itself in an asymmetric or “squinted” eye.

\textbf{EXERCISE 11.1–1} Determine the relation between \(r \) and \(B \) when \(p(t) = \text{sinc}^2 \) at.

![Figure 11.1–3](a) Distorted polar binary signal; (b) eye pattern.
Power Spectra of Digital PAM

The pulse spectrum $P(f) = \mathcal{F}[p(t)]$ provides some hints about the power spectrum of a digital PAM signal $x(t)$. If $p(t) = \text{sinc } rt$, as a case in point, then $P(f)$ in Eq. (6b) implies that $G_x(f) = 0$ for $|f| > r/2$. However, detailed knowledge of $G_x(f)$ provides additional and valuable information relative to digital transmission.

A simplified random digital wave with $p(t) = \Pi(t/D)$ was covered in Chap. 9. Under the conditions

$$E[a_k a_i] = \begin{cases} \sigma_a^2 & i = k \\ 0 & i \neq k \end{cases}$$

we found that $G_x(f) = \sigma_a^2 D \text{sinc}^2 fD$. Now, substituting $P(f) = D \text{sinc} fD$, we write

$$G_x(f) = \frac{\sigma_a^2}{D} |P(f)|^2$$ \hfill (7)

This expression holds for any digital PAM signal with pulse spectrum $P(f)$ when the a_k coefficients are uncorrelated and have zero mean value.

But unipolar signal formats have $\overline{a_k} \neq 0$ and, in general, we can’t be sure that the message source produces uncorrelated symbols. A more realistic approach therefore models the source as a discrete stationary random process. Ensemble averages of the a_k’s are then given by the autocorrelation function

$$R_a(n) = E[a_k a_{k-n}]$$ \hfill (8)

analogous to writing $R_v(\tau) = E[\nu(t)\nu(t - \tau)]$ for a stationary random signal $\nu(t)$. The integers n and k in Eq. (8) reflect the time-discrete nature of a digital sequence.

If a digital PAM signal $x(t)$ has the pulse spectrum $P(f)$ and amplitude autocorrelation $R_a(n)$, its power spectrum is
Despite the formidable appearance of Eq. (9), it easily reduces to Eq. (7) when
\(R_0(0) = \sigma_a^2 \) and \(R_0(n) = 0 \) for \(n \neq 0 \). In the case of uncorrelated message symbols but \(\Sigma_a = m_a \neq 0 \),

\[
R_a(n) = \begin{cases}
\sigma_a^2 + m_a^2 & n = 0 \\
0 & n \neq 0
\end{cases}
\]

and

\[
\sum_{n=-\infty}^{\infty} R_a(n) e^{-j2\pi nf_D} = \sigma_a^2 + m_a^2 \sum_{n=-\infty}^{\infty} e^{-j2\pi nf_D}
\]

Then, drawing upon Poisson's sum formula,

\[
\sum_{n=-\infty}^{\infty} e^{-j2\pi nf_D} = \frac{1}{D} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{D} \right)
\]

and therefore

\[
G_x(f) = \sigma_a^2 |P(f)|^2 + (m_a)^2 \sum_{n=-\infty}^{\infty} |P(nr)|^2 \delta(f - nr)
\]

Here we have inserted \(r = 1/D \) and used the sampling property of impulse multiplication.

The important result in Eq. (11) reveals that the power spectrum of \(x(t) \) contains impulses at harmonics of the signaling rate \(r \), unless \(m_a = 0 \) or \(P(f) = 0 \) at all \(f = nr \). Hence, a synchronization signal can be obtained by applying \(x(t) \) to a narrow BPF (or PLL filter) centered at one of these harmonics. We can also calculate the total average power \(\bar{x}^2 \) by integrating \(G_x(f) \) over all \(f \). Thus,

\[
\bar{x}^2 = \sigma_a^2 r E_p + (m_a)^2 \sum_{n=-\infty}^{\infty} |P(nr)|^2
\]

where \(E_p \) equals the energy in \(p(t) \). For Eq. (12), and hereafter, we presume the conditions in Eq. (10), barring information to the contrary.

The derivation of Eq. (9) starts with the definition of power spectrum from Eq. (7), Sect. 9.2. Specifically, we write

\[
G_x(f) \triangleq \lim_{T \to \infty} \frac{1}{T} \mathbb{E} [|X_T(f)|^2]
\]

in which \(X_T(f) \) is the Fourier transform of a truncated sample function \(x_T(t) = x(t) \) for \(|t| < T/2 \). Next, let \(T = (2K + 1)D \) so the limit \(T \to \infty \) corresponds to \(K \to \infty \). Then, for \(K \gg 1 \),

\[
x_T(t) = \sum_{k=K}^{K} a_k p(t - kD)
\]
After interchanging the order of expectation and summation we have

\[|X_\tau(f)|^2 = |P(f)|^2 \left(\sum_{k=-K}^{K} a_k e^{-j\omega kD} \right) \left(\sum_{n=-\infty}^{\infty} a_n e^{-j\omega nD} \right) \]

Aft er interchanging the order of expectation and summation we have

\[E[|X_\tau(f)|^2] = |P(f)|^2 \rho_k(f) \]

with

\[\rho_k(f) = \sum_{k=-K}^{K} \sum_{n=-\infty}^{\infty} E[a_k a_n e^{-j\omega(k-n)D}] \]

where \(E[a_k a_n] = R_s(k - n) \).

The double summation for \(\rho_k(f) \) can be manipulated into the single sum

\[\rho_k(f) = (2K + 1) \sum_{n=-2K}^{2K} \left(1 - \frac{|n|}{2K + 1} \right) R_s(n) e^{-j\omega nD} \]

Substituting these expressions in the definition of \(G_x(f) \) finally gives

\[G_x(f) = \lim_{K \to \infty} \frac{1}{(2K + 1)D} |P(f)|^2 \rho_k(f) \]

\[= \frac{1}{D} |P(f)|^2 \sum_{n=-\infty}^{\infty} R_s(n) e^{-j\omega nD} \]

as stated in Eq. (9).

Power Spectrum of a Unipolar RZ Signal

Example 11.1–1

Consider the unipolar binary RZ signal in Fig. 11.1–1a, where \(p(t) = \Pi(2r_b t) \) so

\[P(f) = \frac{1}{2r_b} \text{sinc} \frac{f}{2r_b} \]

If the source bits are equally likely and statistically independent, then

\[a_k = A/2, \overline{a_k} = A^2/2, \text{ and Eq. (10) applies with} \]

\[m_a^2 = \sigma_a^2 = \frac{A^2}{4} \]

Using Eq. (11) we find the power spectrum to be

\[G_x(f) = \frac{A^2}{16r_b} \text{sinc}^2 \frac{f}{2r_b} + \frac{A^2}{16} \sum_{n=-\infty}^{\infty} \left(\text{sinc}^2 \frac{n}{2} \right) \delta(f - nr_b) \]
which is sketched in Fig. 11.1–5 for \(f \geq 0 \). Notice the absence of impulses at the even harmonics because \(P(nr_b) = 0 \) when \(n = \pm 2, \pm 4, \ldots \).

We could also, in principle, use Eq. (12) to calculate \(\bar{x}^2 \). However, it should be evident from the waveform that \(\bar{x}^2 = A^2/4 \) when 1s and 0s are equally likely.

EXERCISE 11.1–2 Modify the results of Example 11.1–1 for \(p(t) = \Pi(r_b t) \), corresponding to an NRZ waveform. In particular, show that the only impulse in \(G_x(f) \) is at \(f = 0 \).

Spectral Shaping by Precoding

Precoding refers to operations that cause the statistics of the transmitted amplitude sequence \(a_k \) to differ from the statistics of the original message sequence. Usually, the purpose of precoding is to shape the power spectrum via \(R_a(n) \), as distinguished from \(P(f) \). To bring out the potential for statistical spectral shaping, we rewrite Eq. (9) in the form

\[
G_x(f) = r|P(f)|^2 \left[R_a(0) + 2 \sum_{n=1}^{\infty} R_a(n) \cos(2\pi nf/r) \right]
\]

(13)

having drawn upon the property \(R_a(-n) = R_a(n) \).

Now suppose that \(x(t) \) is to be transmitted over a channel having poor low-frequency response—a voice telephone channel perhaps. With appropriate precoding, we can force the bracketed term in Eq. (13) to equal zero at \(f = 0 \) and thereby eliminate any DC component in \(G_x(f) \), irrespective of the pulse spectrum \(P(f) \). The bipolar signal format back in Fig. 11.1–1c is, in fact, a precoding technique that removes DC content.

The bipolar signal has three amplitude values, \(a_k = +A, 0, \) and \(-A \). If 1s and 0s are equally likely in the message, then the amplitude probabilities are \(P(a_k = 0) = 1/2 \) and \(P(a_k = +A) = P(a_k = -A) = 1/4 \), so the amplitude statistics differ from the
message statistics. Furthermore, the assumption of uncorrelated message bits leads to the amplitude correlation

\[R_a(n) = \begin{cases}
 \frac{A^2}{2} & n = 0 \\
 -\frac{A^2}{4} & n = 1 \\
 0 & n \geq 2
\end{cases} \quad (14a) \]

Therefore,

\[G_x(f) = r_b|P(f)|^2\frac{A^2}{2}(1 - \cos 2\pi f/r_b) \quad (14b) \]

\[= r_b|P(f)|^2A^2 \sin^2 \pi f/r_b \]

which is sketched in Fig. 11.1-6 taking \(p(t) = \Pi(r_b t). \)

Two other precoding techniques that remove DC content are the split-phase Manchester format (Fig. 11.1-1d) and the family of high-density bipolar codes denoted as HDBn. The HDBn scheme is a bipolar code that also eliminates long signal “gaps” by substituting a special pulse sequence whenever the source produces \(n \) successive 0s.

Sketch \(G_x(f) \) for a bipolar signal with \(p(t) = \text{sinc } r_b t \). Then use your sketch to show that \(\bar{x}^2 = \frac{A^2}{2} \).

11.2 **NOISE AND ERRORS**

Here we investigate noise, errors, and error probabilities in baseband digital transmission, starting with the binary case and generalizing to \(M \)-ary signaling.

Figure 11.1–6 Power spectrum of a random data bipolar signal.
We assume throughout a distortionless channel, so the received signal is free of ISI. We also assume additive white noise with zero mean value, independent of the signal. (Some of these restrictions will be lifted in the next section.)

Binary Error Probabilities

Figure 11.2–1 portrays the operations of a baseband binary receiver. The received signal plus noise is applied to a lowpass filter whose transfer function has been designed to remove excess noise without introducing ISI. A sample-and-hold (S/H) device triggered at the optimum times extracts from \(y(t) \) the sample values

\[
y(t_k) = a_k + n(t_k)
\]

Comparing successive values of \(y(t_k) \) with a fixed threshold level \(V \) completes the regeneration process. If \(y(t_k) > V \), the comparator goes HIGH to indicate a 1; if \(y(t_k) < V \), the comparator goes LOW to indicate 0. The regenerator thereby acts as an analog-to-digital converter, converting the noisy analog waveform \(y(t) \) into a noiseless digital signal \(x_d(t) \) with occasional errors.

We begin our analysis taking \(x(t) \) to be a unipolar signal in which \(a_k = A \) represents the message bit 1 and \(a_k = 0 \) represents the message bit 0. Intuitively, then, the threshold should be set at some intermediate level, \(0 < V < A \). The regeneration process is illustrated by the waveforms in Fig. 11.2–2. Errors occur when \(a_k = 0 \) but a positive noise excursion results in \(y(t_k) > V \), or when \(a_k = A \) but a negative noise excursion results in \(y(t_k) < V \).

To formulate the error probabilities, let the random variable \(Y \) represent \(y(t_k) \) at an arbitrary sampling time and let \(n \) represent \(n(t_k) \). The probability density function of \(Y \) obviously involves the noise PDF, but it also depends upon the presence or absence of the signal pulse. We therefore need to work with conditional probabilities. In particular, if \(H_0 \) denotes the hypothesis or assumption that \(a_k = 0 \) and \(Y = n \), we can write the conditional PDF

\[
p_Y(y|H_0) = p_N(y)
\]

where \(p_N(n) \) is the PDF of the noise alone. Similarly, if \(H_1 \) denotes the hypothesis that \(a_k = A \) and \(Y = A + n \), then
Figure 11.2–2 Regeneration of a unipolar signal: (a) signal plus noise; (b) S/H output; (c) comparator output.

\[p_Y(y | H_1) = p_N(y - A) \] \(\text{(1b)} \)

obtained from the linear transformation of \(p_n(n) \) with \(n = y - A \).

Figure 11.2–3 shows typical curves of \(p_Y(y | H_0) \) and \(p_Y(y | H_1) \) along with a proposed threshold \(V \). The comparator implements the following \textbf{decision rule}:

Choose hypothesis \(H_0 \) \(\{ \alpha_k = 0 \} \) if \(Y < V \).
Choose hypothesis \(H_1 \) \(\{ \alpha_k = A \} \) if \(Y > V \).

Figure 11.2–3 Conditional PDFs with decision threshold and error probabilities.
(We ignore the borderline case $Y = V$ whose probability of occurrence will be vanishingly small.) The corresponding regeneration error probabilities are then given by

$$P_{e_0} = \int_{V}^{\infty} p_Y(y|H_0) \, dy$$

$$P_{e_1} = \int_{-\infty}^{V} p_Y(y|H_1) \, dy$$

equivalent to the shaded areas indicated in Fig. 11.2–3. The area interpretation helps bring out the significance of the threshold level when all other factors remain fixed. Clearly, lowering the threshold reduces P_{e_1} and simultaneously increases P_{e_0}. Raising the threshold has the opposite effect.

But an error in digital transmission is an error, regardless of type. Hence, the threshold level should be adjusted to minimize the average error probability

$$P_e = P_0 P_{e_0} + P_1 P_{e_1}$$

where

$$P_0 = P(H_0) \quad P_1 = P(H_1)$$

which stand for the source digit probabilities. The optimum threshold level V_{opt} must therefore satisfy $dP_e/dV = 0$, and Leibniz’s rule for differentiating the integrals in Eq. (2) leads to the general relation

$$P_0 p_Y(V_{opt}|H_0) = P_1 p_Y(V_{opt}|H_1)$$

But we normally expect 1s and 0s to be equally likely in a long string of message bits, so

$$P_0 = P_1 = \frac{1}{2} \quad P_e = \frac{1}{2}(P_{e_0} + P_{e_1})$$

and

$$p_Y(V_{opt}|H_0) = p_Y(V_{opt}|H_1)$$

We’ll work hereafter with the equally likely condition, unless stated otherwise.

Closer examination of Eq. (5b) reveals that V_{opt} corresponds to the point where the conditional PDF curves intersect. Direct confirmation of this conclusion is provided by the graphical construction in Fig. 11.2–4 labeled with four relevant areas, α_1 through α_4. The optimum threshold yields $P_{e_1} = \alpha_1 + \alpha_2$, $P_{e_0} = \alpha_3$, and $P_{e_{nn}} = \frac{1}{2}(\alpha_1 + \alpha_2 + \alpha_3)$. A nonoptimum threshold such as $V < V_{opt}$ yields $P_{e_1} = \alpha_1$ and $P_{e_0} = \alpha_2 + \alpha_3 + \alpha_4$; thus, $P_e = \frac{1}{2}(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4) = P_{e_{nn}} + \frac{1}{2} \alpha_4 > P_{e_{nn}}$.

Next we make the usual assumption that the noise is gaussian with zero mean and variance σ^2, so

$$p_n(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-n^2/2\sigma^2}$$
Substituting this gaussian function into Eqs. (1) and (2) gives
\[P_{e0} = \int_{-\infty}^{\infty} p_0(y)dy = Q\left(\frac{V}{\sigma}\right) \]
\[P_{e1} = \int_{-\infty}^{V} p_0(y-A)dy = Q\left(\frac{A-V}{\sigma}\right) \]
where \(Q \) represents is the area under the gaussian tail as previously defined in Fig. 8.4–2. Since \(p_0(n) \) has even symmetry, the conditional PDFs \(p_r(y|H_0) \) and \(p_r(y|H_1) \) intersect at the midpoint and \(V_{opt} = A/2 \) when \(P_0 = P_1 = \frac{1}{2} \). Furthermore, with \(V = V_{opt} \) in Eq. (6), \(P_{e0} = P_{e1} = Q(A/2\sigma) \) so the optimum threshold yields equal digit error probabilities as well as minimizing the net error probability. Thus, \(P_e = \frac{1}{2}(P_{e0} + P_{e1}) = P_{e0} = P_{e1} \) and
\[P_e = Q\left(\frac{A}{2\sigma}\right) \]
which is the minimum net error probability for binary signaling in gaussian noise when the source digits are equally likely.

Based on Eq. (7), the plot of the \(Q \) function in Table T.6 in the Appendix can be interpreted now as a plot of \(P_e \) versus \(A/2\sigma \). This plot reveals that \(P_e \) drops off dramatically when \(A/2\sigma \) (proportional to the square root of the signal-to-noise ratio) increases. For instance, \(P_e = 2 \times 10^{-2} \) at \(A/2\sigma = 2.0 \) whereas \(P_e = 10^{-9} \) at \(A/2\sigma = 6.0 \).

Although we derived Eq. (7) for the case of a unipolar signal, it also holds in the polar case if \(a_e = \pm A/2 \) so the level spacing remains unchanged. The only difference at the receiver is that \(V_{opt} = 0 \), midway between the two levels. However, the transmitter needs less signal power to achieve a specified level spacing in the polar signal.

Let's bring out that advantage of polar signaling by expressing \(A \) in terms of the average received signal power \(S_R \). If we assume equal digit probabilities and more-or-less rectangular pulses with full-interval duration \(T_b \), then \(S_R = A^2/2 \) for unipolar signaling while \(S_R = A^2/4 \) for polar signaling. (These relations should be obvious from the NRZ waveforms in Fig. 11.1-1.) Hence,
and the factor of $\sqrt{2}$ can make a considerable difference in the value of P_e.

Since the noise has zero mean, the variance σ^2 equals the noise power N_R at the output of the filter. Therefore, we can write $A/2\sigma$ in terms of the signal-to-noise power ratio $(S/N)_R = S_R/N_R$, namely

$$\left(\frac{A}{2\sigma}\right)^2 = \frac{A^2}{4N_R} = \left\{\begin{array}{ll}
\frac{1}{2}(S/N)_R & \text{Unipolar} \\
(S/N)_R & \text{Polar}
\end{array}\right.$$ \hspace{1cm} (9)

But Eq. (9) conceals the effect of the signaling rate r_b. In order to pass pulses of duration $T_b = 1/r_b$, the noise-limiting filter must have $B_N \geq r_b/2$, so

$$N_R = N_0B_N \geq N_0r_b/2$$ \hspace{1cm} (10)

Rapid signaling thus requires more signal power to maintain a given error probability P_e.

EXAMPLE 11.2–1
Bit Error Rate Versus Signal-to-Noise Power Ratio

Suppose a computer produces unipolar pulses at the rate $r_b = 10^6$ bps = 1 M bps for transmission over a noisy system with $N_0 = 4 \times 10^{-20}$ W/Hz. The error rate is specified to be no greater than one bit per hour, or $P_e \leq 1/3600r_b \approx 3 \times 10^{-10}$. Table T.6 in the Appendix indicates that we need $A/2\sigma \geq 6.2$, and Eqs. (9) and (10) give the corresponding signal-power requirement

$$S_R = 2\left(\frac{A}{2\sigma}\right)^2 N_R \geq 1.5 \times 10^{-12} = 1.5 \text{ pW}$$

Clearly, any reasonable signal power ensures almost errorless transmission insofar as additive noise is concerned. Hardware glitches and other effects would be the limiting factors on system performance.

EXERCISE 11.2–1
Consider a unipolar system with equally likely digits and $(S/N)_R = 50$. Calculate $P_{e_{u}}, P_{e_{p}},$ and P_e when the threshold is set at the nonoptimum value $V = 0.4A$. Compare P_e with the minimum value from Eq. (7).

Re regenerative Repeaters

Long-haul transmission requires repeaters, be it for analog or digital communication. But unlike analog-message repeaters, digital repeaters can be regenerative. If the error probability per repeater is reasonably low and the number of hops m is
large, the regeneration advantage turns out to be rather spectacular. This will be demonstrated for the case of polar binary transmission.

When analog repeaters are used and Eq. (11), Sect. 9.4 applies, the final signal-to-noise ratio is $(S/N)_R = (1/m)(S/N)_1$ and

$$P_e = Q\left[\sqrt{\frac{1}{m}}\left(\frac{S}{N}\right)_1\right]$$

(11)

where $(S/N)_1$ is the signal-to-noise ratio after one hop. Therefore, the transmitted power per repeater must be increased linearly with m just to stay even, a factor not to be sneezed at since, for example, it takes 100 or more repeaters to cross the continent. The $1/m$ term in Eq. (11) stems from the fact that the contaminating noise progressively builds up from repeater to repeater.

In contrast, a regenerative repeater station consists of a complete receiver and transmitter back to back in one package. The receiving portion converts incoming signals to message digits, making a few errors in the process; the digits are then delivered to the transmitting portion, which in turn generates a new signal for transmission to the next station. The regenerated signal is thereby completely stripped of random noise but does contain some errors.

To analyze the performance, let α be the error probability at each repeater, namely,

$$\alpha = Q\left[\sqrt{\frac{1}{m}}\left(\frac{S}{N}\right)_1\right]$$

assuming identical units. As a given digit passes from station to station, it may suffer cumulative conversion errors. If the number of erroneous conversions is even, they cancel out, and a correct digit is delivered to the destination. (Note that this is true only for binary digits.) The probability of i errors in m successive conversions is given by the binomial frequency function,

$$P_i(i) = \binom{m}{i} \alpha(1-\alpha)^{m-i}$$

Since we have a destination error only when i is odd,

$$P_e = \sum_{i\text{ odd}} P_i(i) = \binom{m}{1} \alpha(1-\alpha)^{m-1} + \binom{m}{3} \alpha^3(1-\alpha)^{m-3} + \ldots = m\alpha$$

where the approximation applies for $\alpha \ll 1$ and m not too large. Hence,

$$P_e = mQ\left[\sqrt{\frac{1}{m}}\left(\frac{S}{N}\right)_1\right]$$

(12)

so P_e increases linearly with m, which generally requires a much smaller power increase to counteract than Eq. (11).
Figure 11.2–5 illustrates the power saving provided by regeneration as a function of \(m\), the error probability being fixed at \(P_e = 10^{-5}\). Thus, for example, a 10-station nonregenerative baseband system requires about 8.5 dB more transmitted power (per repeater) than a regenerative system.

Matched Filtering

Every baseband digital receiver—whether at the destination or part of a regenerative repeater—should include a lowpass filter designed to remove excess noise without introducing ISI. But what's the optimum filter design for this purpose? For the case of timelimited pulses in white noise, the answer is a **matched filter**. We’ll pursue that case here and develop the resulting minimum error probability for binary signaling in white noise.

Let the received signal be a single timelimited pulse of duration \(\tau\) centered at time \(t = kD\), so

\[x(t) = a_k p(t - kD)\]

where \(p(0) = 1\), \(p(t) = 0\) for \(|t| > \tau/2\), and \(\tau \leq D\). Maximizing the output ratio \((a_k/\sigma)^2\) at time \(t_k = kD + t_d\) will minimize the error probability. As we learned in Sect. 9.5, this maximization calls for a matched filter whose impulse response is proportional to \(p(t_d - t)\). In particular, we take

\[h(t) = \frac{1}{\tau_{eq}} p(t_d - t)\] \hspace{1cm} (13a)

with

\[\tau_{eq} = \int_{-\infty}^{\infty} p^2(t) dt\]

\[t_d = \tau/2\] \hspace{1cm} (13b)

The delay \(t_d = \tau/2\) is the minimum value that yields a causal impulse response, and the proportionality constant \(1/\tau_{eq}\) has been chosen so that the peak output amplitude

Figure 11.2–5 Power saving gained by \(m\) regenerative repeaters when \(P_e = 10^{-5}\).
equals \(a_k \). The parameter \(\tau_{eq} \) can be interpreted from the property that \(a_k^2 \tau_{eq} \) equals the energy of the pulse \(x(t) \).

In absence of noise, the resulting output pulse is \(y(t) = h(t) * x(t) \), with peak value \(y(t_0) = a_k \) as desired. This peak occurs \(\tau/2 \) seconds after the peak of \(x(t) \). Thus, matched filtering introduces an unavoidable delay. However, it does not introduce ISI at the sampling times for adjacent pulses since \(y(t) = 0 \) outside of \(t_k \pm \tau \). Figure 11.2–6 illustrates these points taking a rectangular shape for \(p(t) \), in which case \(\tau_{eq} = \tau \) and \(y(t) \) has a triangular shape.

When \(x(t) \) is accompanied by white noise, the output noise power from the matched filter will be

\[
N_R = \sigma^2 = \frac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 \, df
\]

\[
= \frac{N_0}{2} \int_{-\infty}^{\infty} |\hat{h}(f)|^2 \, df = \frac{N_0}{2 \tau_{eq}}
\]

(14)

This result agrees with the lower bound in Eq. (10) since, for binary signaling, \(\tau_{eq} = T_b = 1/r_B \). We'll use this result to evaluate the maximum value of \((A/2\sigma)^2 \) and the corresponding minimum binary error probability when the noise is white and

Figure 11.2–6 Matched filtering with rectangular pulses: (a) received pulse; (b) impulse response; (c) output pulse.
gaussian and the receiver has an optimum filter matched to the timelimited pulse shape.

Consider a binary transmission system with rate \(r_b \), average received power \(S_R \), and noise density \(N_0 \). We can characterize this system in terms of two new parameters \(E_b \) and \(\gamma_b \) defined by

\[
E_b \triangleq \frac{S_R}{r_b} \quad (15a)
\]

\[
\gamma_b \triangleq \frac{S_R}{N_0 r_b} = \frac{E_b}{N_0} \quad (15b)
\]

The quantity \(E_b \) corresponds to the average energy per bit, while \(\gamma_b \) represents the ratio of bit energy to noise density. If the signal consists of timelimited pulses \(p(t) \) with amplitude sequence \(a_k \), then

\[
E_b = \sum_k \int_{-\infty}^{\infty} p^2(t) \, dt = \sum_k a_k^2 \tau_{eq}
\]

where \(\sum_k a_k^2 = A^2/2 \) for a unipolar signal or \(\sum_k a_k^2 = A^2/4 \) for a polar signal. Thus, since the output noise power from a matched filter is \(\sigma^2 = N_0/2\tau_{eq} \), we have

\[
(A/2\sigma)^2 = \begin{cases}
E_b/N_0 = \gamma_b & \text{Unipolar} \\
2E_b/N_0 = 2\gamma_b & \text{Polar}
\end{cases}
\]

and Eq. (7) becomes

\[
P_e = \begin{cases}
Q(\sqrt{\gamma_b}) & \text{Unipolar} \\
Q(\sqrt{2\gamma_b}) & \text{Polar}
\end{cases} \quad (16)
\]

This is the minimum possible error probability, attainable only with matched filtering.

Finally, we should give some attention to the implementation of a matched filter as described by Eq. (13). The impulse response for an arbitrary \(p(t) \) can be approximated with passive circuit elements, but considerable design effort must be expended to get \(h(t) = 0 \) for \(t > \tau \). Otherwise, the filter may produce significant ISI. For a rectangular pulse shape, you can use an active circuit such as the one diagrammed in Fig. 11.2–7a, called an integrate-and-dump filter. The op-amp integrator integrates each incoming pulse so that \(y(t_k) = a_k \) at the end of the pulse, after which the dump switch resets the integrator to zero— thereby ensuring no ISI at subsequent sampling times. The integrate-and-dump filter is probably the best practical implementation of matched filtering. Figure 11.2–7b illustrates its operation with a polar M-ary waveform.

EXERCISE 11.2–2 Let \(x(t) \) be the unipolar RZ signal in Fig. 11.1–1a. (a) Sketch the corresponding output waveform from a matched filter and from an integrate-and-dump filter. (b) Confirm that matched filtering yields \((A/2\sigma)^2 = \gamma_b\) even though \(\sigma^2 = N_0 r_b\) so \(N_R > N_0 r_b/2\).
Correlation Detector

An equivalent alternative to the matched filter for detection of binary signals is the correlation detector as shown in Fig. 11.2–8. Here we replace the LPF or matched filter of Fig. 11.2–1 by a multiplier, an integrator that acts to correlate the received signal with a noise-free copy of one of the signal waveforms, hence the term correlation detector. We note the matched filter and correlation filter have a similar mathematical implementation in that both involve an integration of the input signal and a replica of itself. This particular implementation is well suited to detect antipodal signals. Signals $x_1(t)$ and $x_0(t)$ are antipodal if $x_0(t) = -x_1(t)$ so that inputs of $x_1(t)$ and $x_0(t)$ will produce integrator outputs that are of opposite polarity from each other (e.g., ±1) as shown in Fig. 11.2–9b and c. On the other hand, if the input signals $x_1(t)$
and \(x_d(t) \) are orthogonal, then the integrator output would be either a signal or the absence of a signal (e.g., 1 or 0). With input \(x(t) \) being an antipodal polar signal of Fig. 11.2–9a and \(K_{s_1}(t - kT_b) = \sqrt{\frac{2}{T_b}} [u(t) - u(t - kT_b)] \), we get the outputs from the various stages of the correlation detector as shown in Fig. 11.2–9b and c.

Chapter 14 discusses how both the matched filter and correlation detector can also be used to detect binary modulated signals.

M-ary Error Probabilities

Binary signaling provides the greatest immunity to noise for a given S/N because it has only two amplitude levels—and you can’t send information with fewer than two levels. Multilevel M-ary signaling requires more signal power but less transmission bandwidth because the signaling rate will be smaller than the bit rate of an equivalent binary signal. Consequently, M-ary signaling suits applications such as digital transmission over voice channels where the available bandwidth is limited and the signal-to-noise ratio is relatively large.

Here we calculate M-ary error probabilities in zero-mean gaussian noise. We’ll take the most common case of polar signaling with an even number of equispaced levels at

\[
a_k = \pm A/2, \pm 3A/2, \ldots \pm (M - 1)A/2
\]

(17)

![Figure 11.2–9](https://example.com/f11.2-9.png)

Figure 11.2–9 Correlation detector waveforms with polar input message 1101: (a) input message; (b) integrator output; (c) S/H output; (d) comparator output.
We'll also assume equally likely \(M \)-ary symbols, so that
\[
P_e = \frac{1}{M} (P_{e_0} + P_{e_1} + \cdots + P_{e_{M-1}}) \tag{18}
\]
which is the \(M \)-ary version of Eq. (5a).

Figure 11.2-10 shows the conditional PDFs for a quaternary \((M = 4)\) polar signal plus gaussian noise. The decision rule for regeneration now involves three threshold levels, indicated in the figure at \(y = -A, 0, \) and \(+A\). These are the optimum thresholds for minimizing \(P_e \), but they do not result in equal error probabilities for all symbols. For the two extreme levels at \(a_k = \pm 3A/2 \) we get
\[
P_{e_k} = P_{e_1} = Q\left(\frac{A}{2\sigma}\right)
\]
whereas
\[
P_{e_i} = P_{e_3} = 2Q\left(\frac{A}{2\sigma}\right)
\]
because both positive and negative noise excursions produce errors for the inner levels at \(a_k = \pm A/2 \). The resulting average error probability is
\[
P_e = \frac{1}{4} \times 6Q\left(\frac{A}{2\sigma}\right) = \frac{3}{2} Q\left(\frac{A}{2\sigma}\right)
\]
or 50 percent greater than binary signaling with the same level spacing.

The foregoing analysis readily generalizes to an arbitrary even value of \(M \) with \(M - 1 \) decision thresholds at
\[
y = 0, \pm A, \pm 2A, \ldots, \pm \frac{M - 2}{2} A \tag{19}
\]
Then \(P_{e_0} = P_{e_{M-1}} = Q(A/2\sigma) \) while the \(M - 2 \) inner levels have doubled error probability, yielding the average error probability
\[
P_e = \frac{1}{M} \left[2 \times Q\left(\frac{A}{2\sigma}\right) + (M - 2) \times 2Q\left(\frac{A}{2\sigma}\right) \right] \tag{20}
\]

![Conditional PDFs for a quaternary polar signal with gaussian noise.](image)
Equation (20) clearly reduces to Eq. (7) when \(M = 2 \), whereas \(P_e = 2Q(A/2\sigma) \) when \(M \gg 2 \).

Next, we relate \(A/2\sigma \) to the signal power and noise density, assuming a time-limited pulse shape \(p(t) \) so the average energy per \(M \)-ary digit is \(E_M = \bar{a}_k^2 \tau_{eq} \) where

\[
\tau_{eq} = \int_{-\infty}^{\infty} p^2(t) \, dt
\]

as before. If the \(M \) amplitude levels are equally likely and given by Eq. (17), then

\[
\bar{a}_k^2 = 2 \times \frac{1}{M} \sum_{i=1}^{M/2} (2i-1)^2 \left(\frac{A}{2} \right)^2 = \frac{M^2 - 1}{12} A^2 \tag{21}
\]

Hence, since \(S_R = rE_M \),

\[
\left(\frac{A}{2\sigma} \right)^2 = \frac{3}{M^2 - 1} \frac{E_M}{\tau_{eq} \sigma^2}
\]

\[
= \frac{3}{M^2 - 1} \frac{1}{r \tau_{eq}} \frac{S_R}{N_R} \leq \frac{6}{M^2 - 1} \frac{S_R}{N_0 r}
\]

where the upper bound corresponds to \(N_R = N_0/2\tau_{eq} \) obtained with matched filtering. Equations (20) and (22) constitute our final result for error probability in a polar \(M \)-ary system with gaussian white noise.

More often than not, \(M \)-ary signaling is used to transmit binary messages and the value of \(M \) is selected by the system engineer to best fit the available channel. We should therefore investigate the design considerations in the selection of \(M \), especially the impact on error probability. Unfortunately Eqs. (20) and (22) fail to tell the full story for two reasons: first, the \(M \)-ary signaling rate differs from the bit rate \(r_b \); second, the \(M \)-ary error probability differs from the bit error probability.

We can easily account for the signaling-rate difference when the message bits are encoded in blocks of length \(\log_2 M \). Then \(r_b \) and \(r \) are related by

\[
r_b = r \log_2 M \tag{23}
\]

from Eq. (4b), Sect. 11.1. To relate the \(M \)-ary symbol error probability \(P_e \) to the resulting error probability per bit, we'll assume a Gray code and a reasonably large signal-to-noise ratio. Under these conditions a noise excursion seldom goes beyond one amplitude level in the \(M \)-ary waveform, which corresponds to just one erroneous bit in the block of \(\log_2 M \) bits. Therefore,

\[
P_{be} = P_e / \log_2 M \tag{24}
\]

where \(P_{be} \) stands for the equivalent \textbf{bit error probability}, also called the bit error rate (BER).
Combining Eqs. (23) and (24) with our previous M-ary expressions, we finally have

\[P_{be} = 2 \frac{M - 1}{M \log_2 M} Q \left(\frac{A}{2\sigma} \right) \] (25a)

in which

\[\left(\frac{A}{2\sigma} \right)^2 \leq \frac{6}{M^2 - 1} \frac{S_R}{N_0} = \frac{6 \log_2 M}{M^2 - 1} \gamma_b \] (25b)

Notice that the upper bound with matched filtering has been written in terms of \(\gamma_b = \frac{S_R}{N_0} = \frac{S_b}{(N_0 \log_2 M)} \). This facilitates the subsequent study of M-ary signaling as a function of energy per message bit.

Comparison of Binary and M-ary Signaling

Suppose the channel in question has a fixed signaling rate \(r = 3000 \text{ baud} = 3 \text{ kbaud} \) and a fixed signal-to-noise ratio \((S/N)_R = 400 = 26 \text{ dB} \). (These values would be typical of a voice telephone channel, for instance.) We’ll assume matched filtering of NRZ rectangular pulses, so \(r_{\text{eq}} = 1 \) and

\[\left(\frac{A}{2\sigma} \right)^2 = \frac{3}{M^2 - 1} (S/N)_R = \frac{6 \log_2 M}{M^2 - 1} \gamma_b \]

which follow from Eqs. (22) and (25b).

Binary signaling yields a vanishingly small error probability when \((S/N)_R = 400 \), but at the rather slow rate \(r_b = r = 3 \text{ kbps} \). M-ary signaling increases the bit rate, per Eq. (23), but the error probability also increases because the spacing between amplitude levels gets smaller when you increase \(M \) with the signal power held fixed. Table 11.2-1 brings out the inherent tradeoff between bit rate and error probability for this channel.

Another type of tradeoff is illustrated by Table 11.2-2, where the bit rate and error probability are both held fixed. Increasing \(M \) then yields a lower signaling rate \(r \) — implying a smaller transmission bandwidth requirement. However, the

Table 11.2-1

<table>
<thead>
<tr>
<th>(M)</th>
<th>(r_b) (kbps)</th>
<th>(A/2\sigma)</th>
<th>(P_{be})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>20.0</td>
<td>3 \times 10^{-9}</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>8.9</td>
<td>1 \times 10^{-9}</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>4.4</td>
<td>4 \times 10^{-6}</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>2.2</td>
<td>7 \times 10^{-3}</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>1.1</td>
<td>6 \times 10^{-2}</td>
</tr>
</tbody>
</table>
energy per bit must now be increased to keep the error probability unchanged. Observe that going from \(M = 2 \) to \(M = 32 \) reduces \(r \) by a factor of 5 but increases \(\gamma_b \) by more than a factor of 60. This type of tradeoff will be reconsidered from the broader viewpoint of information theory in Chap. 16.

EXERCISE 11.2–3

Consider the three-level bipolar binary format in Fig. 11.1–1c with amplitude probabilities \(P(a_k = 0) = 1/2 \) and \(P(a_k = +A) = P(a_k = -A) = 1/4 \). Make a sketch similar to Fig. 11.2–10 and find \(P_e \) in terms of \(A \) and \(\sigma \) when the decision thresholds are at \(y = \pm A/2 \). Then calculate \(S_R \) and express \(P_e \) in a form like Eq. (16).

11.3 BANDLIMITED DIGITAL PAM SYSTEMS

This section develops design procedures for baseband digital systems when the transmission channel imposes a bandwidth limitation. By this we mean that the available transmission bandwidth is not large compared to the desired signaling rate and, consequently, rectangular signaling pulses would be severely distorted. Instead, we must use bandlimited pulses specially shaped to avoid ISI.

Accordingly, we begin with Nyquist’s strategy for bandlimited pulse shaping. Then we consider the optimum terminal filters needed to minimize error probability. The assumption that the noise has a gaussian distribution with zero mean value will be continued, but we’ll allow an arbitrary noise power spectrum. We’ll also make allowance for linear transmission distortion, which leads to the subject of equalization for digital systems. The section closes with an introductory discussion of correlative coding techniques that increase the signaling rate on a bandlimited channel.

Nyquist Pulse Shaping

Our presentation of Nyquist pulse shaping will be couched in general terms of \(M \)-ary signaling with \(M \geq 2 \) and symbol interval \(D = 1/r \). In order to focus on potential ISI problems at the receiver, we’ll let \(p(t) \) be the pulse shape at the output of the receiving filter. A gain assuming that the transmitter gain compensates for transmission loss, the output waveform in absence of noise is...
As before, we want \(p(t) \) to have the property

\[
p(t) = \begin{cases}
1 & t = 0 \\
0 & t = \pm D, \pm 2D, \ldots
\end{cases}
\]

(1a)

which eliminates ISI. Now we impose the additional requirement that the pulse spectrum be bandlimited, such that

\[
P(f) = 0 \quad |f| \geq B
\]

(1b)

where

\[B = \frac{r}{2} + \beta \quad 0 \leq \beta \leq \frac{r}{2}\]

This spectral requirement permits signaling at the rate

\[r = 2(B - \beta) \quad B \leq r \leq 2B\]

(2)

in which \(B \) may be interpreted as the minimum required transmission bandwidth, so that \(B_T \geq B \).

Nyquist's vestigial-symmetry theorem states that Eq. (1) is satisfied if \(p(t) \) has the form

\[p(t) = p_{\mu}(t) \text{sinc } rt\]

(3a)

with

\[\mathcal{F}[p_{\mu}(t)] = P_{\mu}(f) = 0 \quad |f| > \beta\]

(3b)

\[p_{\mu}(0) = \int_{-\infty}^{\infty} P_{\mu}(f) \, df = 1\]

Clearly, \(p(t) \) has the time-domain properties of Eq. (1a). It also has the frequency-domain properties of Eq. (1b) since

\[P(f) = P_{\mu}(f) \ast [(1/r) \Pi(f/r)]\]

and the convolution of two bandlimited spectra produces a new bandlimited spectrum whose bandwidth equals the sum of the bandwidths, namely, \(B = \beta + r/2 \). Usually we take \(p_{\mu}(t) \) to be an even function so \(P_{\mu}(f) \) is real and even; then \(P(f) \) has vestigial symmetry around \(f = \pm r/2 \), like the symmetry of a vestigial-sideband filter.

Infinitely many functions satisfy Nyquist's conditions, including the case when \(p_{\mu}(t) = 1 \) so \(\beta = 0 \) and \(p(t) = \text{sinc } rt \), as in Eq. (6), Sect. 11.1. We know that this pulse shape allows bandlimited signaling at the maximum rate \(r = 2B \). However, synchronization turns out to be a very touchy matter because the pulse shape falls off no faster than \(1/|t| \) as \(|t| \to \infty \). Consequently, a small timing error \(\epsilon \) results in the sample value
and the ISI in the second term can be quite large.

Synchronization problems are eased by reducing the signaling rate and using pulses with a cosine rolloff spectrum. Specifically, if

\[
P_{\beta}(f) = \frac{\pi}{4\beta} \cos \frac{\pi f}{2\beta} \prod \left(\frac{f}{2\beta} \right)
\]

then

\[
P(f) = \begin{cases}
\frac{1}{\beta} & |f| < \frac{r}{2} - \beta \\
\frac{1}{\beta} \cos^2 \frac{\pi}{4\beta}(|f| - \frac{r}{2} + \beta) & \frac{r}{2} - \beta < |f| < \frac{r}{2} + \beta \\
0 & |f| > \frac{r}{2} + \beta
\end{cases}
\]

and the corresponding pulse shape is

\[
p(t) = \frac{\cos 2\pi \beta t}{1 - (4\beta t)^2} \text{sinc } rt
\]

Plots of \(P(f)\) and \(p(t)\) are shown in Fig. 11.3–1 for two values of \(\beta\) along with \(\beta = 0\). When \(\beta > 0\), the spectrum has a smooth rolloff and the leading and trailing oscillations of \(p(t)\) decay more rapidly than those of \(\text{sinc } rt\).

Further consideration of Eqs. (4) and (5) reveals two other helpful properties of \(p(t)\) in the special case when \(\beta = r/2\), known as 100-percent rolloff. The spectrum then reduces to the raised cosine shape

\[
P(f) = \frac{1}{r} \cos^2 \frac{\pi f}{2r} = \frac{1}{2r} \left[1 + \cos \left(\frac{\pi f}{r} \right) \right]
\]

and

\[p(t) = \frac{\cos 2\pi \beta t}{1 - (4\beta t)^2} \text{sinc } rt
\]

Figure 11.3–1 Nyquist pulse shaping versus values of \(\beta\): (a) spectra; (b) waveforms.
The half-amplitude width of this pulse exactly equals the symbol interval \(D \), that is, \(p(\pm 0.5D) = 1/2 \), and there are additional zero crossings at \(t = \pm 1.5D, \pm 2.5D, \ldots \). A polar signal constructed with this pulse shape will therefore have zero crossings precisely halfway between the pulse centers whenever the amplitude changes polarity. Figure 11.3–2 illustrates this feature with the binary message 10110100. These zero crossings make it a simple task to extract a synchronization signal for timing purposes at the receiver. However, the penalty is a 50 percent reduction of signaling speed since \(r = B/2 \) rather than \(2B \). Nyquist proved that the pulse shape defined by Eq. (6a) and (6b) is the only one possessing all of the aforementioned properties.

Sketch \(P(f) \) and find \(p(t) \) for the Nyquist pulse generated by taking \(P_\beta(f) = (2/r)(2f/r) \). Compare your results with Eq. (6).

Optimum Terminal Filters

Having abandoned rectangular pulses, we must likewise abandon the conventional matched filter and reconsider the design of the optimum receiving filter that minimizes error probability. This turns out to be a relatively straightforward problem under the following reasonable conditions:

1. The signal format is polar, and the amplitudes \(a_k \) are uncorrelated and equally likely.
2. The transmission channel is linear but not necessarily distortionless (i.e., spec- tality flat).
3. The filtered output pulse \(p(t) \) is to be Nyquist-shaped.
4. The noise is additive and has a zero-mean gaussian distribution but may have a nonwhite power spectrum.

To allow for possible channel distortion and/or nonwhite noise, our optimization must involve filters at both the transmitter and receiver. As a bonus, the source wave- form \(x(t) \) may have a more-or-less arbitrary pulse shape \(p_x(t) \).

\[
p(t) = \frac{\text{sinc} 2rt}{1 - (2rt)^2}
\]

EXERCISE 11.3–1

Figure 11.3–2 Baseband waveform for 10110100 using Nyquist pulses with \(\beta = r/2 \).
Figure 11.3–3 lays out the system diagram, including a transmitting filter function $H_T(f)$, a channel function $H_C(f)$, and a receiving filter function $H_R(f)$. The input signal has the form

$$x(t) = \sum_k a_k p(t - kD)$$ \hspace{1cm} (7a)$$

and its power spectrum is

$$G_x(f) = \sigma_x^2 |P_x(f)|^2$$ \hspace{1cm} (7b)$$

where $P_x(f) = \mathcal{F}[p_x(t)]$ and

$$\sigma_x^2 = \overline{a_k^2} = \frac{M^2 - 1}{12} A^2$$ \hspace{1cm} (7c)$$

These relations follow from Eq. (12), Sect. 11.1, and Eq. (21), Sect. 11.2, with our stated conditions on a_k. Thus, the transmitted signal power will be

$$S_T = \int_{-\infty}^{\infty} |H_T(f)|^2 G_x(f) \, df = \frac{M^2 - 1}{12} A^2 \int_{-\infty}^{\infty} |P_x(f)|^2 \, df$$ \hspace{1cm} (8)$$

a result we’ll need shortly.

At the output of the receiving filter we want the input pulse $p_x(t)$ to produce a Nyquist-shaped pulse $p(t - t_d)$, where t_d represents any transmission time delay. The transfer functions in Fig. 11.3–3 must therefore obey the relationship

$$P_x(f)H_T(f)H_C(f)H_R(f) = P(f) e^{-j\omega t_d}$$ \hspace{1cm} (9)$$

so both terminal filters help shape $p(t)$. Note that only the receiving filter controls the output noise power

$$N_R = \sigma_n^2 = \int_{-\infty}^{\infty} |H_R(f)|^2 G_n(f) \, df$$ \hspace{1cm} (10)$$

where $G_n(f)$ is the noise power spectrum at the input to the receiver.

Equations (7)–(10) constitute the information relevant to our design problem. Specifically, since the error probability decreases as $A/2\sigma$ increases, we seek the terminal filters that maximize $(A/2\sigma)^2$ subject to two constraints: (1) the transmitted power must be held fixed at some specified value S_T, and (2) the filter transfer functions must satisfy Eq. (9).
11.3 Bandlimited Digital PAM Systems

We incorporate Eq. (9) and temporarily eliminate $H_T(f)$ by writing

$$|H_T(f)| = \frac{|P(f)|}{|P_x(f)H_C(f)H_R(f)|}$$ \hspace{1cm} (11)

Then we use Eqs. (8) and (10) to express as

$$\left(\frac{A}{2\sigma} \right)^2 = \frac{3S_T}{(M^2 - 1)r} \frac{1}{I_{HR}}$$ \hspace{1cm} (12a)

where

$$I_{HR} = \int_{-\infty}^{\infty} |H_R(f)|^2G_n(f)\,df \int_{-\infty}^{\infty} \frac{|P(f)|^2}{|H_C(f)H_R(f)|^2}\,df$$ \hspace{1cm} (12b)

Maximizing $(A/2\sigma)^2$ thus boils down to minimizing the product of integrals I_{HR}, in which $H_R(f)$ is the only function under our control.

Now observe that Eq. (12b) has the form of the right-hand side of Schwarz’s inequality as stated in Eq. 17, Sect. 3.6. The minimum value of I_{HR} therefore occurs when the two integrands are proportional. Consequently, the optimum receiving filter has

$$|H_R(f)|^2 = \frac{g|P(f)|}{\sqrt{G_n(f)}|H_C(f)|}$$ \hspace{1cm} (13a)

where g is an arbitrary gain constant. Equation (11) then gives the optimum transmitting filter characteristic

$$|H_T(f)|^2 = \frac{|P(f)|\sqrt{G_n(f)}}{g|P_x(f)|^2|H_C(f)|}$$ \hspace{1cm} (13b)

These expressions specify the optimum amplitude ratios for the terminal filters. Note that the receiving filter deemphasizes those frequencies where $G_n(f)$ is large, and the transmitting filter supplies the corresponding preemphasis. The phase shifts are arbitrary, provided that they satisfy Eq. (9).

Substituting Eq. (13) into Eq. (12) yields our final result

$$\left(\frac{A}{2\sigma} \right)^2_{\text{max}} = \frac{3S_T}{(M^2 - 1)r} \left[\int_{-\infty}^{\infty} \frac{|P(f)|\sqrt{G_n(f)}}{|H_C(f)|} \,df \right]^{-2}$$ \hspace{1cm} (14)

from which the error probability can be calculated using Eq. (20), Sect. 11.2. As a check of Eq. (14), take the case of white noise with $G_n(f) = N_0/2$ and a distortionless channel with transmission loss L so $|H_C(f)|^2 = 1/L$; then

$$\left(\frac{A}{2\sigma} \right)^2_{\text{max}} = \frac{65T/L}{(M^2 - 1)rN_0} \left[\int_{-\infty}^{\infty} |P(f)| \,df \right]^{-2}$$
But since $S_r/L = S_N$ and Nyquist-shaped pulses have
\[
\int_{-\infty}^{\infty} |P(f)| df = 1
\]
we thus obtain
\[
\left(\frac{A}{2\sigma} \right)_{max}^2 = \frac{6S_r}{M^2 - 1 N_0} = \frac{6\log_2 M}{M^2 - 1} \gamma_b
\]
which confirms that the optimum terminal filters yield the same upper bound as matched filtering—see Eqs. (22) and (25), Sect. 11.2.

Example 11.3–1

Optimum Terminal Filters

Consider a system with white noise, transmission loss L, and a distortionless channel response over $|f| \leq B_T$ where $B_T = r$. This transmission bandwidth allows us to use the pulse shape $p(t)$ in Eq. (6), thereby simplifying synchronization. Simplicity also suggests using the rectangular input pulse $p_x(t) = \Pi(t/\tau)$ with $\tau \leq 1/r$, so $P_x(f) = r \operatorname{sinc} rf$. Taking the gain constant g in Eq. (13) such that $|H_R(0)| = 1$, we have
\[
|H_R(f)| = \cos \frac{\pi f}{2r} \quad |H_T(f)| = \sqrt{L} \frac{\cos (\pi f/2r)}{r \tau \operatorname{sinc} rf} \quad |f| \leq r
\]
as plotted in Fig. 11.3–4. Notice the slight high-frequency rise in $|H_T(f)|$ compared to $|H_R(f)|$. If the input pulses have a small duration $\tau \ll 1/r$, then this rise becomes negligible and $|H_T(f)| \approx |H_R(f)|$, so one circuit design serves for both filters.

Exercise 11.3–2

Carry out the details going from Eq. (12) to Eqs. (13) and (14).

Figure 11.3–4

Amplitude ratio of optimum filters in Example 11.3–1.
Equalization

Regardless of which particular pulse shape has been chosen, some amount of residual ISI inevitably remains in the output signal as a result of channel distortion, imperfect filter design, incomplete knowledge of the channel characteristics, and so on. Hence, an adjustable equalizing filter is often inserted between the receiving filter and the regenerator. These “mop-up” or channel-correction equalizers usually have the structure of a transversal filter as previously discussed in Sect. 3.2 relative to linear distortion of analog signals. However, mop-up equalization of digital signals involves different design strategies that deserve attention here.

Figure 11.3–5 shows a transversal equalizer with $2N + 1$ taps and total delay $2ND$. The distorted pulse shape $\tilde{p}(t)$ at the input to the equalizer is assumed to have its peak at $t = 0$ and ISI on both sides. The equalized output pulse will be

$$p_{eq}(t) = \sum_{n=-N}^{N} c_n \tilde{p}(t - nD - ND)$$

and sampling at $t_k = kD + ND$ yields

$$p_{eq}(t_k) = \sum_{n=-N}^{N} c_n \tilde{p}(kD - nD) = \sum_{n=-N}^{N} c_n \tilde{p}_{k-n}$$

(15)

where we’ve introduced the shorthand notation $\tilde{p}_{k-n} = \tilde{p}[(k - n)D]$. Equation (15) thus takes the form of a discrete convolution.

Ideally, we would like the equalizer to eliminate all ISI, resulting in

$$p_{eq}(t_k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

Unfortunately, this cannot be achieved, in general, because the $2N + 1$ tap gains are the only variables at our disposal. We might settle instead for choosing the tap gains such that

$$p_{eq}(t_k) = \begin{cases} 1 & k = 0 \\ 0 & k = \pm 1, \pm 2, \ldots, \pm N \end{cases}$$

(16)

Figure 11.3–5 Transversal equalizer with $2N + 1$ taps.
thereby forcing \(N \) zero values on each side of the peak of \(p_{eq}(t) \). The corresponding tap gains are computed from Eqs. (15) and (16) combined in the matrix equation

\[
\begin{bmatrix}
\bar{p}_0 & \cdots & \bar{p}_{-2N} \\
\vdots & \ddots & \vdots \\
\bar{p}_{N-1} & \cdots & \bar{p}_{-N-1} \\
\bar{p}_N & \cdots & \bar{p}_{-N} \\
\vdots & \ddots & \vdots \\
\bar{p}_{N+1} & \cdots & \bar{p}_{-N+1} \\
\vdots & \ddots & \vdots \\
\bar{p}_{2N} & \cdots & \bar{p}_0
\end{bmatrix}
\begin{bmatrix}
c_{-N} \\
\vdots \\
c_{-1} \\
c_0 \\
\vdots \\
c_1 \\
\vdots \\
c_N
\end{bmatrix}
= \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix}
\tag{17}
\]

Equation (17) describes a **zero-forcing equalizer**. This equalization strategy is optimum in the sense that it minimizes the peak intersymbol interference, and it has the added advantage of simplicity.

EXAMPLE 11.3–2 Three-tap Zero Forcing Equalizer

Suppose a three-tap zero forcing equalizer is to be designed for the distorted pulse plotted in Fig. 11.3–6a. Inserting the values of \(\bar{p}_i \) into Eq. (17) with \(N = 1 \), we have

\[
\begin{bmatrix}
1.0 & 0.1 & 0.0 \\
-0.2 & 1.0 & 0.1 \\
0.1 & -0.2 & 1.0
\end{bmatrix}
\begin{bmatrix}
c_{-1} \\
c_0 \\
c_1
\end{bmatrix}
= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}
\]

Therefore,

\[
c_{-1} = -0.096 \quad c_0 = 0.96 \quad c_1 = 0.2
\]

and the corresponding sample values of \(p_{eq}(t) \) are plotted in Fig. 11.3–6b with an interpolated curve. As expected, there is one zero on each side of the peak. However, zero forcing has produced some small ISI at points further out where the unequalized pulse was zero; nevertheless, as is evident the overall integrated ISI is improved.

Recall from Sect. 3.2 that if \(H_c(f) \) describes the channel response, then we could design an equalizing filter based on the inverse,

\[
H_{eq}(f) = \frac{K e^{-j\omega_0}}{H_c(f)}
\tag{18}
\]

However, if the channel were noisy, then the Fourier transform of its output would be \(\hat{P}'(f) = \hat{P}(f) + \hat{N}(f) \), with \(\hat{N}(f) \) representing the noise spectrum. If \(\hat{P}'(f) \) were inputted to the equalizer, then the equalizer’s output would be the ideal pulse plus a modified noise term, or
Where $p_{eq}(t)$ is the Fourier transform of the equalizer's output. In observing Eq. (19) it’s possible to have frequencies f_j such that $N(f_j) \neq 0$ and $H_C(f_j) = 0$, causing a nearly divide-by-zero condition; thus, the inverse filter could exacerbate the noise.

To reduce the effects of noise, **minimum mean squared-error** (MMSE) equalization takes into account the noise when setting the tap gains of the transversal filter of Fig. 11.3–5. Instead of adjusting the tap coefficients to create an exact inverse of $H_C(f)$ or to force $p_{eq}(t_k) = 1$ when $k = 0$ and $p_{eq}(t_k) = 0$ when $k \neq 0$, we adjust the coefficients to get the MMSE ε^2 between the actual equalizer output and the desired output. Our MMSE method of deriving and then presetting the tap coefficients is the same as used by Gibson (1993) and Schwartz (2005). Let $p(t_k)$ be the desired equalizer output obtained using a training or reference sequence. As already noted, $p_{eq}(t_k)$ is the actual equalizer output. We select the filter tap gains c_n to minimize

$$
\varepsilon^2 = \sum_{k=1}^{K} e_k^2 = \sum_{k=1}^{K} [p(t_k) - p_{eq}(t_k)]^2
$$
As you will observe in doing Probs. 11.3–20 and 11.3–21, using Eq. (17) to get
\[p(t_k) = \sum_{n=-N}^{N} c_n \bar{p}_{k-n} \]
and then
\[\bar{p}_{k-m} \]
Rearranging terms, Eq. (21) becomes
\[\sum_{k=-K}^{K} \sum_{n=-N}^{N} c_n \bar{p}_{k-n} \bar{p}_{k-m} = \sum_{k=-K}^{K} p(t_k) \bar{p}_{k-m} \]
and then
\[\sum_{n=-N}^{N} c_n \sum_{k=-K}^{K} \bar{p}_{k-n} \bar{p}_{k-m} = \sum_{k=-K}^{K} p(t_k) \bar{p}_{k-m} \]
To implement Eq. (22), we will use the \([0,0\ldots,1,0,0\ldots0]\) output of Eq. (17) to obtain
\[p(t_k) \]
The unqualized signal samples \(\bar{p}_{k-r} \) are obtained by measuring the filter outputs.
As you will observe in doing Probs. 11.3–20 and 11.3–21, using Eq. (17) to get \(p(t_k) \)
for Eq. (22) is not the same as implementing the zero forcing algorithm previously discussed.
With \(2N+1 \) equations and \(2N+1 \) unknowns, we can then compute the
\(2N+1 \) tap coefficients. Also, when setting up the terms of Eq. (22), each of the
\(2N+1 \) equations corresponds to a fixed value of \(m \). For example, let’s say we want to
implement a three-tap equalization filter of Example 11.3–2; Eq. (22) is set up as follows
(Gibson, 1993):
\[m = -1 \]
\[c_{-1} \sum_{k} \bar{p}_{k+1}^2 + c_0 \sum_{k} \bar{p}_{k} \bar{p}_{k+1} + c_1 \sum_{k} \bar{p}_{k-1} \bar{p}_{k+1} = \sum_{k} p(t_k) \bar{p}_{k+1} \]
\[m = 0 \]
\[c_{-1} \sum_{k} \bar{p}_{k+1} \bar{p}_{k} + c_0 \sum_{k} \bar{p}_{k}^2 + c_1 \sum_{k} \bar{p}_{k-1} \bar{p}_{k} = \sum_{k} p(t_k) \bar{p}_{k} \]
\[m = 1 \]
\[c_{-1} \sum_{k} \bar{p}_{k+1} \bar{p}_{k-1} + c_0 \sum_{k} \bar{p}_{k} \bar{p}_{k-1} + c_1 \sum_{k} \bar{p}_{k-1}^2 = \sum_{k} p(t_k) \bar{p}_{k-1} \]
The \(c_i \) coefficients are then obtained by solving the above equations using the given
values of \(\bar{p}_{k}, \bar{p}_{k \pm 1} \), and \(p(t_k) \). An alternative approach to this MMSE method discussed
in the literature uses the signal’s autocorrelation and cross-correlation statistics.
During the transmission, the channel characteristics may vary, and it would be
desirable to have the filter track these changes in order to update the coefficients and
thus create an **adaptive equalizer**. This can work if the channel is a switched telephone
link or some other path with slowly changing conditions. The reference signal \(p(t_k) \)
could still be supplied by data embedded in the transmission. Alternatively, we could obtain an updated estimate of \(p(t_k) \) based on differences between the present equalizer output and the regenerator output and then use this information to update the tap coefficients. The assumption for success is that the original equalizer output was accurate and the system is making only incremental updates. This method of coefficient adjustment, called **decision-directed** equalization, is shown in Fig. 11.3–7.

When the \(k \)th message is received, the tap coefficients are then updated as follows:

\[
c^{k+1}_n = c^k_n + \Delta \varepsilon_k \tilde{p}_n
\]

(23a)

and

\[
\varepsilon_k = \hat{m}(t_k) - p_{eq}(t_k)
\]

(23b)

where \(c^{k+1}_n \) is the \((k + 1)\) estimate of the \(n\)th tap coefficient, \(\tilde{p}_n \) is the output of transversal filter’s \(n\)th delay element, \(\Delta \) is a step-size constant, and \(\hat{m}_k \) is the \(k\)th message symbol at the output of the regenerator. Constant \(\Delta \) is determined experimentally. There may be times when we would want to use a known message symbol \(m_k \) when using Eq. (23) to update the coefficients.

A further enhancement to the decision-directed equalizer is the **decision feedback equalizer** (DFE) as shown in Fig. 11.3–8. Here we take the output symbol and run it through a separate transversal filter, where the output is then subtracted from the next equalized filter output, hence removing the distortion components of the past signal from the next one. This is, thus, a nonlinear filter. The weights of this feedback filter are set in a similar way as the feedforward filter of the decision-directed transversal filter. See Lucky, Salz, & Weldon (1968), Sklar (2001), and Proakis & Saleihi (2005) for more information on equalization methods.

Correlative Coding

Correlative coding, also known as **partial-response signaling**, is a strategy for bandlimited transmission at \(r = 2B \) that avoids the problems associated with \(p(t) = \text{sinc } rt \).

Figure 11.3–7 Decision-directed adaptive equalizer.
The strategy involves two key functional operations, correlative filtering and digital precoding. Correlative filtering purposely introduces controlled intersymbol interference, resulting in a pulse train with an increased number of amplitude levels and a correlated amplitude sequence. Nyquist's signaling-rate limitation no longer applies because the correlated symbols are not independent, and therefore higher signaling rates are possible. Digital precoding of the message sequence before waveform generation facilitates message recovery from the correlative-filtered pulse train.

Figure 11.3–9a shows the general model of a transmission system with correlative coding, omitting noise. The digital precoder takes the sequence of message symbols \(m_k\) and produces a coded sequence \(\hat{m}_k\) applied to an impulse generator. (In practice, the impulses would be replaced by short rectangular pulses with duration \(\tau \ll D\).) The resulting input signal is an impulse train

\[x(t) = \sum_k a_k \delta(t - kD)\]

whose weights \(a_k\) represent the \(m_k\). The terminal filters and channel have the overall transfer function \(H(f)\), producing the output waveform

\[y(t) = \sum_k a_k h(t - kD)\] \(\text{(24)}\)

where \(h(t) = \mathcal{F}^{-1}[H(f)]\).
Although a correlative filter does not appear as a distinct block in Fig. 11.3–9a, the transfer function \(H(f) \) must be equivalent to that of Fig. 11.3–9b—which consists of a transversal filter and an ideal LPF. The transversal filter has total delay \(ND \) and \(N + 1 \) tap gains. Since the impulse response of the LPF is \(\text{sinc} \ rt \) and \(r = 1/D \), the cascade combination yields the overall impulse response

\[
h(t) = \sum_{n=0}^{N} c_n \text{sinc} (rt - n)
\]

Hence, Eq. (24) becomes

\[
y(t) = \sum_{k} a_k \left[\sum_{n=0}^{N} c_n \text{sinc} (rt - n - k) \right]
\]

\[= \sum_{k} a'_k \text{sinc} (rt - k)\]

where

\[
a'_k \triangleq c_0 a_k + c_1 a_{k-1} + \cdots + c_N a_{k-N} = \sum_{n=0}^{N} c_n a_{k-n}
\]

Message regeneration must then be based on the sample values \(y(t_k) = a'_k \).

Equation (26) brings out the fact that correlative filtering changes the amplitude sequence \(a_k \) into the modified sequence \(a'_k \). We say that this sequence has a **correlation span** of \(N \) symbols, since each \(a'_k \) depends on the previous \(N \) values of \(a_k \). Furthermore, when the \(a_k \) sequence has \(M \) levels, the \(a'_k \) sequence has \(M' > M \).
levels. To demonstrate that these properties of correlative filtering lead to practical bandlimited transmission at \(r = 2B \), we now look at an important specific case.

Duobinary signaling is the simplest type of correlative coding, having \(M = 2, N = 1 \), and \(c_0 = c_1 = 1 \). The equivalent correlative filter is diagrammed in Fig. 11.3–10 along with its impulse response

\[
h(t) = \text{sinc} \, r_b t + \text{sinc} \, (r_b t - 1) \tag{27a}
\]

and the magnitude of the transfer function

\[
H(f) = \frac{2}{r_b} \cos \frac{\pi f}{r_b} e^{-|2|f/r_b} \quad |f| \leq r_b/2 \tag{27b}
\]

The smooth rolloff of \(H(f) \) is similar to the spectrum of a Nyquist-shaped pulse and can be synthesized to a good approximation. But, unlike Nyquist pulse shaping, duobinary signaling achieves this rolloff without increasing the bandwidth requirement above \(B = r_b/2 \). In exchange for the signaling rate advantage, a duobinary

![Duobinary signaling: (a) equivalent correlative filter; (b) impulse response; (c) amplitude ratio.](image)
waveform has intentional ISI and \(M' = 3 \) levels—attributed to the property of the impulse response that \(h(t) = 1 \) at both \(t = 0 \) and \(t = T_b \).

To bring out the ISI effect, let the amplitude sequence \(a_k \) be related to the pre-coded binary message sequence \(m'_k \) by

\[
 a_k = (m'_k - 1/2)A = \begin{cases}
 + A/2 & m'_k = 1 \\
 - A/2 & m'_k = 0
\end{cases} \tag{28}
\]

which is equivalent to a polar binary format with level spacing \(A \). Equation (26) then gives the corresponding output levels

\[
y(t_k) = a'_k = a_k + a_{k-1} = (m'_k + m'_{k-1} - 1)A \tag{29a}
\]

\[
= \begin{cases}
 + A & m'_k = m'_{k-1} = 1 \\
 0 & m'_k \neq m'_{k-1} \\
 - A & m'_k = m'_{k-1} = 0
\end{cases} \tag{29b}
\]

In principle, you could use Eq. (29b) to recover \(m'_k \) from \(y(t_k) \) if you have previously recovered \(m'_{k-1} \). However, when noise causes an erroneous value of \(m'_{k-1} \), all subsequent message bits will then be in error until the next noise-induced error—a phenomenon called error propagation.

The digital precoder for duobinary signaling shown in Fig. 11.3–11a prevents error propagation and makes it possible to recover the input message sequence \(m_k \) from \(y(t_k) \). The precoder consists of an exclusive-OR gate with feedback through a D-type flip-flop. Figure 11.3–11b lists the coding truth table along with the algebraic sum \(m'_k + m'_{k-1} \) that appears in Eq. (29a). Substitution now yields

\[
y(t_k) = \begin{cases}
 \pm A & m_k = 0 \\
 0 & m_k = 1
\end{cases} \tag{30}
\]

which does not involve \(m_{k-1} \) thanks to the precoder. When \(y(t) \) includes additive gaussian white noise, the appropriate decision rule for message regeneration is:

Choose \(m_k = 0 \) if \(|y| > A/2 \).
Choose \(m_k = 1 \) if \(|y| < A/2 \).

This rule is easily implemented with a rectifier and a single decision threshold set at \(A/2 \). Optimum terminal filter design gives the minimum error probability

\[
P_e = \frac{3}{2} Q \left(\frac{\pi}{4} \sqrt{2\gamma_b} \right) \tag{31}
\]

which is somewhat higher than that of a polar binary system.

When the transmission channel has poor DC response, (e.g., a phone line or some RF links), modified duobinary signaling may be employed. The correlative filter has \(N = 2 \), \(c_0 = 1 \), \(c_1 = 0 \), and \(c_2 = -1 \), so that
EXAMPLE 11.3-3

Duobinary System With Precoding

Consider a duobinary system that uses the precoding of Fig. 11.3–11 and has binary message \(m_k = 000010011000 \). For the purposes of initial conditions, we set the initial values of \(m'_k-1 \) and \(a_k - 1 \) to 0 and \(-A\), respectively. Table 11.3-1 shows the message input, \(m_k \); the precoded output, \(m'_k \); the input to the correlative filter, \(a_k \), with \(A = 2 \); and finally the correlative filter output, \(y(t_k) \). Note that if we apply the rule of Eq. (30), we will recover the original message from \(y(t_k) \rightarrow \hat{m}_k \). Now let’s consider the modified duobinary system of Fig. 11.3–12 that includes precoding with two

<table>
<thead>
<tr>
<th>(m_k)</th>
<th>(m'_{k-1})</th>
<th>(m'_k)</th>
<th>(m'k + m'{k-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Duobinary Signaling Example with Precoding

\[
H(f) = \frac{2j}{r_b} \sin \frac{2\pi f}{r_b} e^{-j2\pi f/\tau_1} \quad |f| \leq r_b/2
\]

Figure 11.3-12 shows \(|H(f)|\) and the block diagram of the resulting correlative filter. The precoder takes the form of Fig. 11.3–11 with two flip-flops in series to feed back \(m'_{k-2} \). If the pulse generation is in accordance with Eq. (28), then

\[
y(t_k) = a_k - a_{k-2} = (m'_k - m'_{k-2})A
\]

which can be compared with Eqs. (29) and (30).
Construct a truth table like Fig. 11.3–11b for the case of modified duobinary signaling and use it to obtain Eq. (27).

EXERCISE 11.3–3

11.4 SYNCHRONIZATION TECHNIQUES

Synchronization is in essence the art of making clocks tick together. The clocks in a digital communication system are at the transmitter and receiver, and allowance must be made for the transmission time delay between them. Besides symbol synchronization, most systems also require frame synchronization to identify the start of a message or various subdivisions within the message sequence. Additionally, carrier synchronization is essential for digital transmission with coherent carrier modulation—a topic to be discussed in Chap. 14.

Here we’ll just consider symbol and frame synchronization in baseband binary systems. Our attention will be focused on extracting synchronization from the received signal itself, rather than using an auxiliary sync signal. By way of an overview, Fig. 11.4–1 illustrates the position of the bit synchronizer relative to the
clock and regenerator. Framing information is usually derived from the regenerated message and the clock, as indicated by the location of the frame synchronizer. We’ll look at typical synchronization techniques, along with the related topics of shift-register operations for message scrambling and pseudonoise (PN) sequences for framing purposes.

Our coverage of synchronization will be primarily descriptive and illustrative. Detailed treatments of digital synchronization with additive noise are given by Mengali and D’Andrea (1997).

Bit Synchronization

Bit-sync generation becomes almost trivial when \(y(t) \) has unipolar RZ format so its power spectrum \(G_y(f) \) includes \(\delta(f \pm f_b) \), like Fig. 11.1–5. A PLL or narrow BPF tuned to \(f = f_b \) will then extract a sinusoid proportional to \(\cos(2\pi f_b t + \phi) \), and phase adjustment yields a sync signal for the clock. The same technique works with a polar format if \(y(t) \) is first processed by a square-law device, as diagrammed in Fig. 11.4–2a. The resulting unipolar waveform \(y^u(t) \) shown in Fig. 11.4–2b now has the desired sinusoidal component at \(f = f_b \). Various other nonlinear polar-to-unipolar operations on \(y(t) \) achieve like results in open-loop bit synchronizers.

However, a closed-loop configuration that incorporates the clock in a feedback loop provides more reliable synchronization. Figure 11.4–3 gives the diagram and explanatory waveforms for a representative closed-loop bit synchronizer. Here a zero-crossing detector generates a rectangular pulse with half-bit duration \(T_b/2 \) starting at each zero-crossing in \(y(t) \). The pulsed waveform \(z(t) \) then multiplies the square-wave clock signal \(c(t) \) coming back from the voltage-controlled clock (VCC). The control voltage \(u(t) \) is obtained by integrating and lowpass-filtering the product \(z(t)c(t) \). The loop reaches steady-state conditions when the edges of \(c(t) \) and \(z(t) \) are synchronized and offset by \(T_b/4 \), so the product has zero area and \(u(t) \) remains constant. Practical implementations of this system usually feature digital components in place of the analog multiplier and integrator.

Both of the foregoing techniques work best when the zero-crossings of \(y(t) \) are spaced by integer multiples of \(T_b \). Otherwise, the synchronization will suffer from timing jitter. An additional problem arises if the message includes a long string of 1s or 0s, so \(y(t) \) has no zero-crossings, and synchronism may be lost. Message scramblers, discussed shortly, are used to help alleviate this problem.
Figure 11.4–2 Bit synchronization by polar to unipolar conversion: (a) block diagram; (b) waveforms.

Figure 11.4–3 Closed-loop bit synchronization with a voltage-controlled clock: (a) block diagram; (b) waveforms.
A different approach to synchronization, independent of zero-crossings, relies on the fact that a properly filtered digital signal has peaks at the optimum sampling times and is reasonably symmetric on either side. Thus, if t_k is synchronized and $\delta < T_b/2$, then

$$|y(t_k - \delta)| = |y(t_k + \delta)| < |y(t_k)|$$

However, a late sync signal produces the situation shown in Fig. 11.4-4a, where $|y(t_k - \delta)| > |y(t_k + \delta)|$, while an early sync signal would result in $|y(t_k - \delta)| < |y(t_k + \delta)|$. The **early-late synchronizer** in Fig. 11.4-4b uses these properties to develop the control voltage for a VCC in a feedback loop. A late sync signal results in $v(t) = |y(t_k - \delta)| - |y(t_k + \delta)| > 0$, which speeds up the clock, and, conversely, an early sync signal slows down the VCC.

Scramblers and PN Sequence Generators

Scrambling is a coding operation applied to the message at the transmitter that “randomizes” the bit stream, eliminating long strings of like bits that might impair receiver synchronization. Scrambling also eliminates most periodic bit patterns that could produce undesirable discrete-frequency components (including DC) in the power spectrum. Needless to say, the scrambled sequence must be unscrambled at the receiver so as to preserve overall bit sequence transparency.

![Figure 11.4-4](image-url)
Figure 11.4-4 Early-late bit synchronization: (a) waveform; (b) block diagram.
Simple but effective scramblers and unscramblers are built from tapped shift registers having the generic form of Fig. 11.4–5, the digital counterpart of a tapped delay line. Successive bits from the binary input sequence b_k enter the register and shift from one stage to the next at each tick of the clock. The output b'_k is formed by combining the bits in the register through a set of tap gains and (mod-2) adders, yielding

$$b'_k = \alpha_1 b_{k-1} \oplus \alpha_2 b_{k-2} \oplus \cdots \oplus \alpha_n b_{k-n}$$ \hspace{1cm} (1)$$

The tap gains themselves are binary digits, so $\alpha_1 = 1$ simply means a direct connection while $\alpha_1 = 0$ means no connection. The symbol \oplus stands for modulo-2 addition, defined by the properties

$$b_1 \oplus b_2 = \begin{cases}
0 & b_1 = b_2 \\
1 & b_1 \neq b_2
\end{cases}$$ \hspace{1cm} (2a)$$

and

$$b_1 \oplus b_2 \oplus b_3 = (b_1 \oplus b_2) \oplus b_3 = b_1 \oplus (b_2 \oplus b_3)$$ \hspace{1cm} (2b)$$

where b_1, b_2, and b_3 are arbitrary binary digits. Mod-2 addition is implemented with exclusive-OR gates, and obeys the rules of ordinary addition except that $1 \oplus 1 = 0$.

Figure 11.4–6 shows an illustrative scrambler and unscrambler, each employing a 4-stage shift register with tap gains $\alpha_1 = \alpha_2 = 0$ and $\alpha_3 = \alpha_4 = 1$. (For clarity, we omit the clock line here and henceforth.) The binary message sequence m_k at the input to the scrambler is mod-2 added to the register output m'_k to form the scrambled message m''_k which is also fed back to the register input. Thus, $m''_k = m'_{k-1} \oplus m'_{k-4}$ and

$$m'_k = m_k \oplus m''_k$$ \hspace{1cm} (3a)$$

The unscrambler has essentially the reverse structure of the scrambler and reproduces the original message sequence, since

$$m''_k \oplus m'_k = (m_k \oplus m''_k) \oplus m'_k$$ \hspace{1cm} (3b)$$

$$= m_k \oplus (m''_k \oplus m'_k) = m_k \oplus 0 = m_k$$
Equations (3a) and (3b) hold for any shift-register configuration as long as the scrambler and unscrambler have identical registers.

The exact scrambling action does, of course, depend on the shift-register configuration. Table 11.4–1 portrays the scrambling produced by our illustrative scrambler when the initial state of the register is all 0s. Note that the string of nine 0s in \(m_k \) has been eliminated in \(m_k' \). Nonetheless, there may be some specific message sequence that will result in a long string of like bits in \(m_k' \). Of more serious concern is error propagation at the unscrambler, since one erroneous bit in \(m_k' \) will cause several output bit errors. Error propagation stops when the unscrambler register is full of correct bits.

Next, in preparation for the subsequent discussion of frame synchronization, we consider shift register sequence generation. When a shift register has a nonzero initial state and the output is fed back to the input, the unit acts as a periodic sequence generator. Figure 11.4–7 shows an illustrative sequence generator using a five-stage

<table>
<thead>
<tr>
<th>Table 11.4–1 Register contents, inputs and outputs for the scrambler/unscrambler of Fig. 11.4–6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
</tr>
<tr>
<td>(m_{k,-1})</td>
</tr>
<tr>
<td>0 1 0 1 0</td>
</tr>
</tbody>
</table>

\[m_k = 1 0 1 1 0 0 0 0 0 \]

\[m_k' = 1 0 1 0 1 1 1 1 0 \]
Figure 11.4–7 Shift register sequence generator with [5, 2] configuration.

shift register where the second and fifth cells are tapped and mod-2 added, and the result is fed back to the first stage so

\[m_1 = m_2 \oplus m_5 \quad (4) \]

and the sequence output is \(m_5 \). For shorthand purposes this can also be referred to as a [5, 2] configuration. If the initial state of the register is 11111, it then produces a 31-bit sequence 11111011010010001010111011000, which repeats periodically thereafter. In general

\[N = 2^n - 1 \quad (5) \]

If the appropriate feedback tap connections are made, then an \(n \)-bit register can produce a maximal-length (ML) sequence per Eq. (5). (Figure 11.4–7 is, in fact, an ML sequence generator with \(n = 5 \) and \(N = 31 \).) An ML sequence has the following properties:

1. **Balance.** The number of ones generated is one more than the number of zeros generated.
2. **Run.** A run is a sequence of a single type of digit. An ML sequence will have one-half of its runs of length 1, one-quarter of its runs of length 2, one-eighth of its runs of length 3, and so on.
3. **Autocorrelation.** Its autocorrelation function has properties similar to the correlation properties of random noise, in that there is a single autocorrelation peak.
4. The mod-2 addition of an ML sequence and any shifted version of it results in a shifted version of the original sequence.
5. Except for the zero state, all of the \(2^n \) possible states will exist during the sequence generation.

Maximal-length sequences are all also called pseudonoise (PN) sequences. The name pseudonoise comes from the correlation properties of PN sequences. To develop this point, let a PN sequence \(s \) be used to form a binary polar NRZ signal

\[s(t) = \sum_k (2s_k - 1)p(t - kT_c) \quad (6) \]

where \(p(t) \) is a rectangular pulse and the amplitude of the kth pulse is

\[c(t) = 2s_k - 1 = \begin{cases} +1 & s_k = 1 \\ -1 & s_k = 0 \end{cases} \quad (7) \]
The signal \(s(t) \) is deterministic and periodic, with period \(N T_c \), and has a periodic autocorrelation function given by

\[
R_s(\tau) = [(N + 1)A(\tau/T_c) - 1]/N
\]

where \(|\tau| \leq NT_c/2 \) which is plotted in Fig. 11.4–8. If \(N \) is very large and \(T_c \) very small, then

\[
R_s(\tau) = T_c \delta(\tau) - 1/N
\]

so the PN signal acts essentially like white noise with a small DC component. This noiselike correlation property leads to practical applications in test instruments, radar ranging, spread-spectrum communications (described in Chap. 15), and digital framing.

When we use PN generators to operate on a data stream, to avoid significant DC content in the PN sequence and minimize information loss to the signal we are operating on, we use the function \(c(t) \) instead of the polar \(s_k \) for our scrambling sequence.

Autocorrelation of a \([3,1]\) Shift Register

A 3-bit, \([3, 1]\) shift register configuration with values of 111 produces a periodic ML sequence of 1110100 with \(N = 7 \). A simple way used by Dixon (1994) to calculate the autocorrelation function for the comparable \(c(t) \) sequence is to compare the original \(s_k \) sequence to each of its \(N - 1 \) shifted versions (\(\tau = 0 \) to \(6T_c \)). Then, for each pair, let \(v(\tau) \) be the difference between the number of bit matches and mismatches, so the autocorrelation function is \(R_{3,1}(\tau) = v(\tau)/N \) and hence the results shown in Table 11.4–2.

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>Original/shifted</th>
<th>(v(\tau)) (matches–mismatches)</th>
<th>(R_{3,1}(\tau) = v(\tau)/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1110100</td>
<td>7.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1110100</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1110100</td>
<td>0111010</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>1110100</td>
<td>0011101</td>
<td>1.00</td>
</tr>
<tr>
<td>3</td>
<td>1110100</td>
<td>1001110</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>1110100</td>
<td>0100111</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>1110100</td>
<td>1010011</td>
<td>1.00</td>
</tr>
<tr>
<td>6</td>
<td>1110100</td>
<td>1101001</td>
<td>1.00</td>
</tr>
<tr>
<td>0</td>
<td>1110100</td>
<td>7.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
If plotted, the autocorrelation function would look like the one in Fig. 11.4–8 with \(N = 7 \) and \(T_c = 1 \). From this, we observe our [3, 1] shift register configuration produces an M L sequence.

Show that the output sequence from a 5-stage, [5, 4, 3, 2] register with initial conditions 11111 is 111100100101101010001110 and has period 31.

Frame Synchronization

A digital receiver needs to know when a signal is present. Otherwise, the input noise alone may produce random output bits that could be mistaken for a message. Therefore, identifying the start of a message is one aspect of frame synchronization. Another aspect is identifying subdivisions or frames within the message. To facilitate frame synchronization, binary transmission usually includes special \(N \)-bit sync words as represented in Fig. 11.4–9. The initial prefix consists of several repetitions of the sync word, which marks the beginning of transmission and allows time for robust bit-sync acquisition. The prefix is followed by a different codeword labeling the start of the message itself. Frames are labeled by sync words inserted periodically in the bit stream.

The elementary frame synchronizer in Fig. 11.4–10 is designed to detect a sync word \(s_1 s_2 \ldots s_N \) whenever it appears in the regenerated sequence \(m_k \). Output bits with the polar format

\[
a_k = 2m_k - 1 = \pm 1
\]
are loaded into an N-stage polar shift register having polar tap gains given by

\[c_i = 2s_{N+1-i} - 1 \] \hspace{1cm} (10)

This awkward-looking expression simply states that the gains equal the sync-word bits in polar form and reverse order, that is, \(c_1 = 2s_N - 1 \) while \(c_N = 2s_1 - 1 \). The tap-gain outputs are summed algebraically to form

\[v_k = \sum_{i=1}^{N} c_i a_{k-i} \] \hspace{1cm} (11)

This voltage is compared with a threshold voltage \(V \), and the frame-sync indicator goes HIGH when \(v_k > V \).

If the register word is identical to the sync word, then \(a_{k-i} = c_i \) so \(c_i a_{k-i} = c_i^2 = 1 \) and \(v_k = N \). If the register word differs from the sync word in just one bit, then \(v_k = N - 2 \) (why?). Setting the threshold voltage \(V \) slightly below \(N \) or \(N - 1 \) successive message bits match the sync-word bits. The probability of this event is

\[P_{ff} = \left(\frac{1}{2} \right)^N + \left(\frac{1}{2} \right)^{N-1} = 3 \times 2^{-N} \] \hspace{1cm} (12)

assuming equally likely 1s and 0s in the bit stream.

Further examination of Eqs. (10) and (11) reveals that the frame synchronizer calculates the cross-correlation between the bit stream passing through the register and the sync word, as represented by the tap gains. The correlation properties of a PN sequence therefore make it an ideal choice for the sync word. In particular,
suppose the prefix consists of several periods of a PN sequence. As the prefix passes through the frame-sync register, the values of v_k will trace out the shape of $R_s(\tau)$ in Fig. 11.4–8 with peaks $v_k = N$ occurring each time the initial bit s_1 reaches the end of the register. An added advantage is the ease of PN sequence generation at the transmitter, even with large values of N. For instance, getting $P_\mu < 10^{-4}$ in Eq. (12) requires $N > 14.8$, which can be accomplished with only a 4-stage PN generator.

11.5 QUESTIONS AND PROBLEMS

Questions

1. Why are asymmetrical square pulses rarely sent directly over a channel?
2. Why are binary pulses designed so that the DC content is 0?
3. How can a given signal's eye pattern help us determine the probability of error?
4. What is meant by noise immunity? Provide an example.
5. What is the advantage of precoding?
6. Why is regeneration more efficient than simply adding an amplifier to the signal?
7. Why is it necessary that the signal be coded in such a way that its autocorrelation function has a relatively high value?
8. What channel parameter(s) affects inter-symbol interference (ISI)?
9. Give a qualitative answer as to why a correlation detector is optimum for detection of signals buried in noise.
10. What is the purpose of the capacitor discharge switch of Fig. 11.2–7? What is the alternative to having this switch?
11. Why is it necessary to demodulate baseband signals?
12. Why, as stated in Sect. 11.2, does polar signaling have a P_e advantage over unipolar signaling even though the signal amplitude spacing is the same?
13. What is the effect of a bandlimited channel in the transmission of a digital signal?
14. Why are matched filters better suited in the processing of digital signals than conventional LPFs?
15. What are the advantages/disadvantages of M-ary PAM versus binary PAM?
16. Why is Nyquist pulse shaping employed?
17. Why is channel equalization necessary?
18. What is the fundamental difference(s) between zero-force equalization and MMSE equalization?
19. Why is Eq. (17) for MMSE equalization not the same as zero-forced equalization?
20. What does duo binary coding accomplish?
21. Describe means other than shift registers to scramble a signal.

Problems
11.1–1 Sketch \(x(t) \) and construct the corresponding eye pattern (without transmission distortion) for binary PAM with the data sequence 1011100010 when the signal has a unipolar format and pulse shape \(p(t) = \cos^2(\pi t/2T_b) \Pi(t/2T_b) \).
11.1–2 Do Prob. 11.1–1 with \(p(t) = \cos(\pi t/2T_b) \Pi(t/2T_b) \).
11.1–3 Do Prob. 11.1–1 with a polar format and \(p(t) = \cos(\pi t/2T_b) \Pi(t/2T_b) \).
11.1–4 Do Prob. 11.1–1 with a bipolar format and \(p(t) = \Lambda(t/T_b) \).
11.1–5 Do Prob. 11.1–1 with a bipolar format.
11.1–6 Modify Table 11.1–1 for an octal signal.
11.1–7* A certain computer generates binary words, each consisting of 16 bits, at the rate of 20,000 words per second. (a) Find the bandwidth required to transmit the output as a binary PAM signal. (b) Find \(M \) so that the output could be transmitted as an \(M \)-ary signal on a channel having \(B = 60 \) kHz.
11.1–8 A certain digital tape reader produces 3000 symbols per second, and there are 128 different symbols. (a) Find the bandwidth required to transmit the output as a binary PAM signal. (b) Find \(M \) so that the output could be transmitted as an \(M \)-ary signal on a telephone link having \(B = 3 \) kHz.
11.1–9 Binary data is transmitted as a unipolar signal with \(A = 1 \) and \(p(t) = u(t + T_b) - u(t) \). The transmission system's step response is \(g(t) = K_0(1 - e^{-bt})u(t) \), where \(b = 2/T_b \). (a) Sketch \(\tilde{g}(t) \) and find \(K_0 \) such that \(\tilde{g}(0) = 1 \). (b) Sketch \(y(t) \) for the data sequence 10110 and evaluate \(y(t) \) and the ISI at the optimum sampling times.
11.1–10 Do Prob. 11.1–9 for a polar signal with \(A/2 = 1 \) and a transmission system having \(b = 1/T_b \).
11.1–11* Consider digital transmission with a gaussian pulse shape \(p(t) = \exp[-\pi(bt)^2] \), which is neither timelimited nor bandlimited and does not have periodic zero crossings. Let \(p(kD) \leq 0.01 \) for \(k \neq 0 \), to limit the ISI, and let the bandwidth \(B \) be such that \(P(f) \leq 0.01P(0) \) for \(|f| > B \). Find the resulting relationship between \(r \) and \(B \).
11.1–12* Consider a polar RZ signal whose message bits are statistically independent, uncorrelated, zero mean value, and are transmitted at a rate of 1 M bps. What is the \(W \) such that the output power level is -40 dB below the maximum level?
11.1–13 Repeat Prob. 11.1–12 with a unipolar signal. What observations can be made between the solutions of Probs. 11.1–12 and 11.1–13?

11.1–14 Find and sketch the power spectrum of a binary PAM signal with polar RZ format and rectangular pulses, assuming independent and equiprobable message bits. Then show that the time-domain and frequency-domain calculations of \mathcal{X}^2 are in agreement.

11.1–15 Consider a unipolar binary PAM signal whose pulse shape is the raised cosine in Example 2.5–2 with total duration $2\tau = T_b$. (a) Sketch $x(t)$ for the data sequence 10110100. Then find and sketch the power spectrum, assuming independent equiprobable message bits. (b) Repeat part a with $2\tau = 2T_b$.

11.1–16 Find and sketch the power spectrum of a polar binary PAM signal when the message bits are independent but have unequal probabilities, say α and $1 - \alpha$. Use your sketch to show that \mathcal{X}^2 is independent of α.

11.1–17 Find and plot the power spectrum of a binary signal with the split-phase Manchester format in Fig. 11.1–1c assuming independent equiprobable message bits. Compare your result with Fig. 11.1–6.

11.1–18 Verify the correlation properties of bipolar precoding given in Eq. (14a) by tabulating the possible sequences and their probabilities for $n = 0, n = 1,$ and $n = 2$. Assume independent equiprobable message bits.

11.1–19† Let $g(n)$ be a function of the discrete variable n. By expanding and rearranging the summation, show that

$$\sum_{k=-K}^{K} \sum_{i=-K}^{K} g(k - i) = (2K + 1) \sum_{n=-2K}^{2K} \left(1 - \frac{|n|}{2K + 1}\right) g(n)$$

Apply this result to carry out the manipulation of the sum $\rho_k(f)$ used to derive $G_d(f)$ from $E[|X_1(f)|^2]$.

11.1–20† Consider a binary signal constructed using different pulse shapes $p_1(t)$ and $p_0(t)$ to represent 1s and 0s. For purposes of analysis, we can write

$$x(t) = \sum_k [a_k p_1(t - kT_b) + b_k p_0(t - kT_b)]$$

where a_k equals the kth bit and $b_k = 1 - a_k$. (a) Assuming independent and equiprobable bits, show that $\bar{a}_k = \bar{b}_k = \bar{a}_k^2 = \bar{b}_k^2 = 1/2$, $\bar{a}_k \bar{b}_k = 0$, and $\bar{a}_i \bar{a}_j = \bar{b}_i \bar{b}_j = \bar{a}_i \bar{b}_j = 1/4$ for $i \neq k$. (b) Now form the truncated signal $x_f(t)$ with $T = (2K + 1)T_b \gg T_b$ and show that

$$E[|X_f(f)|^2] = \frac{2K + 1}{4} |P_1(f) - P_0(f)|^2$$

$$+ \frac{1}{4} |P_1(f) + P_0(f)|^2 \sum_{k=-K}^{K} \sum_{i=-K}^{K} e^{-j\omega(k-i)T_b}$$
where \(P_e(f) = \mathcal{F}[p_1(t)] \) and \(P_0(f) = \mathcal{F}[p_0(t)] \). (c) Finally, use the relationship in Prob. 11.1–19 and Poisson's sum formula to obtain

\[
G_s(f) = \frac{r_b^2}{4}|P_1(f) - P_0(f)| \+
\frac{r_b^2}{4} \sum_{n=-\infty}^{\infty} |P_1(nr_b) - P_0(nr_b)|^2 \delta(f - nr_b)
\]

11.2–1* Find \((S/N)_b\) such that a unipolar binary system with AWGN has \(P_e = 0.001 \). What would be the error probability of a polar system with the same \((S/N)_b\)?

11.2–2 A binary system has AWGN with \(N_0 = 10^{-8}/r_b \). Find \(S_R \) for polar and unipolar signaling so that \(P_e \leq 10^{-6} \).

11.2–3 Some switching circuits generate impulse noise, which can be modeled as filtered white noise with average power \(\sigma^2 \) and an exponential PDF

\[
p_n(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{n^2}{2\sigma^2}}
\]

(a) Develop an expression for \(P_e \) in terms of \(A \) and \(\sigma \) for polar binary signaling contaminated by impulse noise. (b) Compare the effect of impulse noise with that of gaussian noise by considering the condition \(P_e \leq 0.001 \).

11.2–4* Consider a polar binary system with ISI and AWGN such that \(y(t_k) = a_k + \epsilon_k + n(t_k) \), where the ISI \(\epsilon_k \) is equally likely to be \(+\alpha \) or \(-\alpha \). (a) Develop an expression for \(P_e \) in terms of \(A \), \(\alpha \), and \(\sigma \). (b) Evaluate \(P_e \) when \(A = 8\sigma \) and \(\alpha = 0.1A \). Compare your result with the error probability without ISI.

11.2–5 Do Prob. 11.2–4 taking \(\epsilon_k = +\alpha, 0, \) and \(-\alpha \) with probabilities 0.25, 0.5, and 0.25, respectively.

11.2–6 Use Eq. (4) to obtain an expression for the optimum threshold in a polar binary system with AWGN when \(P_0 \neq P_1 \).

11.2–7 Derive Eq. (4) using Leibniz’s rule, which states that

\[
\frac{d}{dz} \int_{a(z)}^{b(z)} g(z, \lambda) \, d\lambda = g[z, b(z)] \frac{db(z)}{dz} - g[z, a(z)] \frac{da(z)}{dz} + \int_{a(z)}^{b(z)} \frac{\partial}{\partial z} [g(z, \lambda)] \, d\lambda
\]

where \(z \) is an independent variable and \(a(z), b(z), \) and \(g(z, \lambda) \) are arbitrary functions.
11.2–8* A polar binary system has 20 repeaters, each with \((S/N)_1 = 20 \) dB. Find \(P_e \) when the repeaters are regenerative and nonregenerative.

11.2–9 A polar binary system with 50 repeaters is to have \(P_e = 10^{-4} \). Find \((S/N)_1 \) in dB when the repeaters are regenerative and nonregenerative.

11.2–10 Repeat Prob. 11.2–9 with \(P_{be} \leq 10^{-9} \).

11.2–11 Consider the split-phase Manchester format in Fig. 11.1–1(d), where

\[
p(t) = \begin{cases}
1 & -T_b/2 < t < 0 \\
-1 & 0 < t < T_b/2
\end{cases}
\]

Plot the matched filter’s impulse response. Then use superposition to plot the pulse response \(a_k p(t - t_k) \ast h(t) \) and compare with Fig. 11.2–6(c).

11.2–12 Consider a unipolar RZ binary system with \(p(t) = u(t) - u(t - T_b/2) \). Instead of a matched filter, the receiver has a first-order LPF with impulse response \(h(t) = K_0 e^{-\alpha t}u(t) \) where \(K_0 = b/(1 - e^{-\beta T_b}) \).

(a) Find and sketch \(h(t) \) and obtain the condition on \(\alpha \) such that the ISI at any subsequent sampling time does not exceed 0.1A. (b) Show that \((A/2\alpha)^2 = (4br_b/K_0^2) \gamma_b \leq 0.812\gamma_b \), where the upper bound comes from the ISI condition.

11.2–13 A binary data transmission system is to have \(r_b = 500 \) kbps and \(P_{be} \leq 10^{-4} \). The noise is white gaussian with \(N_0 = 10^{-17} \) W/Hz. Find the minimum value of \(S_b \) when: (a) \(M = 2 \); (b) \(M = 8 \) with Gray coding.

11.2–14* Suppose the transmission bandwidth of the system in Prob. 11.2–13 is \(B = 80 \) kHz. Find the smallest allowed value of \(M \) and the corresponding minimum value of \(S_b \), assuming a Gray code.

11.2–15 A binary data transmission system has AWGN, \(\gamma_b = 100 \), and Gray coding. What’s the largest value of \(M \) that yields \(P_{be} \leq 10^{-5} \)?

11.2–16 Derive the result stated in Eq. (21).

11.2–17 Given the waveforms in Fig. P11.2–17 where "1" \(\leftrightarrow x_1(t) \) and "0" \(\leftrightarrow x_0(t) \) and will be detected using matched filtering or correlation detection, which pair is orthogonal, antipodal, or neither? Justify your answer.

11.2–18 Consider the correlation receiver system of Fig. 11.2–8 and input waveform of Fig. 11.2–9a, a binary message with probability of zero of \(P_0 = 0.1 \) \(r_b = 1 \) Mbps. If the input signal has values of \(\pm\sqrt{A/T_b} \) and \(N_0 = 10^{-4} \), what is the value of \(V_T \) and the minimum value of \(A \) to ensure \(P_{be} < 10^{-8} \)?

11.2–19* Consider a unipolar NRZ binary system that transmits \(+5 \) V pulses at \(r_b = 100 \) kbps over a channel corrupted by zero mean Gaussian white

\[\text{noise.} \quad \begin{align*}
\end{align*}\]
noise with $N_0 = 10^{-5}$. The message has a $P_0 = 0.5$. If the receiver is optimum, what is (a) V_r, (b) P_{be}, and (c) E_b?

11.2–20 What is the maximum bit rate for a polar NRZ system and optimal receiver with ± 10 volt pulse amplitudes, $P_0 = P_1$, $N_0 = 10^{-5}$ and $P_{be} \leq 10^{-6}$?

11.2–21 Repeat Prob. 11.2–20 with $P_{be} \leq 10^{-9}$.

11.2–22 Based on the system of Fig. 11.2–8, specify the block diagram of a receiver to detect orthogonal binary signals.
11.2–23 Suppose binary data is converted to \(M = 4 \) levels via the Gray code in Table 11.1–1. Use Fig. 11.2–8 to derive an expression for \(P_{be} \) in terms of \(k = A/2\sigma \). Simplify your result by assuming \(k > 1 \).

11.2–24 Do Prob. 11.2–23 with the natural code in Table 11.1–1.

11.3–1 Use Eq. (3a) to find and sketch \(p(t) \) and \(P(f) \) when \(P_{ph}(f) = (1/2\beta)\Pi(f/2\beta) \) with \(\beta = r/4 \).

11.3–2 Use Eq. (3a) to find and sketch \(p(t) \) and \(P(f) \) when \(P_{ph}(f) = (1/2\beta)\Pi(f/2\beta) \) with \(\beta = r/3 \).

11.3–3* Suppose \(B = 3 \) kHz. Using pulses with a cosine rolloff spectrum, what is the maximum baud rate if the rolloffs are (a) 100 percent, (b) 50 percent, (c) 25 percent?

11.3–4 Given a binary message of 10110100, sketch the baseband waveform using 50 percent rolloff raised cosine pulses. How does this compare with Figure 11.3–2?

11.3–5 We want to transmit binary data at 56 kbps using pulses with a cosine rolloff spectrum. What is \(B \) for rolloffs of: (a) 100 percent, (b) 50 percent, (c) 25 percent?

11.3–6 Obtain Eq. (6b) from Eq. (5) with \(\beta = r/2 \). Then show that \(p(\pm D/2) = 1/2 \).

11.3–7 Carry out the details leading to Eqs. (4b) and (5) starting from Eq. (4a).

11.3–8 A more general form of Nyquist's signaling theorem states that if \(P(f) = \mathcal{F}[p(t)] \) and

\[
\sum_{n=-\infty}^{\infty} P(f - nr) = 1/r \\
-\infty < f < \infty
\]

then \(p(t) \) has the property in Eq. (1a) with \(D = 1/r \). (a) Prove this theorem by taking the Fourier transform of both sides of

\[
p(t) \sum_{k=-\infty}^{\infty} \delta(t - kD) = \sum_{k=-\infty}^{\infty} p(kD)\delta(t - kD)
\]

Then use Poisson's sum formula. (b) Use a sketch to show that \(P(f) \) in Eq. (4b) satisfies the foregoing condition.

11.3–9 Consider an arbitrary bandlimited pulse spectrum with \(P(f) = 0 \) for \(|f| \geq B \). Use simple sketches to obtain the additional requirements on \(P(f) \) needed to satisfy Nyquist's signaling theorem as stated in Prob. 11.3–5 when (a) \(r/2 < B < r \); (b) \(B = r/2 \); (c) \(B < r/2 \).

11.3–10 A binary data system is to be designed for \(r_b = 600 \) kbps and \(P_{be} \leq 10^{-5} \). The waveform will have \(M = 2^n \), Gray coding, and Nyquist pulse shaping.
The noise is white gaussian with $N_0 = 1$ pW/Hz. The transmission channel has loss $L = 50$ dB and is distortionless over the allocated bandwidth $B = 200$ kHz. Choose M to minimize the transmitted power, and find the resulting values of r, β, and S_T.

11.3-11 Do Prob. 11.3-10 with $B = 120$ kHz.

11.3-12 Do Prob. 11.3-10 with $B = 80$ kHz.

11.3-13 Consider a data transmission system with $M = 2$, $r = 20,000$, $p_s(t) = \Pi(2r t)$, $|H_c(f)| = 0.01$, $G_n(f) = 10^{-10}(1 + 3 \times 10^{-4}|f|^2)$, and $p(t)$ per Eq. (6b). (a) Find and sketch the amplitude ratio for the optimum terminal filters. (b) Calculate S_T needed to get $P_e = 10^{-6}$, assuming gaussian noise.

11.3-14 Consider a data transmission system with $M = 4$, $r = 100$, $p_s(t) = \Pi(10t)$, $G_n(f) = 10^{-10}$, $|H_c(f)|^2 = 10^{-6}/(1 + 32 \times 10^{-4}|f|^2)$, and $p(t) = \text{sinc} \, t$. (a) Find and sketch the amplitude ratio for the optimum terminal filters. (b) Calculate S_T needed to get $P_e = 10^{-6}$, assuming gaussian noise.

11.3-15‡ Consider a polar system in the form of Fig. 11.3-3 with $G_n(f) = N_0/2$ and a timelimited input pulse shape $p_s(t)$. Let $H_T(f) = K$ and $H_R(f) = [P_s(f)H_c(f)]^* e^{-j\omega t}$, so the receiving filter is matched to the received pulse shape. Since this scheme does not shape the output pulse $p(t - t_0)$ for zero ISI, it can be used only when the duration of $p_s(t)$ is small compared to $1/r$. (a) Obtain an expression for K such that $p(0) = 1$. Then develop expressions for S_T and σ^2 to show that $(A/2\sigma)^2$ is given by Eq. (12a) with

$$I_{HR} = \frac{N_0}{2} \int_{-\infty}^{\infty} |P_s(f)|^2 df$$

(b) Show that this result is equivalent to the maximum value $(A/2\sigma)^2 = 6S_R/(M^2 - 1)N_0 f$.

11.3-16‡ A certain system has been built with optimum terminal pulse shaping, assuming white noise and a distortionless channel with loss L. However, it turns out that the channel actually introduces some linear distortion, so an equalizer with $H_e(f) = [\sqrt{L} H_c(f)]^{-1}$ has been added at the output. Since the terminal filters were not modified to account for the channel distortion, the system has less than optimum performance. (a) Obtain expressions for S_T and σ^2 to show that

$$\left(\frac{A}{2\sigma}\right)^2 = \frac{6S_T/L}{K(M^2 - 1)N_0 f}$$

where

$$K = \frac{1}{L} \int_{-\infty}^{\infty} \frac{|P(f)|}{|H_c(f)|^2} df$$
(b) Evaluate K in dB when $P(f)$ is as given by Eq. (6a) and $H_C(f) = \sqrt{\frac{1}{1 + j2(f/r)}}^{-1}$.

11.3–17 Find the tap gains for a three-tap zero-forcing equalizer when $\bar{p}_{-1} = 0.4$, $\bar{p}_0 = 1.0$, $\bar{p}_1 = 0.2$, and $\bar{p}_k = 0$ for $|k| > 1$. Then find and plot $p_{eq}(t_k)$.

11.3–18 Obtain expressions for the tap gains of a three-tap zero-forcing equalizer when $\bar{p}_{-1} = e$, $\bar{p}_0 = 1$, $\bar{p}_1 = \delta$, and $\bar{p}_k = 0$ for $|k| > 1$.

11.3–19‡ Find the tap gains for a five-tap zero-forcing equalizer for $\bar{p}(t)$ in Fig. 11.3–6a. (You can solve the simultaneous equations by successive substitution.) Then find the resulting values of $p_{eq}(t_k)$ and compare with Fig. 11.3–6b.

11.3–20* Do Prob. 11.3–17 for a MMSE equalizer. Compute the mean squared error for both equalizer implementations, and compare the results.

11.3–21 Do Example 11.3–2 using a MMSE equalizer. Compute the mean squared error for both equalizer implementations, and compare the results.

11.3–22 Given a noisy channel with a response of $H_C(f)$ that is to carry binary signals of some arbitrary shape, using some practical test cases, show how simple equalization using $H_{eq}(f) = 1/H_C(f)$ will produce unintended consequences. You may want to consider a computer simulation.

11.3–23 Consider binary correlative coding with $N = 2$, $c_0 = 1$, $c_1 = 2$, and $c_2 = 1$. (a) Find and sketch $h(t)$ and $|H(f)|$. (b) Use Eqs. (26b) and (28) to develop an expression for $y(t_k)$ like Eq. (29b).

11.3–24 Do Prob. 11.3–23 with $N = 4$, $c_0 = 1$, $c_1 = 0$, $c_2 = -2$, $c_3 = 0$, and $c_4 = 1$.

11.3–25‡ Consider a duobinary system with $H(f)$ as given by Eq. (27b), $p_s(t) = \delta(t), H_C(f) = 1/\sqrt{\mathcal{L}}$, and gaussian white noise. Obtain an expression for $(A/2\sigma)^2$ and apply Schwarz's inequality to show that the optimum filters have $|H_1(f)|^2 = gL|H(f)|$ and $|H_2(f)|^2 = |H(f)|/g$. Then derive Eq. (31).

11.3–26 Consider a duobinary system with an input data sequence of 10101101 and $\alpha = 2$. (a) Find the coder output and then verify the receiver will have the correct output. (b) Calculate the DC value of the coder's output. (c) What is the receiver's output if the third bit has a value of zero?

11.3–27 Do Prob. 11.3–26 with a precoder.

11.3–28 Do Prob. 11.3–26 with modified duobinary signaling and precoding.

11.4–1* Given a five-stage shift register scrambler/unscrambler system with $m'_r = m'_{r-1} \oplus m'_{r-4} \oplus m'_{r-2}$ and zero initial shift register conditions, compute the scrambled output and the output from the corresponding
unscrambler for an input sequence of $m_k = 011111101110111$. What are the DC levels for the unscrambled and scrambled bit streams?

11.4–2 Suppose we have a five-stage shift register sequence generator with a [5, 4, 3, 2] configuration, and its contents are all initially ones. Determine the output sequence, its length, and plot the corresponding autocorrelation function. Is the output an ML sequence?

11.4–3 Do Prob. 11.4–2 using a shift register with a [4, 2] configuration.

11.4–4 What are all the 3-bit shift register configurations that will yield ML sequences?

11.4–5 Do Prob. 11.4–4 for the 4-bit shift register.
Chapter 12

Digitization Techniques for Analog Messages and Computer Networks

CHAPTER OUTLINE

12.1 Pulse-Code Modulation
 PCM Generation and Reconstruction Quantization Noise Nonuniform Quantizing and Companding

12.2 PCM With Noise
 Decoding Noise Error Threshold PCM Versus Analog Modulation

12.3 Delta Modulation and Predictive Coding
 Delta Modulation Delta-Sigma Modulation Adaptive Delta Modulation Differential PCM
 LPC Speech Synthesis

12.4 Digital Audio Recording
 CD Recording CD Playback

12.5 Digital Multiplexing
 Multiplexers and Hierarchies Digital Subscriber Lines Synchronous Optical Network Data Multiplexers
Having studied the basic concepts of digital transmission in Chap. 11, we return once more to analog communication. But now we consider digital transmission of analog messages via coded pulse modulation. Coded pulse modulation systems employ sampling, quantizing, and coding to convert analog waveforms into digital signals.

Digital coding of analog information produces a rugged signal with a high degree of immunity to transmission distortion, interference, and noise. Digital coding also allows the use of regenerative repeaters for long-distance analog communication. However, the quantizing process essential for digital coding results in quantization noise which becomes the fundamental limitation on waveform reconstruction. To keep the quantization noise small enough for suitable fidelity, a coded pulse modulation system generally requires a much larger bandwidth than a comparable analog transmission system.

We’ll develop these properties first in conjunction with pulse-code modulation (PCM). Next, we describe delta modulation (DM) and other schemes that involve predictive coding. To better appreciate the advantages of digital over analog systems we will look at digital audio recording using the familiar audio compact disc (CD). Finally, the chapter closes with a brief discussion about digital multiplexing, a valuable technique that makes it possible to combine analog and digital information for transmission in the form of a multiplexed digital signal.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Define and relate the parameters of a PCM system, and distinguish between quantization noise and random noise (Sect. 12.1).
2. Find the conditions for PCM transmission above threshold, and calculate the value of \((S/N)_0 \) (Sects. 12.1 and 12.2).
3. Identify and compare the distinctive features and relative advantages of PCM (with and without companding), delta modulation, and differential PCM (Sects. 12.2 and 12.3).
4. Describe the operation of a compact disc digital audio system, how it achieves error control, and its advantages over analog systems (Sect. 12.4).
5. Diagram a digital multiplexing system that accommodates both analog and digital signals in a standard multiplexing hierarchy including the North American and CCITT standards (Sect. 12.5).
6. Explain the concepts of the Synchronous Optical Network (SONET) hardware multiplexing scheme (Sect. 12.5).
7. Describe the concepts of packet switching, frame relay, and asynchronous transfer mode (ATM) data switching schemes (Sect. 12.5).

12.1 PULSE-CODE MODULATION

This section describes the functional operation of pulse-code modulation (PCM)

PCM is a digital transmission system with an analog-to-digital converter (ADC) at the input and a digital-to-analog converter (DAC) at the output.

When the digital error probability is sufficiently small, PCM performance as an analog communication system depends primarily on the quantization noise introduced by the ADC. Here we’ll analyze analog message reconstruction with quantization noise, temporarily deferring to the next section the effects of random noise and digital errors.
PCM Generation and Reconstruction

Figure 12.1–1 diagrams the functional blocks of a PCM generation system. The analog input waveform \(x(t)\) is lowpass filtered and sampled to obtain \(x(kT_s)\). A **quantizer** rounds off the sample values to the nearest discrete value in a set of \(q\) **quantum levels**. The resulting quantized samples \(x_q(kT_s)\) are discrete in time (by virtue of sampling) and discrete in amplitude (by virtue of quantizing).

To display the relationship between \(x(kT_s)\) and \(x_q(kT_s)\), let the analog message be a voltage waveform normalized such that \(|x(t)| \leq 1\) V. Uniform quantization subdivides the 2-V peak-to-peak range into \(q\) equal steps of height \(2/q\) V, as shown in Fig. 12.1–1b. The quantum levels are then taken to be at \(\pm 1/q, \pm 3/q, \ldots, \pm (q - 1)/q\) in the usual case when \(q\) is an even integer. A quantized value such as \(x_q(kT_s) = 5/q\) corresponds to any sample value in the range \(4/q < x(kT_s) < 6/q\). The normalized quantization-level step size can thus be defined as \(\Delta = 2/q\).

Next, an **encoder** translates the quantized samples into **digital code words**. The encoder works with \(M\)-ary digits and produces for each sample a codeword consisting of \(\nu\) digits in parallel. Since there are \(M^\nu\) possible \(M\)-ary codewords with \(\nu\) digits per word, unique encoding of the \(q\) different quantum levels requires that \(M^\nu = q\). The parameters \(M, \nu,\) and \(q\) should be chosen to satisfy the equality, so that

\[
M^\nu = q
\]

\[
\nu = \log_2 q
\]

\[
f_s \geq 2W
\]

\[
x(t) \rightarrow \text{LPF} \rightarrow \text{S/H} \rightarrow x(kT_s) \rightarrow \text{q-level quantizer} \rightarrow x_q(kT_s) \rightarrow \text{M-ary encoder} \rightarrow \text{Parallel to serial converter} \rightarrow \text{PCM}
\]

\[
r = \nu f_s
\]

Figure 12.1–1
(a) PCM generation system; (b) quantization characteristic.
Thus, the number of quantum levels for binary PCM must equal some power of 2, namely \(q = 2^n \).

Finally, successive codewords are read out serially to constitute the PCM waveform, an \(M \)-ary digital signal. The PCM generator thereby acts as an ADC, performing analog-to-digital conversions at the sampling rate \(f_s = 1/T_s \). A timing circuit coordinates the sampling and parallel-to-serial readout.

Each encoded sample is represented by a \(n \)-digit output word, so the signaling rate becomes \(r = n f_s \). Therefore, the bandwidth needed for PCM baseband transmission is

\[
B_T = \frac{1}{2} r = \frac{1}{2} n f_s = nW
\]

Fine-grain quantization for accurate reconstruction of the message waveform requires \(q \gg 1 \), which increases the transmission bandwidth by the factor \(\nu = \log_M q \) times the message bandwidth \(W \).

Now consider a PCM receiver with the reconstruction system in Fig. 12.1–2a. The received signal may be contaminated by noise, but regeneration yields a clean and nearly errorless waveform if \((S/N)_R\) is sufficiently large. The DAC operations of serial-to-parallel conversion, \(M \)-ary decoding, and sample-and-hold generate the analog waveform \(x_q(t) \) drawn in Fig. 12.1–2b. This waveform is a “staircase” approximation of \(x(t) \), similar to flat-top sampling except that the sample values have been quantized. Lowpass filtering then produces the smoothed output signal \(y_0(t) \), which differs from the message \(x(t) \) to the extent that the quantized samples differ from the exact sample values \(x(kT_s) \).

Perfect message reconstruction is therefore impossible in PCM, even when random noise has no effect.

The ADC operation at the transmitter introduces permanent errors that appear at the receiver as quantization noise in the reconstructed signal.

We’ll study this quantization noise after an example of PCM hardware implementation.

EXAMPLE 12.1–1 Binary PCM System

Suppose you want to build a binary PCM system with \(q = 8 \) so \(\nu = \log_2 8 = 3 \) bits per codeword. Figure 12.1–3a lists the 8 quantum levels and two types of binary codes. The “natural” code, also called “offset binary code,” assigns the word 000 to the lowest level and progresses upward to 111 in the natural order of binary counting. The sign/magnitude code uses the leading bit \(b_2 \) for the algebraic sign of \(x \), while the remaining bits \(b_1 b_0 \) represent the magnitude. Other encoding algorithms are possible, and may include additional bits for error protection—the topic of Chap. 13.
A direct-conversion ADC circuit for the sign/magnitude code is shown in Fig. 12.1–3b. This circuit consists of one comparator for the sign bit and three parallel comparators plus combinational logic to generate the magnitude bits. Direct-conversion ADCs have the advantage of high operating speed and are called **flash encoders**, but they require a total of $q/2$ comparators. At lower speeds you can get by with one comparator and a feedback loop, a configuration found in the dual-slope, counter-comparison, and successive-approximation encoders.

Figure 12.1–3c shows the circuit for a **weighted-resistor decoder** that goes with a 3-bit sign/magnitude code. The sign bit operates a polarity selector switch, while the magnitude bits control the resistors to be connected to the reference voltage. The overall circuit acts as an inverting op-amp summer with output voltage $(-1)^b(4b_1 + 2b_0 + 1)/8$.

Direct Digital Synthesis of Analog Waveforms

An alternative to the PLL frequency synthesizer is the **Direct Digital Synthesis** (DDS) as shown in Fig. 12.1–4. Here a waveform is quantized with the samples stored in computer memory. The memory contents are repeatedly sent to a DAC which converts these to an equivalent analog signal. The rate of the output samples determines the waveform’s frequency.
Quantization Noise

Although PCM reconstruction most often takes the form of staircase filtering, as in Fig. 12.1–2, we’ll find the impulse reconstruction model in Fig. 12.1–5 more convenient for the analysis of quantization noise. Here, a pulse converter in place of the sample-and-hold circuit generates the weighted impulse train.
12.1 Pulse-Code Modulation

Figure 12.1–5 Impulse reconstruction model.

\[y_d(t) = \sum_k \left[x(kT_s) + \epsilon_k \right] \delta(t - kT_s) \] \hspace{1cm} (3a)

where \(\epsilon_k \) represents the quantization error, namely

\[\epsilon_k = x(kT_s) - x(kT_s) \] \hspace{1cm} (3b)

Lowpass filtering with \(B = f_s/2 \) yields the final output

\[y_d(t) = x(t) + \sum_k \epsilon_k \text{sinc}(f_s t - k) \] \hspace{1cm} (4)

This expression has the same form as reconstruction of analog pulse modulation with noisy samples; see Eq. (2) Sect. 10.6. Furthermore, when \(q \) is large enough for reasonable signal approximation, the \(\epsilon_k \) effectively will be uncorrelated and independent of \(x(t) \). Accordingly, we identify \(\epsilon_k^2 \) as the mean-square quantization noise.

Round-off quantization with equispaced levels ensures that \(|\epsilon_k| \leq 1/q \). Lacking additional information to the contrary, we assume that the quantization error has zero mean value and a uniform probability density function over \(-1/q \leq \epsilon_k \leq 1/q\). Thus, the quantization noise power is

\[\sigma_q^2 = \epsilon_k^2 = \frac{1}{(2/q)^2} \int_{-1/q}^{1/q} \epsilon^2 d\epsilon = \frac{1}{3q^2} \] \hspace{1cm} (5)

which reflects the intuitive observation that the quantization noise decreases when the number of quantum levels increases.

Now we measure PCM performance in terms of the destination signal power \(S_D = x^2 = S_x \leq 1 \) and the quantization noise power \(\sigma_q^2 \). The destination signal-to-noise ratio then becomes

\[\left(\frac{S}{N} \right)_D = \frac{S_x}{\sigma_q^2} = 3q^2S_x \] \hspace{1cm} (6)

A more informative relation for binary PCM is obtained by setting \(q = 2^n \) and expressing \((S/N)_D\) in decibels. Thus,

\[\left(\frac{S}{N} \right)_D = 10 \log_{10} (3 \times 2^{2n}S_x) \leq 4.8 + 6.0v \text{ dB} \] \hspace{1cm} (7)

where the upper bound holds when \(S_x = 1 \). Voice telephone PCM systems typically have \(v = 8 \) so \((S/N)_D \leq 52.8 \text{ dB}\).
But many analog signals—especially voice and music—are characterized by a large crest factor, defined as the ratio of peak to rms value, \(|x(t)|_{max} / \sigma_x \). Our signal normalization establishes \(|x(t)|_{max} \leq 1 \), and a large crest factor then implies that \(S_x = \sigma_x^2 \ll 1 \). Consequently, the actual signal-to-noise ratio will be significantly less than the theoretical upper bound. For instance, some digital audio recording systems take \(\nu = 14 \) to get high-fidelity quality with \((S/N)_D \approx 60 \) dB, compared to \((S/N)_D \leq 88.8 \) dB predicted by Eq. (7). As a bandwidth-conserving alternative to increasing \(\nu \), PCM performance may be improved through the use of companding, equivalent to nonuniform quantization.

Example 12.1–3

SNR for Signals With Large Dynamic Range

Consider a maternal-fetal electrocardiograph system (ECG) where the ECG signal strengths of the maternal and fetal components are on the order of 1 volt and 100 \(\mu \)V respectively. Based on these signal levels, let’s assume that the fetal signal has \(S_x = 5 \times 10^{-9} \). If we employ a 1-volt bipolar 12-bit ADC, then using Eq. (7) we get a \((S/N)_D = 4.8 + 6 \times 12 + 10 \log (5 \times 10^{-9}) = -6.2 \) dB. On the other hand, if we use a 16-bit ADC, we get a \((S/N)_D = 4.8 + 6 \times 16 + 10 \log (5 \times 10^{-9}) = 17.8 \) dB. Furthermore, if we compare these two cases with respect to voltage levels, the 12-bit ADC gives us a peak-to-peak quantization noise of \(2/2^{12} = 488 \) \(\mu \)V which exceeds the 100 \(\mu \)V input signal level. However, with the 16-bit ADC, we only get a peak-to-peak quantization noise of 31 \(\mu \)V.

Exercise 12.1–2

Consider binary PCM transmission of a video signal with \(f_s = 10 \) MHz. (a) Calculate the signaling rate needed to get \((S/N)_D \geq 50 \) dB when \(S_x = 1 \). (b) Repeat (a) with \(S_x = 0.1 \).

Nonuniform Quantizing and Companding

A normalized signal \(x(t) \) with a large crest factor can be represented by the typical probability density function \(p_x(x) \) sketched in Fig. 12.1–6. The even symmetry and absence of an impulse at \(x = 0 \) correspond to \(\bar{x} = 0 \), so \(\sigma_x^2 = \bar{x}^2 = S_x \) and

\[
S_x = \int_{-1}^{1} x^2 p_x(x) \, dx = 2 \int_{0}^{1} x^2 p_x(x) \, dx
\]

This integration yields \(S_x \ll 1 \) because the PDF has a dominant peak at \(x = 0 \).

The shape of \(p_x(x) \) also means that \(|x(t)| \ll 1 \) most of the time. It would therefore make good sense to use nonuniform quantization as indicated by the dashed lines. The quantum levels \(\pm x_1, \ldots, \pm x_{q/2} \) are closely spaced near \(x = 0 \), but more
widely spaced for the large values of $|x(t)|$ which occur infrequently. We calculate the resulting quantization noise as follows.

Consider a sample value $x = x(kT_s)$ in the band $a_i < x < b_i$ around the quantum level x_i. The quantizing error $e_i = x_i - x$ then has the mean square value

$$\overline{e_i^2} = \int_{a_i}^{b_i} (x_i - x)^2 p_x(x) \, dx \quad (9a)$$

Summing $\overline{e_i^2}$ over all q levels gives the quantization noise

$$\sigma_q^2 = 2 \sum_{i=1}^{q/2} \overline{e_i^2} \quad (9b)$$

where we’ve taken advantage of the even symmetry. In the usual case of $q \gg 1$, the step height $h_i = b_i - a_i$ will be small enough that $p_x(x) = p_x(x_i)$ over each integration band and x_i will fall roughly in the middle of the step. Under these conditions Eq. (9a) simplifies to

$$\overline{e_i^2} = p_x(x_i) \int_{x_i-h_i/2}^{x_i+h_i/2} (x_i - x)^2 \, dx = p_x(x_i) \frac{h_i^3}{12}$$

and thus

$$\sigma_q^2 = \frac{1}{6} \sum_{i=1}^{q/2} p_x(x_i) h_i^3 \quad (10)$$

As a check on this expression, we note that if the signal has the uniform PDF $p_x(x) = 1/2$, and if the steps have equal height $h_i = 2/q$, then $\sigma_q^2 = (1/6)(q/2)(1/2)(2/q)^3 = 1/3q^2$ which agrees with our earlier result in Eq. (5).

Theoretically, you could optimize PCM performance by finding the values of x_i, a_i, and b_i that result in minimum quantization noise. Such optimization is a difficult procedure that requires knowledge of the signal's PDF. Additionally, the
custom-tailored hardware needed for nonlinear quantizing costs far more than standard uniform quantizers. Therefore, the approach taken in practice is to use uniform quantizing after nonlinear signal compression, the compression characteristics being determined from experimental studies with representative signals.

Figure 12.1–7 plots an illustrative compressor curve $z(x)$ versus x for $0 \leq x \leq 1$; the complete curve must have odd symmetry such that $z(x) = -z(|x|)$ for $-1 \leq x \leq 0$. Uniform quantization of $z(x)$ then corresponds to nonuniform quantization of x, as shown in the figure. The nonlinear distortion introduced by the compressor is corrected after reconstruction by a complementary expander, identical to the companding strategy discussed in Sect. 3.2. Hence, the postdetection signal-to-noise ratio for companded PCM is $(S/N)_D = S/\sigma^2_q$, with σ^2_q given by Eq. (10).

Our next task is to obtain σ^2_q in terms of the compressor curve. For that purpose let

$$z'(x) \triangleq \frac{dz(x)}{dx}$$

so $z'(x_i)$ equals the slope of $z(x)$ at $x = x_i$. The conditions $q \gg 1$ and $h_i \ll 1$ justify the approximation $z'(x_i) = (2/q)/h_i$, so

$$h_i^2 = \left[\frac{2/q}{z'(x_i)}\right]^2 = \frac{4}{q^2[z'(x_i)]^2}$$

Equation (10) then becomes

$$\sigma^2_q = \frac{4}{6q^2} \sum_{i=1}^{q/2} \frac{p_x(x_i)}{[z'(x_i)]^2} h_i = \frac{2}{3q^2} \int_0^1 \frac{p_x(x)}{[z'(x)]^2} dx$$
where we’ve passed from summation to integration via \(h \rightarrow \int dx \). Therefore, our final result is

\[
\left(\frac{S}{N} \right)_D = \frac{S_x}{\sigma^2_N} = \frac{3q^2S_x}{K_z} \tag{11a}
\]

with

\[
K_z \triangleq 2 \int_0^1 \frac{p_x(x)}{[z'(x)]^2} \, dx \tag{11b}
\]

which takes account of the compression. If \(K_z < 1 \) then \((S/N)_D > 3q^2S_x\) and companding improves PCM performance by reducing the quantization noise.

\(\mu \)-Law Companding for Voice PCM

The popular \(\mu \)-law companding for voice telephone PCM employs the following compressor characteristic

\[
z(x) = x_{\text{max}} \frac{\ln(1 + \mu|x|/x_{\text{max}})}{\ln(1 + \mu)} \operatorname{sgn}(x/x_{\text{max}}) \quad |x|/x_{\text{max}} \leq 1 \tag{12}
\]

where \(x_{\text{max}} \) is the maximum input level that can be quantized without overload, and in the United States, the standard value for \(\mu \) is 255. The function \(z(x) \) then feeds the input of an \(n \)-bit uniform quantizer to generate \(x'_q \). To get back an estimate of the original voice signal, we apply the quantized signal to an expander which is the inverse of Eq. (12) or

\[
z^{-1}(x'_q) = \frac{x_{\text{max}}}{\mu} [(1 + \mu)^{|x'_q|/x_{\text{max}}} - 1] \operatorname{sgn}(x'_q/x_{\text{max}}) \rightarrow \hat{x} \tag{13}
\]

If we assume normalized inputs, such that \(|x| \leq 1 \) then from Eq. (12) we get

\[
z'(x) = \mu \frac{1}{\ln(1 + \mu) \ln(1 + \mu|x|)} \tag{14}
\]

The parameter \(\mu \) is a large number so \(z'(x) \gg 1 \) for \(|x| \ll 1 \). Whereas \(z'(x) \ll 1 \) for \(|x| = 1 \). Substituting \(z'(x) \) into Eq. (11b) and performing the integration, we obtain

\[
K_z = \frac{\ln^2(1 + \mu)}{\mu^2}(1 + 2\mu|x| + \mu^2S_x) \tag{15}
\]

Now we need values for \(|x| \) and \(S_x \) to test the efficacy of \(\mu \)-law companding.

Laboratory investigations have shown that the PDF of a voice signal can be modeled by a Laplace distribution in the form

\[
p_x(x) = \frac{\alpha}{2} e^{-\alpha|x|} \tag{16a}
\]

with

\[
S_x = \sigma^2_x = \frac{2}{\alpha^2} \quad \overline{|x|} = \frac{1}{\alpha} = \sqrt{\frac{S_x}{2}} \tag{16b}
\]
This distribution cannot be normalized for $|x(t)|_{max} \leq 1$, but the probability of $|x(t)| > 1$ will be less than 1 percent if $S_x < 0.1$. Other voice PDF models yield about the same relationship between $|x|$ and S_x, which is the critical factor for evaluating K_z.

Taking the standard value $\mu = 255$ and putting $|x| = \sqrt{S_x/2}$ in Eq. (15), we obtain

$$K_z = 4.73 \times 10^{-4}(1 + 361\sqrt{S_x} + 65,025S_x)$$

Numerical calculations then show that $K_z < 1$ for $S_x < 0.03$. More significant, however, is the fact that S_x/K_z stays nearly constant over a wide range of S_x. Consequently, μ-law companding for voice PCM provides an essentially fixed value of $(S/N)_D$, despite wide variations of S_x among individual talkers. Figure 12.1–8 brings out this desirable feature by plotting $(S/N)_D$ in dB versus S_x in dB, with and without companding, when $q = 2^8$. Notice the companding improvement for $S_x < -20$ dB.

EXERCISE 12.1–3

Companding will reduce the quantization errors. Consider a $\mu = 255$ compander to be used with a $\nu = 3$ bit quantizer where the output varies over ± 8.75 V. For an input of 0.6 V, what is the ϵ_k with and without companding?

12.2 PCM WITH NOISE

In this section we account for the effects of random noise in PCM transmission. The resulting digital errors produce decoding noise. After defining the error threshold level, we’ll be in a position to make a meaningful comparison of PCM with analog modulation methods.
Decoding Noise

Random noise added to the PCM signal at the receiver causes regeneration errors that appear as erroneous digits in the codewords. The decoder then puts out a different quantum level than the one intended for a particular sample.

Hence,

The reconstructed message waveform becomes contaminated with decoding noise as well as quantization noise.

The analysis of decoding noise is not too difficult if we restrict our attention to binary PCM with uniform quantization and a relatively small bit error probability P_e. The number of bit errors in a ν-digit codeword is a random variable governed by the binomial distribution. However, when $P_e \ll 1$, the probability of one error in a given word approximately equals νP_e and the probability of two or more errors is small enough for us to ignore that event. Of course, the effect of a single error depends on where it falls in the word, because the different bit positions have different decoding interpretations.

Consider a “natural” binary codeword of the form $b_{\nu-1}b_{\nu-2} \cdots b_1b_0$ in which the mth bit distinguishes between quantum levels spaced by 2^m times the step height $2/q$. (The sign/magnitude code illustrated back in Fig. 12.1-3 follows this pattern for the magnitude bits, but the sign bit has a variable level meaning that makes analysis more complicated.) An error in the mth bit then shifts the decoded level by the amount $\epsilon_m = \pm (2/q)2^m$, and the average of ϵ_m^2 over the ν bit positions equals the mean-square decoding error for a random bit-error location. Thus,

$$\bar{\epsilon}_m^2 = \frac{1}{\nu} \sum_{m=0}^{\nu-1} \left(\frac{2}{q} 2^m \right)^2 = \frac{4}{\nu q^2} \sum_{m=0}^{\nu-1} 4^m$$

$$= \frac{4}{\nu q^2} \cdot \frac{4^\nu - 1}{3} = \frac{4}{3\nu} \left(\frac{q^2 - 1}{q^2} \right) \approx \frac{4}{3\nu}$$

where we’ve used the formula for summing a geometric progression and substituted $4^\nu = 2^\nu = q^2 \gg 1$. The decoding noise power is therefore

$$\sigma_d^2 = \nu P_e \bar{\epsilon}_m^2 \approx \frac{4}{3} P_e$$

since erroneous words occur with probability νP_e.

The total destination noise power consists of decoding noise σ_d^2 and quantization noise $\sigma_q^2 = 1/3q^2$, which come from essentially independent processes. Therefore,
\[N_D = \sigma_q^2 + \sigma_d^2 = \frac{1 + 4q^2P_e}{3q^2} \]

and
\[
\left(\frac{S}{N} \right)_D = \frac{3q^2}{1 + 4q^2P_e}S_x
\]

so the effect of decoding noise depends upon the relative value of the quantity \(4q^2P_e\).

Indeed, we see in Eq. (3) the two extreme conditions

\[
\left(\frac{S}{N} \right)_D = \begin{cases}
3q^2S_x & P_e \ll 1/4q^2 \\
\frac{3}{4P_e}S_x & P_e \gg 1/4q^2
\end{cases}
\]

Quantization noise dominates when \(P_e\) is small, but decoding noise dominates and reduces \((S/N)_D\) when \(P_e\) is large compared to \(1/4q^2\).

Now recall that the value of \(P_e\) is determined by the received signal-to-noise ratio \((S/N)_R\) at the input to the digital regenerator. Specifically, for polar binary signaling in gaussian white noise we know that \(P_e = Q[\sqrt{(S/N)_R}]\). Figure 12.2–1 plots \((S/N)_D\) versus \((S/N)_R\) for this case, with \(S_x = 1/2\) and two values of \(q\). The precipitous decline of \((S/N)_D\) as \((S/N)_R\) decreases constitutes a threshold effect caused by increasing errors. Below the error threshold, when \(P_e \gg 1/4q^2\), the errors occur so often that the reconstructed waveform bears little resemblance to the original signal and the message has been altered beyond recognition.

![Figure 12.2–1](image)

Figure 12.2–1 Noise performance of PCM for different quantization levels.
Error Threshold

The PCM error threshold level is usually defined at the point where decoding noise reduces \((S/N)_D\) by 1 dB. Unfortunately, this definition does not lend itself to analytical investigations. As a more convenient alternative, we’ll say that decoding errors have negligible effect if \(P_e \leq 10^{-5}\). Then we obtain the corresponding condition on \((S/N)_R\) for polar \(M\)-ary signaling using Eq. (20) in Sect. 11.2, namely

\[
P_e = 2 \left(1 - \frac{1}{M}\right) Q \left[\frac{3}{M^2 - 1} \left(\frac{S}{N}\right)_R\right] \leq 10^{-5}
\]

Solving for the minimum value of \((S/N)_R\) yields the threshold level

\[
(S/N)_{R_{th}} \approx 6(M^2 - 1) \tag{5}
\]

If \((S/N)_R < 6(M^2 - 1)\), the PCM output will be hopelessly corrupted by decoding noise.

A subtle but important implication of Eq. (5) relates to the digital signaling rate and transmission bandwidth. We’ll bring out that relationship with the help of the analog transmission parameter \(\gamma = S_0/N_0W = (B_T/W)(S/N)_R\). The PCM transmission bandwidth is \(B_T \geq r/2 = \nu W\), so

\[
\gamma_{th} = (B_T/W)(S/N)_{R_{th}}
\]

\[
\approx 6 \frac{B_T}{W} (M^2 - 1) \geq 6 \nu (M^2 - 1)
\]

Given \(\nu\) and \(M\), this equation tells you the minimum value of \(\gamma\) needed for PCM operation above threshold. It also facilitates the comparison of PCM with other transmission schemes.

Thresholds for PCM and Analog Baseband Transmission

Example 12.1–4 showed that a voice PCM system with \(M = 2, \nu = 8\), and \(\mu\)-law companding has \((S/N)_D \approx 37\) dB. Equation (6) gives the corresponding threshold level \(\gamma_{th} \geq 144 \approx 22\) dB. Hence, the PCM system has a potential 15 dB advantage over direct analog baseband transmission in which \((S/N)_D = \gamma\). The full advantage would not be realized in practice where allowance must be made for \(B_T > \nu W\) and \(\gamma > \gamma_{th}\).

The 1 dB definition for error threshold is equivalent to \(10 \log_{10} (1 + 4q^2 P_e) = 1\). Calculate \(P_e\) from this definition when \(q = 2^8\). Then find the corresponding value of \((S/N)_R\) for polar binary signaling, and compare your result with Eq. (5).

PCM Versus Analog Modulation

The PCM threshold effect reminds us of analog modulation methods such as FM and PPM that have the property of wideband noise reduction above their threshold levels.
As our initial point of comparison, let's demonstrate that PCM also provides wideband noise reduction when operated above threshold so \((S/N)_D = 3q^2S_x\). For this purpose, we'll assume that the sampling frequency is close to the Nyquist rate and \(B_T = \nu W\). Then \(q = M^\nu = M^2\) where \(b = B_T/W\) is the bandwidth ratio. Hence,

\[
\left(\frac{S}{N}\right)_D = 3M^{2b}S_x
\]

which exhibits noise reduction as an exponential exchange of bandwidth for signal-to-noise ratio. Granted that the noise being reduced is quantization noise, but random noise has no effect on PCM above threshold. The exponential factor in Eq. (7) is far more dramatic than that of wideband analog modulation, where \((S/N)_D\) increases proportionally to \(b^2\).

For further comparison including threshold limitations, Fig. 12.2–2 illustrates the performance of several modulation types as a function of \(\gamma\). All curves are calculated with \(S_x = 1/2\), and the heavy dots indicate the threshold points. The PCM curves are based on Eqs. (6) and (7) with \(M = 2\) and \(\nu = b\).

Clearly, in the name of power efficiency, PCM should be operated just above threshold, since any power increase beyond \(\gamma = \gamma_{th}\) yields no improvement of \((S/N)_D\). Near threshold, PCM does offer some advantage over FM or PPM with the same value of \(b\) and \((S/N)_D\). And even a 3 dB power advantage, being a factor of 2, may spell the difference between success and failure for some applications. That advantage is, however, gained at the price of more complicated and costly hardware. In fact, PCM was deemed totally impractical prior to the development of high-speed digital electronics in the late 1950s—two decades after the invention of PCM itself.

Two other benefits don’t appear in Fig. 12.2–2.
PCM allows the advantage of \textit{regenerative repeaters} when the transmission link requires many repeater stations.

PCM allows analog message transmission as a digital signal.

Digital multiplexing then makes it possible to combine PCM and digital data signals for flexible and efficient utilization of a communication channel. Taken together, these two benefits account for PCM’s preeminence in the design of new systems for long-distance telephony.

Unfortunately PCM is not well suited to all applications. In radio broadcasting, for instance, we want a relatively large signal-to-noise ratio, say $(S/N)_D \approx 60 \, \text{dB}$. Figure 12.2–2 reveals that this would require binary PCM with $b > 8$, or FM with a smaller bandwidth ratio $b = 6$ and much simpler hardware at the transmitter and receivers. Likewise, bandwidth and hardware considerations would reject PCM for most single-channel systems.

Starting with Eqs. (6) and (7), show that a PCM system operated at the threshold point has

$$
\left(\frac{S}{N} \right)_{D_{th}} = 3 \left(1 + \frac{\gamma_{th}}{6b} \right)^b S_x
$$

(8)

Compare this expression with that of WBFM by setting $D = b/2 \gg 1$ in Eq. (20), Sect. 10.3.

12.3 \hspace{1em} \textbf{DELT A MODULATION AND PREDICTIVE CODING}

Sample values of analog waveforms derived from physical processes often exhibit predictability in the sense that the average change from sample to sample is small. Hence, you can make a reasonable guess of the next sample value based on previous values. The predicted value has some error, of course, but the range of the error should be much less than the peak-to-peak signal range. Predictive coded modulation schemes exploit this property by transmitting just the prediction errors. An identical prediction circuit at the destination combines the incoming errors with its own predicted values to reconstruct the waveform.

Predictive methods work especially well with audio and video signals, and much effort has been devoted to prediction strategies for efficient voice and image
transmission. **Delta modulation** (DM) employs prediction to simplify hardware in exchange for increased signaling rate compared to PCM. **Differential pulse-code modulation** (DPCM) reduces the signaling rate but involves more elaborate hardware. We’ll discuss both DM and DPCM in this section, along with the related and fascinating topic of **speech synthesis** using prediction.

Delta Modulation

Let an analog message waveform \(x(t) \) be lowpass filtered and sampled every \(T_s \) seconds. We’ll find it convenient here to use **discrete-time** notation, with the integer independent variable \(k \) representing the sampling instant \(t = kT_s \). We thus write \(x(k) \) as a shorthand for \(x(kT_s) \), and so on.

When the sampling frequency is greater than the Nyquist rate, we expect that \(x(k) \) roughly equals the previous sample value \(x(k - 1) \). Therefore, given the quantized sample value \(x_q(k) \), a reasonable guess for the next value would be

\[
\tilde{x}_q(k) = x_q(k - 1)
\]

where \(\tilde{x}_q(k) \) denotes our **prediction** of \(x_q(k) \). A delay line with time delay \(T_s \) then serves as the prediction circuit. The difference between the predicted and actual value can be expressed as

\[
x_q(k) = \tilde{x}_q(k) + \epsilon_q(k)
\]

in which \(\epsilon_q(k) \) is the **prediction error**.

If we transmit \(\epsilon_q(k) \), we can use the system in Fig. 12.3–1 to generate \(x_q(k) \) by delaying the current output and adding it to the input. This system implements Eqs. (1) and (2), thereby acting as an **accumulator**. The accumulation effect is brought out by writing \(x_q(k) = \epsilon_q(k) + x_q(k - 1) \) with \(x_q(k - 1) = \epsilon_q(k - 1) + x_q(k - 2) \), and so forth; hence

\[
x_q(k) = \epsilon_q(k) + \epsilon_q(k - 1) + x_q(k - 2)
= \epsilon_q(k) + \epsilon_q(k - 1) + \epsilon_q(k - 2) + \cdots
\]

An **integrator** accomplishes the same accumulation when \(\epsilon_q(k) \) takes the form of brief rectangular pulses.

At the transmitting end, prediction errors are generated by the simple delta modulation system diagrammed in Fig. 12.3–2. The comparator serves as a binary quantizer.

![Accumulator for delta modulation.](image-url)
with output values $\pm \Delta$, depending on the difference between the predicted value $\bar{x}_q(k)$ and the unquantized sample $x(k)$. Thus, the resulting DM signal is

$$\varepsilon_q(k) = [\text{sgn} \varepsilon(k)] \Delta$$ \hspace{1cm} (3a)

where

$$\varepsilon(k) = x(k) - \bar{x}_q(k)$$ \hspace{1cm} (3b)

which represents the unquantized error. An accumulator (or integrator) in a feedback loop produces $\bar{x}_q(k)$ from $\varepsilon_q(k)$, similar to Fig. 12.3-1 except that the feedback signal comes from the delayed output.

Observe that this DM transmitter requires no analog-to-digital conversion other than the comparator. Also observe that an accumulator like Fig. 12.3-1 performs the digital-to-analog conversion at the receiver, reconstructing $x_q(k)$ from $\varepsilon_q(k)$. Thus, A DM system achieves digital transmission of analog signals with very simple hardware compared to a PCM system.

The name delta modulation reflects the fact that each input sample $x(k)$ has been encoded as a single pulse of height $+\Delta$ or $-\Delta$. But we can also view $\varepsilon_q(k)$ as a binary waveform with signaling rate $r_b = f_s$, or one bit per sample. For this reason DM is sometimes called “1-bit PCM.” The corresponding transmission bandwidth requirement is

$$B_T \geq r_b/2 = f_s/2$$ \hspace{1cm} (4)

We get by with just one bit per sample because we're transmitting prediction errors, not sample values. Nonetheless, successful operation requires rather high sampling rates, as we'll soon see.

Figure 12.3-3 depicts illustrative continuous-time waveforms $x(t)$, $\bar{x}_q(t)$, and $\varepsilon_q(t)$ involved in DM. The staircase waveform $x_q(t)$ at the receiver differs from $\bar{x}_q(t)$ only by a time shift of T_s seconds. The transmitter starts with an arbitrary initial prediction such as $\bar{x}_q(0) < x(0)$ so $\varepsilon_q(0) = +\Delta$. Then $\varepsilon_q(0)$ is fed back through
the accumulator to form the updated prediction \(\tilde{x}_q(T_s) = x_q(0) + \epsilon_q(0) \). Continual updating at each sampling instant causes \(\tilde{x}_q(t) \) to increase by steps of \(\Delta \) until the start-up interval ends when \(\tilde{x}_q(kT_s) > x(kT_s) \) and \(\epsilon_q(kT_s) = -\Delta \). If \(x(t) \) remains constant, \(\tilde{x}_q(t) \) takes on a hunting behavior, oscillating between values \(\pm \Delta \) about the mean. When \(x(t) \) varies with time, \(\tilde{x}_q(t) \) follows it in stepwise fashion as long as the rate of change does not exceed the DM tracking capability. The difference between \(\tilde{x}_q(t) \) and \(x(t) \) is called \textbf{granular noise}, analogous to quantization noise in PCM. The reconstructed and smoothed waveform at the receiver will be a reasonable approximation for \(x(t) \) if \(\Delta \) and \(T_s \) are sufficiently small.

When \(x(t) \) increases or decreases too rapidly, though, \(\tilde{x}_q(t) \) lags behind and we have the phenomenon known as \textbf{slope overload}, a fundamental limitation of DM. Since \(\tilde{x}_q(t) \) changes by \(\pm \Delta \) every \(T_s = 1/f_s \) seconds, the maximum DM slope is \(\pm f_s \Delta \) and a sufficient condition for slope tracking is

\[
f_s \Delta \geq |x(t)|_{\text{max}}
\]

where \(\dot{x}(t) = dx/dt \). Consider, for instance, the modulating tone \(x(t) = A_m \cos 2\pi f_m t \) so \(\dot{x}(t) = -2\pi f_m A_m \sin 2\pi f_m t \) and \(|\dot{x}(t)|_{\text{max}} = 2\pi f_m A_m \leq 2\pi W \), where the upper bound incorporates our message conventions \(A_m \leq 1 \) and \(f_m \leq W \). Equation (5), therefore, calls for a high sampling frequency \(f_s \geq 2\pi W/\Delta >> 2W \), since we want \(\Delta \ll 2 \) to make the steps of \(\tilde{x}_q(t) \) small compared to the peak-to-peak signal range \(-1 \leq x(t) \leq 1\).

DM performance quality depends on the granular noise, slope-overload noise, and regeneration errors. However, only granular noise has significant effect under normal operating conditions, which we assume hereafter. Even so, the analysis of granular noise is a difficult problem best tackled by computer simulation for accurate results or by approximations for rough results.

We’ll estimate DM performance using the receiver modeled by Fig. 12.3–4a with \(\epsilon_q(t - T_s) = \epsilon_q(k - 1) \) at the input to the accumulator. Equations (1) and (3b) then give the accumulator output as \(x_q(k - 1) = \tilde{x}_q(k) = x(k) - \epsilon(k) \) or

\[
\tilde{x}_q(t) = x(t) - \epsilon(t)
\]
12.3 Delta Modulation and Predictive Coding

where \(\varepsilon(t) \) is the granular noise waveform sketched in Fig. 12.3-4b. The shape of \(\varepsilon(t) \) and the fact that \(|\varepsilon(t)| \leq \Delta \) suggest a uniform amplitude distribution with

\[
\bar{\varepsilon}^2 = \frac{\Delta^2}{3}
\]

Furthermore, experimental studies confirm that the power spectrum of \(\varepsilon(t) \) is essentially flat over \(|f| \leq 1/T_s = f_s \). Thus,

\[
G_{\varepsilon}(f) = \frac{\bar{\varepsilon}^2}{2} f_s \quad \text{for} \quad |f| \leq f_s
\]

and lowpass filtering yields

\[
N_g = \int_{-W}^{W} G_{\varepsilon}(f) \, df = \frac{W}{f_s} \frac{\bar{\varepsilon}^2}{2} = \frac{W}{f_s} \frac{\Delta^2}{3} \quad \text{(7)}
\]

which is the average power of the granular noise component of \(x(t) \).

When granular noise is the only contamination in the filtered output, we obtain the signal-to-noise ratio

\[
\left(\frac{S}{N} \right)_D = \frac{S_x}{N_g} = \frac{3f_s}{\Delta^2 W} S_x \quad \text{(8)}
\]

This result is almost identical to the PCM expression \((S/N)_D = 3q^2 S_x \) if \(f_s = 2W \) and \(\Delta = 1/q \). However, \(f_s \) and \(\Delta \) must satisfy Eq. (5). We therefore need a more general relationship for the slope-tracking condition.

Recall from Eq. (21), Sect. 9.2, that if \(G_x(f) \) is the power spectrum of \(x(t) \), then the power spectrum of the derivative \(\dot{x}(t) \) is \((2\pi f)^2 G_x(f) \). Hence, the mean-square signal slope can be put in the form

\[
\overline{|\dot{x}(t)|^2} = \int_{-\infty}^{\infty} (2\pi f)^2 G_x(f) \, df = (2\pi \sigma W_{m_x})^2 \quad \text{(9)}
\]
CHAPTER 12 • Digitization Techniques for Analog Messages and Computer Networks

where \(\sigma = \sqrt{S_x} \) is the signal’s RMS value and \(W_{RMS} \) is its RMS bandwidth, defined by

\[
W_{RMS} = \frac{1}{\sigma} \left[\int_{-\infty}^{\infty} f^2 G_x(f) \, df \right]^{1/2} \tag{10}
\]

Now we introduce the so-called slope loading factor

\[
s = \frac{f_s \Delta}{2\pi \sigma W_{RMS}} \tag{11}
\]

which is the ratio of the maximum DM slope to the RMS signal slope.

A reasonably large value of \(s \) ensures negligible slope overload. Hence, we’ll incorporate this factor explicitly in Eq. (8) by writing \(\Delta \) in terms of \(s \) from Eq. (11). Thus,

\[
\left(\frac{S}{N} \right)_D = \frac{3}{4\pi^2} \frac{b^3}{s^2} \frac{f_s^2}{W_{RMS}^2} \tag{12}
\]

where

\[
b = \frac{f_s}{2W} \tag{13}
\]

The parameter \(b \) equals our usual bandwidth ratio \(B_T/W \) when \(B_T \) has the minimum value \(f_s/2 \). Equation (12) brings out the fact that DM performance falls between PCM and PPM since the wideband noise reduction goes as \(b^3 \) rather than \(b^2 \) or exponentially. DM generally requires a larger transmission bandwidth than PCM to achieve the same signal-to-noise ratio, so its applications are limited to those cases where ease of implementation takes precedence over bandwidth considerations.

Computer simulations by Abate (1967) indicate that Eq. (12) holds for \(\ln 2b \leq s < 8 \). If \(s < \ln 2b \), then slope-overload noise dominates and \((S/N)_D \) drops off quite rapidly. Figure 12.3–5 illustrates how \((S/N)_D \) varies with \(s \). For a specified bandwidth ratio, DM performance is maximized by taking the empirically determined optimum slope loading factor

\[
s_{opt} = \ln 2b \tag{14}
\]

The maximum value of \((S/N)_D \) is then given by Eq. (12) with \(s = s_{opt} \).

EXAMPLE 12.3–1 DM Voice Transmission

When a typical voice signal has been prefiltered so that \(W = 4 \) kHz, its RMS bandwidth will be \(W_{RMS} = 1.3 \) kHz. Substituting these values and \(s = s_{opt} = \ln 2b \) in Eq. (12) yields the maximum DM signal-to-noise ratio \((S/N)_D = 5.8b^3/(\ln 2b)^2 \). If \(b = 16 \), then \((S/N)_D = 33 \) dB which is comparable to binary PCM with \(\nu = 7 \) and \(\mu \)-law companding. Now the DM signal requires \(r_b = f_s = 2bW = 128 \) kbps and \(B_T \approx 64 \) kHz, whereas the PCM signal would have \(r_b = \nu f_s \approx 56 \) kbps and \(B_T \approx 28 \) kHz.
Consider a signal with a uniform power spectrum \(G_s(f) = (S_x/2W) \Pi(f/2W) \). Show that \(W_{RMS} = W/\sqrt{3} \). Then calculate the optimum value of \(\Delta \) in terms of \(S_x \) when \(b = 16 \).

Delta-Sigma Modulation

The preceding DM scheme takes the derivative of the input. In cases where the data are noisy, the noise can cause cumulative errors in the demodulated signal. There is further difficulty if the signal has a significant DC component. An alternative to the DM is a **Delta-Sigma Modulator** (DSM), also called sigma-delta \((\delta - \Delta)\) modulation.

We first consider an equivalent version of the conventional delta modulator transmitter/receiver system as shown in Fig. 12.3–6a. Now let’s add an integrator (or accumulator) to the input which has the effect of preemphasizing the low frequencies. This can also integrate the signal in the feedback path and thereby eliminate the feedback integrator. To compensate for the additional integrator, we then add a differentiator at the receiver. However, since the DM receiver already has an integrator, which is the inverse of a differentiator, we can eliminate both of these at the receiver and thus simplify its design, giving us the system shown in Fig. 12.3–6b.
Adaptive Delta Modulation

Adaptive delta modulation (ADM) involves additional hardware designed to provide variable step size, thereby reducing slope-overload effects without increasing the granular noise. A reexamination of Fig. 12.3–3 reveals that slope overload appears in $\varepsilon_q(t)$ as a sequence of pulses having the same polarity, whereas the polarity tends to alternate when $x_q(t)$ tracks $x(t)$. This sequence information can be utilized to adapt the step size in accordance with the signal’s characteristics.

Figure 12.3–7 portrays the action of an ADM transmitter in which the step size in the feedback loop is adjusted by a variable gain $g(k)$ such that

$$\bar{x}_q(k) = \bar{x}_q(k - 1) + g(k - 1)\varepsilon_q(k - 1)$$

The step-size controller carries out the adjustment algorithm

$$g(k) = \begin{cases}
 g(k - 1) \times K & \varepsilon_q(k) = \varepsilon_q(k - 1) \\
 g(k - 1)/K & \varepsilon_q(k) \neq \varepsilon_q(k - 1)
\end{cases}$$

where K is a constant taken to be in the range $1 < K < 2$. Thus, the effective step size increases by successive powers of K during slope-overload conditions, as signified
Delta Modulation and Predictive Coding

Figure 12.3–7 (a) Adaptive DM transmitter; (b) waveforms.

by \(\epsilon_q(k) = \epsilon_q(k-1) \), but decreases when \(\epsilon_q(k) \neq \epsilon_q(k-1) \). Another adaptive scheme called **continuously variable slope delta modulation** (CVSDM) provides a continuous range of step-size adjustment instead of a set of discrete values.

The signal-to-noise ratio of ADM is typically 8–14 dB better than ordinary DM. Furthermore, the variable step size yields a wider dynamic range for changing values of \(S_x \), similar to the effect of \(\mu \)-law companding in PCM. As a net result, ADM voice transmission gets by with a bandwidth ratio of \(b = 6–8 \) or \(B_t = 24–32 \) kHz.

Differential PCM

Differential pulse-code modulation (DPCM) combines prediction with multilevel quantizing and coding. The transmitter diagrammed in Fig. 12.3–8a has a q-level quantizer with quantum levels at \(\pm \Delta, \pm 3\Delta, \ldots, \pm (q-1)\Delta \). The unquantized error \(x(k) - \hat{x}_q(k) \) is applied to the quantizer to produce the prediction error \(\epsilon_q(k) \) which is then encoded as a binary word with \(\nu = \log_2 q \) bits, just like binary PCM. DPCM transmission therefore requires

\[
r_b = \nu f_s \quad \text{and} \quad B_t \geq \nu f_s / 2
\]

However, since \(\hat{x}_q(k) \) changes as much as \(\pm (q-1)\Delta \) from sample to sample, the slope tracking condition becomes

\[
f_s(q - 1) \Delta \geq |x(t)|_{\text{max}}
\]

If \(q \gg 1 \) and \(W_{\text{rms}} \ll W \), the sampling frequency can be nearly as low as the Nyquist rate.

Multilevel quantization of the prediction error obviously provides better information for message reconstruction at the receiver. To gain full advantage of this
potential, the DPCM prediction circuit usually takes the form of a transversal filter shown in Fig. 12.3–8b, where

$$\bar{x}_q(k) = \sum_{i=1}^{n} c_i x_q(k - i)$$

so the predictor draws upon the previous n samples. The tap gains c_i are chosen to minimize the mean square value of the error $x(k) - \bar{x}_q(k)$. The receiver in Fig. 12.3–8c includes an identical prediction filter after the decoder.

Assuming $q \gg 1$ and no slope overload, DPCM performs essentially like PCM enhanced by a prediction gain G_p such that

$$\left(\frac{S}{N} \right)_D = G_p \cdot 3q^2 S_x$$

(15)

The gain of an optimum predictor is given by

$$G_p = \left[1 - \sum_{i=1}^{n} c_i \rho_i \right]^{-1}$$

(16a)
where \(\rho_i = R_x(iT_s)/S_x \) is the normalized signal correlation and the tap gains satisfy the matrix relationship

\[
\begin{bmatrix}
\rho_0 & \rho_1 & \cdots & \rho_{n-1} \\
\rho_1 & \rho_0 & \cdots & \rho_{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
\rho_{n-1} & \rho_{n-2} & \cdots & \rho_0 \\
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
\vdots \\
C_n \\
\end{bmatrix}
=
\begin{bmatrix}
\rho_1 \\
\rho_2 \\
\vdots \\
\rho_n \\
\end{bmatrix}
\]

(Jayant and Noll 1984) outline the derivation of Eqs. (15) and (16) and present experimental data showing that \(G_p = 5-10 \) dB for voice signals. The higher correlation of a TV video signal results in prediction gains of about 12 dB.

In contrast to delta modulation, DPCM employs more elaborate hardware than PCM for the purpose of improving performance quality or reducing the signaling rate and transmission bandwidth. Adaptive DPCM (ADPCM) achieves even greater improvement by adapting the quantizer or predictor or both to the signal characteristics.

Suppose a DPCM predictor yields \(G_p = 6 \) dB. Show that the DPCM word needs one less bit than that of binary PCM, all other factors being equal. Hint: See Eq. (7), Sect. 12.1.

EXERCISE 12.3–2

LPC Speech Synthesis

Linear predictive coding (LPC) is a novel approach to digital representation of analog signals. The method uses a transversal filter (or its digital-circuit equivalent) plus some auxiliary components to synthesize the waveform in question. The parameters of the waveform synthesizer are then encoded for transmission, instead of the actual signal. Considerable efficiency results if the synthesizer accurately mimics the analog process. Since there already exists extensive knowledge about speech processes, LPC is particularly well suited to speech synthesis and transmission.

Figure 12.3–9 diagrams a speech synthesizer consisting of two input generators, a variable-gain amplifier, and a transversal filter in a feedback loop. The amplifier gain and filter tap gains are adjusted to model the acoustical properties of the vocal tract.
Unvoiced speech (such as hissing sound) is produced by connecting the white-noise generator. Voiced speech is produced by connecting the impulse-train generator set at an appropriate pitch frequency.

If the filter has about 10 tap gains, and all parameter values are updated every 10 to 25 ms, the synthesized speech is quite intelligible, although it may sound rather artificial, like a robot. Some talking toys and recorded-message systems generate speech sounds by the synthesis method, drawing upon parameter values stored in a digital memory. Systems that generate speech in this manner are called vocoders. An alternative to vocoders are waveform encoders where a given algorithm such as PCM is employed to replicate a given speech signal.

Now consider the LPC transmitter of Fig. 12.3–10a. Sample values of voice input are analyzed to determine the parameters for the synthesizer, whose output is compared with the input. The resulting error is encoded along with the parameter values to form the transmitted digital signal. The receiver in Fig. 12.3–10b uses the parameter values and quantized error to reconstruct the voice waveform.

A complete LPC codeword consists of 80 bits—1 bit for the voiced/unvoiced switch, 6 bits for the pitch frequency, 5 for the amplifier gain, 6 for each of the 10 tap gains, and a few bits for the error. Updating the parameters every 10–25 ms is equivalent to sampling at 40–100 Hz, so LPC requires a very modest bit rate in the vicinity of 3000 to 8000 bps. Table 12.3–1 compares LPC with other voice encoding methods. The substantial bit-rate reduction made possible by LPC has stimulated efforts to improve the quality of speech synthesis for voice communication. In fact, as shown in Table 12.3–1, using LPC we can compress speech from a 56 kbps to 3 kbps rate. See Rabiner and Schafer (1978) for a general introduction to digital processing applied to speech signals.

![Figure 12.3–10](image-url)
Figure 12.3–10 LPC transmission system: (a) transmitter; (b) receiver.
Table 12.3–1 Comparison of voice encoding methods

<table>
<thead>
<tr>
<th>Encoding method</th>
<th>Sampling rate, kHz</th>
<th>Bits per sample</th>
<th>Bit rate, kbps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>64–128</td>
<td>1</td>
<td>64–128</td>
</tr>
<tr>
<td>PCM</td>
<td>8</td>
<td>7–8</td>
<td>56–64</td>
</tr>
<tr>
<td>ADM</td>
<td>48–64</td>
<td>1</td>
<td>48–64</td>
</tr>
<tr>
<td>DPCM</td>
<td>8</td>
<td>4–6</td>
<td>32–48</td>
</tr>
<tr>
<td>ADPCM</td>
<td>8</td>
<td>3–4</td>
<td>24–32</td>
</tr>
<tr>
<td>LPC</td>
<td>0.04–0.1</td>
<td>≈ 80</td>
<td>3–8</td>
</tr>
</tbody>
</table>

12.4 DIGITAL AUDIO RECORDING

Much of our communication infrastructure deals with the transmission of signals whose content is music, so we are interested in preserving fidelity, dynamic range, and so on. The study of digital audio recording provides us with a good lesson in the advantages of digital over analog systems and some methods we can employ to maintain signal quality.

Analog audio storage media such as magnetic tape have several quality limitations. The media itself wears out with constant use or degenerates over time: tapes stretch out and exhibit wow and flutter. Their dynamic range is usually limited to 70 dB, whereas a live orchestra can have a dynamic range of 100 to 120 dB. Therefore, to record the music and accommodate the wide range of amplitudes, the recording level has to be adjusted so that soft music isn’t lost, and loud music doesn’t saturate the amplifier.

The recent development of compact disc (CD) technology for digital recording of audio signals is a significant advancement in the art of music recording. A CD consists of a plastic disk about 120 mm in diameter. It has about 20,000 tracks, each having a width of 0.5 μm and spaced 1.6 μm apart. Each track has a series of microscopic pits that stick into the plastic. The regions between pits are called lands. The presence or absence of a pit is detected and converted to a binary electrical signal by the laser diode and photodiode system of Fig. 12.4–1. The laser light reflects off the pit and is transmitted into the photodiode via the beam splitter. Because the laser beam is focused at the specific depth, fingerprints, dust, scratches and other surface defects are blurred and therefore usually not detected by the system. Unlike magnetic media, there is no mechanical contact with the surface and thus no wear on the surface. Figure 12.4–2 shows the equivalent electrical signal of the programmed tracks. Note that a binary 1 occurs when there is a transition from pit to land or vice versa. The CD has a total track length of 5300 m and a scan velocity of 1.2 m/s, thus giving a total playing time of 74 minutes.

CD Recording

The system for recording left and right channel audio information to a CD is shown in Fig. 12.4–3. With high-fidelity music having a bandwidth of 20 kHz, the signal is sampled at 44.1 kHz to meet the Nyquist criterion and provide a guard band to minimize...
aliasing. The system has an analog antialiasing LPF which may also incorporate preemphasis. If preemphasis is included, a control word is also recorded to activate deemphasis during playback. Prior to PCM, a small amount of dither, or random noise, is added to mask any granular noise. The signal is then digitized using PCM with 16-bit uniform quantization. For an ADC, the dynamic range is defined by \(20 \log (2^n)\) dB, and thus a 16-bit system has a dynamic range of \(20 \log (2^{16})\) = 96 dB. With a sample rate of 44.1 kHz and 16 bits of quantization, the PCM has an output bit rate of 705.6 kbps.

The two PCM outputs are sent to the Cross Interleave Reed-Solomon Error Control Code (CIRC) stage, giving an effective bit rate of 1.4112 Mbps. The purpose of the CIRC is to encode the data with parity or check symbols to enable error correction during the playback process. Reed-Solomon codes are used for this purpose. Encoding occurs as follows: (a) Each 16-bit PCM signal is split into two 8-bit symbols. (b) Twelve symbols from each channel (i.e., twenty-four 8-bit symbols) are scrambled and then applied to the first CIRC encoder. (c) This encoder inserts four 8-bit parity symbols into the 24-symbol sequence to generate a 28-symbol sequence. These extra symbols are called Q words and enable error correction. (d) The symbol sequence is then dispersed according to a specified system of interleaving. Interleaving symbols minimizes the effects of burst-type errors where noise and media
defects cause successive symbols to be corrupted. Interleaving also better enables the Reed-Solomon codes to correct errors. (e) The interleaved words undergo another encoding process in which an additional four 8-bit parity symbols called \(P \) words are added to the 28-symbol sequence. The end result is that the CIRC module converts a 24-symbol sequence into a 32-symbol sequence.

The control-word module adds an 8-bit symbol to each 32-symbol data block from the CIRC. This extra word is used to provide information about track separation, end of disk flags, track number, and so forth.

The eight-to-fourteen (EFM) module takes each 8-bit symbol from the control word module and converts it to a 14-bit symbol. Adding these additional bits reduces the signal bandwidth and DC content, and adds additional synchronization information, the purpose being to improve the recording and playback process and to allow for easier manufacturing tolerances for the lands/pits. Recall that an 8-bit code can represent 256 possible bit combinations, and a 14-bit code represents 16,384 combinations. Thus with EFM encoding, we chose 256 out of the 16,384 possibilities to represent the data from the control word module. To further reduce the signal's DC content, the EFM stage adds three additional bits we call merging bits to each 14-bit word. That is, each binary 1 is separated by at least two but not more than ten 0s, and the signal has a length that varies between three and eleven clock periods. The bit stream is then converted into a nonreturn-to-zero inverse (NRZI) format as shown in Fig. 12.4-2. Thus we have added an additional 9 bits to the incoming 8-bit symbol.

The data is then organized into blocks called frames, each one consisting of thirty-three 17-bit symbols (i.e., 561 bits). In order to indicate the start of each frame, and to specify the player's motor frequency, an additional 17-bit sync word and three merging bits are added, resulting in a frame length of 588 bits. The data output \(r_c \) is then written into the CD. Therefore, starting with the 1.4112 Mbs data rate at the input of the CIRC, the output rate is calculated as follows:

\[
r_c = 1.4112 \text{ Mbs} \times \left(\frac{32}{24}\right)_{\text{CIRC}} \times \left(\frac{33}{32}\right)_{\text{control word coding}} \times \left(\frac{17}{8}\right)_{\text{EFM}} \times \left(\frac{588}{561}\right)_{\text{sync word & 3 merging bits}} = 4.3218 \text{ Mbs} = \frac{1}{T_b}
\]
Given that a 1 is separated from two to ten 0s, a bit rate of 4.3218 M bps, and a scan velocity of 1.2 m/s means the CD land/pit size varies from 0.833 μm (3T₇) to 3.054 μm (11T₇).

EXERCISE 12.4–1 For a CD, calculate the number of music information bits in each frame and the frame rate.

CD Playback

The CD playback process is shown in Fig. 12.4–4. The decoder decodes the EFM signal, Removes the merging bits, and extracts sync and control word information. The signal then goes to the error detector.

CD technology does a superior job of error control. CDs contain two types of errors. Random errors are caused by air bubbles or pit inaccuracies in the CD material, and burst errors are caused by scratches, fingerprints, and so forth. When errors do occur, they manifest themselves by “click” sounds at playback. Error control is done by correction or concealment in the following order. First we employ check digits to correct errors that occur. If a specific bit is incorrect, we simply change it to the opposite state. On the other hand, if the bit was received with ambiguity, and there is enough redundancy in the code, we can use the redundancy to determine the correct data value. Otherwise we conceal the incorrect value by interpolating between neighboring samples. If that isn’t satisfactory, the remaining choice is to mute the unreliable data value. As long as muting does not exceed a few milliseconds, it is not noticed by the listener.

At this point, we would expect to use a 16-bit DAC to reconstruct the signal. However, 16-bit DACs are relatively expensive, and a more economical and clever alternative exists. We first up-sample the data from the error detector by inserting N − 1 all zero words between the PCM samples, thus effectively increasing the sampling rate to fₛ' = Nfₛ. A digital LPF interpolates between the original samples. We usually use N = 256, so the sample rate increases from fₛ = 44.1 kHz to fₛ' = 11.3 MHz. This massive increase in sampling rate causes the amplitude differences between successive samples to be relatively small and therefore allows us to use a delta-sigma modulator as a 1-bit DAC. A Butterworth analog LPF with a bandwidth

![Figure 12.4–4](#) **CD audio playback.**
of 20 kHz completes the reconstruction process. See Baert, Theunissen, Bergult, and Arts (1998) and http://en.wikipedia.org/wiki/Compact_Disc for more information on audio recording.

12.5 DIGITAL MULTIPLEXING

Analog signal multiplexing was previously discussed under the heading frequency-division and time-division multiplexing. While those same techniques could be applied to waveforms representing digital signals, we gain greater efficiency and flexibility by taking advantage of the inherent nature of a digital signal as a sequence of symbols.

Thus, digital multiplexing is based on the principle of interleaving symbols from two or more digital signals.

It is similar to time-division multiplexing but free from the rigid constraints of periodic sampling and waveform preservation.

More profoundly, however, the digital revolution has also eliminated the distinctions between the various telecommunications services such as telephone, television, and the Internet. Instead, voice, video, graphic, or text information is encoded, or digitized, and simply becomes data to be multiplexed with other data and then transmitted over an available channel. It no longer matters whether or not the data originated from a voice or picture; it’s all just data.

In this section we want to first consider the general concepts and problems of digital multiplexing. The signals to be multiplexed may have come from digital data sources or analog sources that have been digitally encoded. We’ll consider specific cases including telephone system hierarchies, Digital Subscriber Lines (DSLs) and the Synchronous Optical Network (SONET). We will also briefly consider data multiplexing schemes such as packet switching, frame relay, and asynchronous transfer mode (ATM).

Multiplexers and Hierarchies

A binary multiplexer (MUX) merges input bits from different sources into one signal for transmission via a digital communication system. In other words, a MUX divides the capacity of the system between several pairs of input and output terminals. The multiplexed signal consists of source digits interleaved bit-by-bit or in clusters of bits (words or characters).

Successful demultiplexing at the destination requires a carefully constructed multiplexed signal with a constant bit rate. Towards this end, a MUX usually must perform the four functional operations:

1. Establish a frame as the smallest time interval containing at least one bit from every input.
2. Assign to each input a number of unique bit slots within a frame.
3. Insert control bits for frame identification and synchronization.
4. Make allowance for any variations of the input bit rates.

Bit rate variation poses the most vexing design problem in practice, and leads to three broad categories of multiplexers.

Synchronous multiplexers are used when a master clock governs all sources, thereby eliminating bit-rate variations. Synchronous multiplexing systems attain the highest throughput efficiency, but they require elaborate provision for distributing the master-clock signal.

Asynchronous multiplexers are used for digital data sources that operate in a start/stop mode, producing bursts of characters with variable spacing between bursts. Buffering and character interleaving make it possible to merge these sources into a synchronous multiplexed bit stream, as discussed later in conjunction with computer networks.

Quasi-synchronous multiplexers are used when the input bit rates have the same nominal value but vary within specified bounds. These multiplexers, arranged in a hierarchy of increasing bit rates, constitute the building blocks of interconnected digital telecommunication systems.

Two slightly different multiplexing patterns have been adopted for digital telecommunication: the AT&T hierarchy in North America and Japan and the CCITT hierarchy in Europe. (CCITT stands for International Telegraph and Telephone Consultative Committee of the International Telecommunications Union.) Both hierarchies are based on a 64 kbps voice PCM unit, and have the same structural layout shown in Fig. 12.5-1. The third level is intended only for multiplexing purposes, whereas the other three levels are designed for point-to-point transmission as well as multiplexing. The parameters of the AT&T and CCITT hierarchies are listed in Table 12.5-1.

Figure 12.5-1 Multiplexing hierarchy for digital telecommunications.

†CCITT was officially named ITU-T in 1993 and supersedes CCIT, which was telegraph only.
Observe in all cases that the output bit rate at a given level exceeds the sum of the input bit rates. This surplus allows for control bits and additional stuff bits needed to yield a steady output rate. Consequently, when we include the PCM bandwidth expansion, a digital network has very low bandwidth efficiency if devoted entirely to voice transmission. For instance, the fourth level of the AT&T multiplexing scheme requires $B_T \approx r_f/2 = 137$ MHz to transmit $24 \times 4 \times 7 \times 7 = 4032$ voice PCM signals, so the bandwidth efficiency is $(4032 \times 4 \text{ kHz})/137 \text{ MHz} = 12\%$. The old AT&T FDM hierarchy had a bandwidth efficiency of approximately 85 percent. Thus digital multiplexing sacrifices analog bandwidth efficiency in exchange for the advantages of digital transmission.

Previously noted advantages of digital transmission include hardware cost reduction made possible by digital integrated circuits and power cost reduction made possible by regenerative repeaters. Now we can begin to appreciate the flexibility facilitated by digital multiplexing, since the input bit streams at any level in Fig. 12.5–1 can be any desired mix of digital data and digitally encoded analog signals.

By way of example, Fig. 12.5–2 shows an illustrative configuration of the AT&T hierarchy with voice, digital data, visual telephone, and color TV signals for transmission.

Table 12.5–1 Multiplexing hierarchies

<table>
<thead>
<tr>
<th>AT&T (N. America)</th>
<th>CCITT (Europe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of inputs</td>
<td>Output rate, M bps</td>
</tr>
<tr>
<td>First Level (T-1)</td>
<td>24</td>
</tr>
<tr>
<td>Second Level (T-2)</td>
<td>4</td>
</tr>
<tr>
<td>Third Level (T-3)</td>
<td>7</td>
</tr>
<tr>
<td>Fourth Level (T-4)</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 12.5–2 Illustrative configuration of the AT&T hierarchy.
transmission on the fourth-level T4 line. Each of the twenty-four 64 kbps encoded voice signals is referred to as a **digital signal level zero** (DS0). The first-level T1 signals include PCM voice and multiplexed digital data. The T1 line is often referred to as a digital signal level one (DS1), the T2 line as DS2, and so on. The second-level T2 signals are multiplexed T1 signals along with visual telephone signals encoded as binary differential PCM (DPCM) with $f_s = 2$ MHz and $\nu = 2$ bits per word. PCM encoding of color TV requires a 90 Mbps bit rate ($f_s = 10$ MHz, $\nu = 9$), so two third-level T3 lines are allocated to this signal. The higher-level multiplexers labeled M 12, M 23, and M 34 belong to the quasi-synchronous class. Let's consider the first-level synchronous multiplexer called the channel bank.

EXAMPLE 12.5–1 T1 Voice PCM Channel Bank

Synchronous multiplexing of voice PCM requires that the signals be delivered in analog form to the channel bank. Then, as diagrammed in Fig. 12.5–3a, sequential sampling under the control of a local clock generates an analog TDM PAM signal (see Figs. 7.2–7 and 7.2–8). This signal is transformed by the encoder into TDM PCM with interleaved words. Finally, the processor appends framing and signaling information to produce the output T1 signal.

The T1 frame structure is represented by Fig. 12.5–3b. Each frame contains one 8-bit word from each of the 24 input channels plus one bit for framing, giving a total of 193 bits. The 8 kHz sampling frequency corresponds to 125 μs frame duration, so the T1 bit rate is $r_b = 193 \text{ bits} \div 125 \text{ μs} = 1.544 \text{ Mbps}$. Signaling information (dial pulses, “busy” signals, etc.) is incorporated by a method aptly known as bit robbing. Every sixth frame, a signaling bit replaces the least significant bit of each channel.

![Diagram of T1 Voice PCM Channel Bank](image-url)

Figure 12.5–3 (a) T1 channel bank; (b) frame structure.
word—denoted by the starred bit locations in the figure. Bit-robbing reduces the effective voice-PCM word length to $\nu = 7/8$ and has inconsequential effect on reproduction quality. Yet it allows 24 signaling bits every 6×125 μs, or an equivalent signaling rate of 32 kbps.

T1 signals may be either combined at an M12 multiplexer or transmitted directly over short-haul links for local service up to 80 km. The T1 transmission line is a twisted-pair cable with regenerative repeaters every 2 km. A bipolar signal format eliminates the problems of absolute polarity and DC transmission.

Digital Subscriber Lines

The plain old telephone or POT is no longer used for just analog voice signals. It has become the channel for computer, fax, video, and other digital data. With standard voice-only telephone lines, the “last-mile” connection between the telephone customer and the central office (CO) consists of a twisted-wire pair that feeds to a POT line card located at the CO. The POT card interfaces the voice line to a DS0 signal connected to the rest of the telephone network. While the twisted pair of wires may be capable of carrying signals of up to 30 MHz, the POT card is designed for voice signals, and thus the bandwidth is limited to 3.2 kHz. If the computer interface is made via a modem (modulator/demodulator), the data rate is limited to 30 kbps or, in some cases, up to 56 kbps. This is not acceptable for video, interactive video, and other high-speed services. Instead, we want to consider a digital subscriber line (DSL) that can handle increased data rates. The term DSL is somewhat of a misnomer since DSL is primarily a set of standards that defines the CO interface, and may or may not affect the existing twisted pair cable arrangement.

There are several DSL standards; some of these include:

1. **Asymmetric digital subscriber line (ADSL).** This is an FDM system where the existing twisted pair cable supports three services: (a) POTs, (b) 640 kbps digital data from subscriber to CO (upstream), and (c) 6.144 M bps digital data from CO to subscriber (downstream). The ADSL system is shown in Fig. 12.5–4 with its corresponding spectrum shown in Fig. 12.5–5.

2. **High bit rate digital subscriber line (HDSL).** Consists of one to three twisted-wire pairs to transmit and receive digital data from 1.544 to 2.048 M bps.

3. **Symmetrical digital subscriber line (SDSL).** This is a single twisted-pair version of HDSL and carries 0.192 to 2.23 M bps digital data in both directions.

4. **Very high bit rate digital subscriber line (VDSL).** A single twisted-pair line that can carry as much as 26 or 52 M bps in either direction.
5. **Integrated services digital network (ISDN).** This may be a single or dual twisted-cable pair that allows for a data rate of at least 128 kbps and enables the integration of voice, video, and other data sources. In recent years, ISDN has been effectively supplanted in the U.S. by the much higher speed ADSL service. See Dutta-Roy (2000) for more information on DSLs.

Synchronous Optical Network

Synchronous Optical Network (SONET) is a fiber-optic standard that enables multiple broadband signals and even relatively low-rate signals to be multiplexed onto a fiber-optic channel. The standard was developed by BellCore (Bell Communications Research) and standardized by ANSI (American National Standards Institute). The European equivalent is referred to as **Synchronous Digital Hierarchy** (SDH). A complete tutorial on SONET is available on the World Wide Web at www.tek.com/Measurements/App_Notes/SONET/. We will present a brief description of its operation.

Figure 12.5–6 shows a block diagram of a SONET system, whereas the details of the **path-terminating element** (PTE) and its associated multiplexing are shown in Fig. 12.5–7. SONET communication works as follows. A communication’s link, which we will refer to as a **path**, is established between the left- and right-most PTE. The PTE multiplexes various input electrical signals to generate a single optical signal and vice versa. First the PTE multiplexes and formats the input data to generate a
single 51,840 Mbps synchronous transport signal (STS-1) at the output. It also demultiplexes the STS signal at the destination. The inputs can be a single broadband signal such as an HDTV or multiple low-rate signals that are mapped into a virtual tributary (VT) which, in turn, is mapped to the STS-1 signal. The STS-1 output is an electrical signal with a frame structure such that each frame has 90 bytes × 8 bits/byte × 9 rows/frame × 8000 frames/sec and yields an STS-1 signal rate of 51.840 Mbps. In the case of SONETs, bytes are often referred to as octets.

The N STS-1 signals are then byte multiplexed to generate an STS-N signal. It is scrambled and fed to an electrical-to-optical converter where it is converted to an equivalent optical Optical Carrier level-N (OC-N) signal at some specified
wavelength. The signal then travels over a fiber-optic channel to its destination. It is possible to multiplex additional optical wavelengths over the channel. The optical channel may contain regeneration to overcome path losses. The channel may also contain **add/drop multiplexers** (ADM) that enable additional STS signals to be added or dropped from the channel. For example, when a signal arrives at the ADM, the header information is examined to determine if a section of data is to proceed to the same PTE as the rest of the STS data or is to be routed to another PTE. The input/output lines of the ADM are OC-Ns, but some ADMs may have electrical input/outputs as well. A **section** defines a link between a PTE and regeneration or regeneration and the ADM. A **line** defines the link between the PTE and the ADM.

The frame structure is shown in Fig. 12.5–8. The data in the first three columns are **transport overhead** (TOH). In the TOH, the first three rows are **section overhead** (SOH), and the next six rows are **line overhead** (LOH). The data in the fourth column is **path overhead** (POH). The remaining 86 columns × 9 rows are for user data. The user data and path overhead constitute the **synchronous payload envelope** (SPE). Each of the overhead sections defines the addressing and multiplexing functions at their particular level. The SOH, LOH, and POH also contain information relating to framing, coding, synchronization, performance monitoring, and status. See www.tek.com/Measurements/App_Notes/SONET/ for more specific information.

Data Multiplexers

Multiplexers for computer communication depart in two significant respects from general-purpose telecommunications service. On the one hand, complications arise from the fact that each computer has its own independent clock and operates in an asynchronous start/stop mode. On the other hand, simplifications come from the fact

Figure 12.5–8 STS-1 SONET frame, 9 rows × 90 bytes per row.
that computers don't require the nearly instantaneous response needed for two-way voice communication. Consequently buffering is essential and the associated time delay is tolerable.

Conventional communication links such as a telephone T1 lines as shown in Fig. 1.4–a employ circuit switching in which a dedicated line is assigned to connect the source and destination. This is the case whether the line is available at all times, or is shared by other users in a TDM scheme shown in Figs. 7.2–7 or 12.5–2. Consequently, circuit switching is not very efficient if the data are bursty or intermittent.

Message switching, or statistical-time division multiplexing, on the other hand, only uses a channel when we want to send a specific message. After the message is sent the channel is relinquished for another message from the same or another source. Message switching is also called store-and-forward switching because when a particular message reaches a node, it may have to be stored until a connection to the next node is available. While store-and-forward switching is inherently more efficient than circuit switching, it may involve significant time delays—delays that would be unacceptable in two-way voice communication. However, such delays are not a problem for applications like the Internet since users can generally tolerate brief turnaround lags. Having said this, however, improvements in router technology (i.e., the device that determines the data route) have greatly reduced the latency time in store-and-forward switching, which is thus becoming an alternative to circuit switching for telephone systems.

The first message switching system we'll consider is packet switching as shown in Fig. 1.4–b. Here the message length is limited to short blocks of data called packets. The packets may be sent using a dedicated line we call a virtual circuit such that when all the packets are sent, the line is given up. Virtual and switched circuits may be the same except that the virtual circuit is only used for the duration of the message. A packet has a header that contains the router information that specifies the location to be routed to. The packet also includes extra bits for error control purposes. Packet switching poses some interesting problems since, at any given time, the network contains numerous packets attempting to reach their respective destinations. With packet switching, multiple packets from the same source may take different paths depending on availability, may arrive in scrambled order, or may in fact get lost. If too many packets have entered a switch and compete for available lines and buffer space, we have a problem of contention. If the input rate to the switch exceeds the output rate, the excess packets are stored in a buffer. However, if the buffer is not large enough to store these excess packets, some may get discarded. If this occurs relatively frequently, the switch is said to be congested.

Packet switching is capable of working at data rates up to 64 kbps. The rate is limited because much of the packet contains error control information. Frame relay switching is similar to packet switching, but uses variable length packets called frames. Much of the error bits have been removed and thus frame relay can achieve significantly faster data rates, up to 2 M bps. Asynchronous transfer mode (ATM), or cell-relay, has even lower overhead than frame relay and uses fixed-length packets called cells. An extremely broadband switching scheme with rates in the 10s and 100s of Mbps, it allows for multiple virtual channels with the rate of each one
dynamically set on demand. ATM is used in conjunction with BISDN and SONET to carry widely different services (voice, video, business information, etc.).

EXAMPLE 12.5–2 Message Switching Versus Packet Switching

Consider a voice TDM system with twenty-four channels, each one having a data rate of 64 kbps but, because of the intermittent nature of speech, utilized only 10 percent of the time. We want to transmit a fax page consisting of 8 million bits. If we employ message switching using all the channels that are available 90 percent of the time, our waiting time is $1/(24 \times 64 \text{ kbps} \times 0.9) = 0.72 \mu\text{s/bit} \times 8 \text{ million bits} = 5.8 \text{ seconds}$. On the other hand, if we use circuit switching and only one of the TDM channels, our waiting time is $1/(64 \text{ kbps}) = 16.6 \mu\text{s/bit} \times 8 \text{ million bits} = 125 \text{ seconds}$. Therefore, if we can tolerate the intermittent delays associated with store-and-forward switching, we have a relatively efficient method of quickly transferring data.

12.6 QUESTIONS AND PROBLEMS

Questions

1. How would you properly process a signal that ranges from ± 10 volts to an ADC that has an input range of ± 1 volt?
2. Describe the ways to reduce the dynamic range of an analog signal so it can be properly digitized by an ADC.
3. Why is it sometimes desirable to use non-uniform quantization?
4. What is the usefulness of companding? Give a practical example.
5. How is slope overload minimized?
6. At what point is delta modulation no longer economical?
7. Why would it be relatively difficult or inefficient to use DM for music?
8. What property of the message allows us to use a reduced number of bits with subsequent transmissions?
9. What means can we use to reduce the number of bits required for source coding?
10. Describe the DAC process for a CD player output.
11. How does a DSL differ from a modem?
12. Why do some people constantly change the volume on an automobile CD player more often than when listening to broadcast FM?

Problems

12.1–1 An analog waveform with $W = 15$ kHz is to be quantized to $q = 200$ levels and transmitted via an M-ary PCM signal having $M = 2^n$. Find the
maximum allowed values of \(\nu \) and \(f_s \) and the corresponding value of \(n \) when the available transmission bandwidth is \(B_T = 50 \text{ kHz} \).

12.1–2 Do Prob. 12.1–1 with \(B_T = 200 \text{ kHz} \).

12.1–3 Hyperquantization is the process whereby \(N \) successive quantized sample values are represented by a single pulse with \(q^N \) possible values. Describe how PCM with hyperquantization can achieve bandwidth compression, so \(B_T < W \).

12.1–4 Suppose the PCM quantization error \(\epsilon_q \) is specified to be no greater than \(\pm P \) percent of the peak-to-peak signal range. Obtain the corresponding condition on \(\nu \) in terms of \(M \) and \(P \).

12.1–5* A voice signal having \(W = 3 \text{ kHz} \) and \(S_x = 1/4 \) is to be transmitted via \(M \)-ary PCM. Determine values for \(M \), \(\nu \), and \(f_s \) such that \((S/N)_0 \geq 40 \text{ dB} \) if \(B_T = 16 \text{ kHz} \).

12.1–6 Do Prob. 12.1–5 with \((S/N)_0 \geq 60 \text{ dB} \) and \(B_T = 40 \text{ kHz} \).

12.1–7 An audio signal with \(S_x = 0.3 \) is to be transmitted via a PCM system whose parameters must satisfy the standards for broadcast-quality audio transmission listed in Table 9.4–1. (a) If \(M = 2 \), then what are the required values of \(\nu \) and \(B_T \)? (b) If \(B_T = 4W \), then what's the minimum value of \(M \)?

12.1–8 Do Prob. 12.1–7 for high-fidelity audio transmission standards.

12.1–9 What is the number of bits required for an ADC to quantize a signal that varies from 0.5 \(\mu \text{V} \) to 250 mV so that \((S/N)_0 \geq 50 \text{ dB} \)?

12.1–10* What is the \(q \), \(\Delta \) and \((S/N)_0 \) for a PCM system with a \(\nu = 12 \)-bit ADC and a bipolar \(\pm 10 \) sinusoidal input?

12.1–11 Do Prob. 12.1–10 with \(\nu = 16 \) bits.

12.1–12 Do Prob. 12.1–10 with \(\nu = 24 \) bits.

12.1–13 How many bits are required for an ADC to encode music where the dynamic range is 120 dB?

12.1–14* What is the minimum size memory required to store 10 minutes of a sampled and quantized voice assuming \(S_x/\sigma_q^2 = 35 \text{ dB} \) and \(f_s = 8 \text{ kHz} \).

12.1–15 Consider a uniform quantizer with \(\nu = 12 \) bits and inputs between 0+/−10 V. What is \(\epsilon_q \) for an input of (a) +0.02 volts, (b) +0.2 volts?

12.1–16† Consider the signal PDF in Fig. P12.1–16. Use Eq. (9) to show that uniform quantization with \(q = 2^\nu \) levels and \(\nu \geq 3 \) yields \(\sigma_q^2 = 1/3q^2 \). Then calculate \(S_x \) and find \((S/N)_0 \) in terms of \(q \).

12.1–17† Consider a signal whose PDF is reasonably smooth and continuous and satisfies the condition \(P[|x(t)| > 1] \ll 1 \). From Eq. (9), show that uniform quantization with \(q \gg 1 \) yields \(\sigma_q^2 = 1/3q^2 \).

12.1–18 Let \(x(t) \) have a zero-mean gaussian PDF with variance \(\sigma_x^2 \) such that \(P[|x(t)| > 1] \leq 0.01 \). Use the result from Prob. 12.1–17 to obtain
12.1–19 Let \(x(t) \) have a Laplace PDF, as given by Eq. (13), with variance \(\sigma_x^2 \) such that \(P[|x(t)| > 1] \leq 0.01 \). Use the result from Prob. 12.1–17 to obtain \((S/N)_D\) in a form like Eq. (7), assuming uniform quantization with \(q \gg 1 \).

12.1–20* Consider a square root compander with \(z(x) = x_{\text{max}} \sqrt{|x|/x_{\text{max}}} \) to be used with a \(n \) bit quantizer where the output varies from \(\pm 8.75 \) V. For an input of 0.6 V, what is \(e_k \) with and without companding?

12.1–21 Consider the square root compander of Prob. 12.1–20 and an instrumentation system that processes signals from 1 \(\mu \) V to 10 mV. It is important that \(e_k \) not exceed 0.5 \(\mu \) V for inputs below 10 \(\mu \) V. How many bits are required for the quantizer to achieve this objective with and without square root companding?

12.1–22 Consider the compressor characteristic \(z(x) = (\text{sgn}(x)) \sqrt{|x|} \) for \(|x| \leq 1 \).
(a) Find and sketch the complementary expander characteristic \(x(z) \).
(b) Evaluate \(K_z \) when \(x(t) \) has the PDF in Fig. P12.1–16.

12.1–23 Consider the \(\mu \)-law compressor in Example 12.1–4. (a) Derive the complementary expander characteristic \(x(z) \). (b) Carry out the details leading to \(K_z \) as given in Eq. (15).

12.1–24 Repeat Prob. 12.1–16 if the quantizer is preceded by a \(\mu = 255 \) logarithmic compandor.

12.1–25 A voice signal with a Laplace distribution is applied to a compressor having \(z(x) = (\text{sgn}(x))(1 - e^{-2|x|}) \) for \(|x| \leq 1 \).
(a) Obtain an expression for \(K_z \) in terms of \(\alpha \). Then show that \(K_z = 1/9 \) for \(\alpha \gg 1 \) and express \((S/N)_D\) in dB in terms of \(\nu \) and \(S_x \) for binary voice PCM with this compressor.
(b) Now take \(q = 2^8 \) and evaluate \(S_x \), \(K_z \), and \((S/N)_D\) for \(\alpha = 4, 8, \) and 16. Use these results to make a plot like Fig. 12.1–8. Your plot should demonstrate that this compressor yields a higher \((S/N)_D\) but less dynamic range than the standard \(\mu \)-law compressor.
12.1–26† The A-law companding system used in Europe employs a compressor with
\[
z(x) = \begin{cases}
Ax/(1 + \ln A) & 0 \leq x \leq 1/A \\
(1 + \ln Ax)/(1 + \ln A) & 1/A < x \leq 1
\end{cases}
\]
and \(z(x) = -z(x)\) for \(-1 \leq x \leq 0\). (a) Assume \(p_x(x)\) has even symmetry and negligible area outside \(|x| \leq 1\) to show that
\[
K_z = (1 + \ln A)^2 \left[S_x + 2 \int_0^{1/A} \left(\frac{1}{A^2} - x^2 \right) p_x(x) \, dx \right]
\]
(b) Obtain the expression for \(K_z\) in terms of \(A\) and \(\alpha\) when \(x(t)\) has a Laplace distribution, and show that \(K_z = (1 + \ln A)^2/A^2\) when \(\alpha \gg A\).
(c) Let \(A = 100\) and \(q = 2^8\). Evaluate \(S_x, K_z, (S/N)_D\) for \(\alpha = 4, 16, 64\) and \(\alpha \gg 100\). Use these results to make a plot like Fig. 12.1–8. Your plot should demonstrate that A-law companding yields a lower \((S/N)_D\) but greater dynamic range than standard \(\mu\)-law companding.

12.1–27 What is the dynamic range of a music system that employs (a) \(\nu = 8\) bits and (b) \(\nu = 12\) bits?

12.2–1* A signal with \(S_x = 1/2\) and \(W = 6\) kHz is to be transmitted via \(M\)-ary PCM on a channel having \(N_0 = 0.01\) \(\mu W/Hz\) and \(B_T = 15\) kHz. Find the smallest value of \(M\) and the corresponding smallest value of \(\nu\) that yields \((S/N)_D \geq 36\) dB. Then calculate the minimum value of \(S_x\) for operation above threshold, assuming the PCM signal occupies the full transmission bandwidth.

12.2–2 Do Prob. 12.2–1 with \(B_T = 20\) kHz.

12.2–3 Do Prob. 12.2–1 with \(B_T = 75\) kHz.

12.2–4* Consider a voice PCM system with \(M = 2, \nu = 8,\) and \(\mu\)-law companding, so \((S/N)_D = 37\) dB. The PCM signal is transmitted via a regenerative repeater system with 20 identical sections. Find the minimum value of \(\gamma\) at the input to the first repeater for operation above threshold. Then determine the PCM advantage in dB by calculating the value of \(\gamma\) at the input to the first repeater of an analog repeater system that yields \((S/N)_D = 37\) dB after 20 sections.

12.2–5 Do Prob. 12.2–4 with 100 sections.

12.2–6 Show from Eq. (3) that decoding noise decreases \((S/N)_D\) by 1 dB when \(P_e = 1/15q^2\). Calculate the corresponding threshold value of \(\gamma\) for binary PCM in gaussian noise when \(\nu = 4, 8, 12\). Then take \(S_x = 1\) and plot \((S/N)_D\) in dB versus \(\gamma\) in dB.

12.2–7‡ Consider binary PCM with sign/magnitude codewords. Figure 12.1–1b reveals that an error in the sign bit shifts the decoded level by an amount \(\pm 2(2i - 1)/q\) where \(i = 1, 2, \ldots, q/2\). Show that \(\epsilon_m^2 = (5q^2 - 8)/3\nu q^2\), so \(\epsilon_m^2 = 5/3\nu\) if \(q \gg 1\).
12.2–8 Suppose a PCM system has fixed values of \(\gamma \) and \(b = B_\gamma / W \). Taking threshold into account, obtain an expression for the maximum value of \(q \).

12.2–9 Find and plot \(\gamma_{TH} \) in dB versus \(b = B_\gamma / W \) for a PCM system with \(q = 256 \) and \(\nu = b \).

12.2–10 Consider broadcast FM with \(D = 5 \), \(S_x = 0.5 \), and \(\gamma = 25 \) dB. (a) What is the minimum value of \(B_\gamma \) and corresponding \(\nu \) for a comparable PCM system with \(M = 2 \)? (b) Figure the \(\gamma_{TH} \) for the PCM system, and then compare this to the \(\gamma_{TH} \) required for the FM system. Assume for broadcast FM that \(B_\gamma = 200 \) kHz and \(W = 15 \) kHz.

12.2–11* Consider a wireless analog phone system that uses FM with \(f_s = 12 \) kHz, \(W = 3 \) kHz, and \(S_x = 0.5 \) and that is operating barely above threshold. What are \(\nu \) and \(B_\gamma \) for a comparable PCM system with \(M = 2 \)?

12.3–1 What \(\Delta \) minimizes slope overload for a DM system where the input is a normalized sinusoid with \(f_s = 40 \) kHz and \(W = 8 \) kHz?

12.3–2* What is the maximum amplitude for a 1 kHz sinusoidal input for a DM system that prevents slope-overload that has been sampled at 10 times the Nyquist rate with \(V \)?

12.3–3 The signal \(x(t) = 8 \cos 2\pi W t \) is the input to a delta modulator with \(T_s = 1/24 W \). Plot the sample points \(x(kT_s) \) for \(0 \leq k \leq 30 \). Then take \(\bar{x}_q(0) = 0 \) and plot \(\bar{x}_q(t) \) with \(\Delta = 1 \) and \(\Delta = 3 \).

12.3–4 Use the results of Example 12.3–1 to plot \((S/N)_0 \) in dB versus \(b \) for DM voice transmission with \(b = 4, 8 \), and 16. Compare with binary PCM transmission, taking \(\nu = b \) and \(S_x = 1/30 \).

12.3–5 Use the results of Example 12.3–1 to tabulate \(f_0 \) and the optimum value of \(\Delta \) for DM voice transmission with \(b = 4, 8 \), and 16 when \(S_x = 1/9 \).

12.3–6 Suppose a signal to be transmitted via DM has a dominant spectral peak at \(f = f_0 < W \), so that \(|x(t)|_{max} = 2\pi f_0 \). Obtain an upper bound on \((S/N)_0 \), in a form like Eq. (12).

12.3–7* The power spectrum of a lowpass filtered voice signal can be approximated as \(G_x(f) = |K/(f_0^2 + f^2)|II(f/2W) \). Find \(K \) in terms of \(S_x \), and obtain an expression for the RMS bandwidth. Evaluate \(W_{RMS} \) when \(W = 4 \) kHz and \(f_0 = 0.8 \) kHz.

12.3–8 An approximate expression for DM slope-overload noise is given by Abate (1967) as

\[
N_{so} = \frac{8\pi^2}{27} \left(\frac{W_{RMS}}{W} \right)^2 (3s + 1)e^{-3sS_x}
\]

Write \(\Delta^2 / f_s \) in Eq. (7) in terms of \(s \) and \(b \), and show that the total quantization noise \(N_q + N_{so} \) is minimized by taking \(s = 1n 2b \).
12.3–9 Find the tap gains and evaluate the prediction gain in dB for DPCM with a one-tap and a two-tap transversal filter when the input is a voice signal having $\rho_1 = 0.8$ and $\rho_2 = 0.6$.

12.3–10* Do Prob. 12.3–9 for a TV image signal having $\rho_1 = 0.95$ and $\rho_2 = 0.90$.

12.3–11 Consider a DPCM system with a two-tap transversal prediction filter. Assuming $q \gg 1$ so that $x_k(t) = x(kT_s)$, find the tap gains to implement the prediction strategy

$$\tilde{x}_q(kT_s) = x[(k - 1)T_s] + T_s \frac{dx(t)}{dt} \bigg|_{t=(k-1)T_s}.$$

12.3–12 Consider a DPCM system with a one-tap transversal prediction filter and $q \gg 1$, so $x_q(kT_s) = x(kT_s)$ and $\epsilon_q(kT_s) = x(kT_s) - \tilde{x}_q(kT_s)$. Obtain an expression for the mean square prediction error $\epsilon^2 = E[\epsilon_q^2(k)]$ in terms of S_x and the signal's autocorrelation $R_x(\tau) = E[x(t)x(t-\tau)]$. Then find the value of the tap gain that minimizes ϵ^2.

12.3–13 Use the method outlined in Prob. 12.3–12 to find the tap gains for a two-tap transversal prediction filter. Express your results in a matrix like Eq. (16b).

12.4–1* How many bits can a CD store?

12.4–2 What percentage of a CD will it take to store the Bible if it consists of 981 pages, two columns per page, 57 lines per column, 45 characters per line, and each character has 7 bits?

12.4–3 How many minutes of music can be recorded on a 2-Gbyte hard drive with $f_s = 44.1$ kHz, $\nu = 16$ bits, and two recording channels?

12.5–1* Several high-fidelity audio channels having $W = 15$ kHz are to be transmitted via binary PCM with $\nu = 12$. Determine how many of the PCM signals can be accommodated by the first level of the AT&T multiplexing hierarchy. Then calculate the corresponding bandwidth efficiency.

12.5–2 Do Prob. 12.5–1 for the first level of the CCITT hierarchy.

12.5–3 Determine the number of voice telephone signals that can be carried by a STS-1 SONET.

12.5–4* How long does it take to transmit an 8 × 10 inch image with 600 dots-per-inch resolution and 1 bit per dot over a ADSL channel?

12.5–5 Repeat Prob. 12.5–4 with a 56 kbps modem.
13

Channel Coding

CHAPTER OUTLINE

13.1 Error Detection and Correction
 - Repetition and Parity-Check Codes
 - Interleaving
 - Code Vectors and Hamming Distance
 - Forward Error-Correction (FEC) Systems
 - ARQ Systems

13.2 Linear Block Codes
 - Matrix Representation of Block Codes
 - Syndrome Decoding
 - Cyclic Codes
 - M-ary Codes

13.3 Convolutional Codes
 - Convolutional Encoding
 - Free Distance and Coding Gain
 - Decoding Methods
 - Turbo Codes
A primary objective of transmitting digital information is to minimize errors. Transmission errors in digital communication depend on the signal-to-noise ratio. If a particular system has a fixed value of S/N and the error rate is unacceptably high, then some other means of improving reliability must be sought. Error-control coding often provides the best solution.

Error-control coding involves the systematic addition of extra digits to the transmitted message. These extra check digits convey no information by themselves, but make it possible to detect or correct errors in the regenerated message digits. In principle, information theory holds out the promise of nearly errorless transmission, as will be discussed in Chap. 16. In practice, we seek some compromise between conflicting considerations of reliability, efficiency, and equipment complexity. A multitude of error-control codes have therefore been devised to suit various applications.

This chapter starts with an overview of error-control coding, emphasizing the distinction between error detection and error correction and systems that employ these strategies. Subsequent sections describe the two major types of codes implementations, block codes and convolutional codes.

OBJECTIVES

After studying this chapter, and working the exercises, you should be able to do each of the following:

1. Explain how parity checking can be used for error detection or correction, and relate the error-control properties of a code to its minimum distance (Sect. 13.1).
2. Explain how interleaving codewords can be used to make error correction and detection methods more effective (Sect. 13.1).
3. Calculate the message bit rate and error probability for a forward error correction (FEC) system with a given block code (Sect. 13.1).
4. Analyze the performance of an automatic-repeat-request (ARQ) system with a given block code (Sect. 13.1).
5. Describe the structure of a systematic linear block code or cyclic code (Sect. 13.2).
6. Use matrix or polynomial operations to perform encoding and decoding operations of a given code (Sect. 13.2).
7. Describe the operation of convolutional codes (Sect. 13.3).

13.1 ERROR DETECTION AND CORRECTION

Coding for error detection, without correction, is simpler than error-correction coding. When a two-way channel exists between source and destination, the receiver can request retransmission of information containing detected errors.

This error-control strategy, called automatic-repeat-request (ARQ), particularly suits data communication systems such as computer networks. However, when retransmission is impossible or impractical, error control must take the form of forward error correction (FEC) using an error-correcting code. Both strategies will be examined here, after an introduction to simple but illustrative coding techniques.

Repetition and Parity-Check Codes

When we try to talk to someone across a noisy room, we may need to repeat ourselves to be understood. A brute-force approach to binary communication over a
13.1 Error detection and correction

noisy channel likewise employs repetition, so each message bit is represented by a codeword consisting of n identical bits. Any transmission error in a received codeword alters the repetition pattern by changing a 1 to a 0 or vice versa.

If transmission errors occur randomly and independently with probability $P_e = \alpha$, then the binomial frequency function gives the probability of i errors in an n-bit codeword as

$$P(i, n) = \binom{n}{i} \alpha^i (1 - \alpha)^{n-i}$$

where

$$\binom{n}{i} = \frac{n!}{i!(n-i)!} = \frac{n(n-1)\cdots(n-i+1)}{i!}$$

We'll proceed on the assumption that $\alpha \ll 1$—which does not necessarily imply reliable transmission since $\alpha = 0.1$ satisfies our condition but ordinarily would be an unacceptable error probability for digital communication. Repetition codes improve reliability when α is sufficiently small that $P(i+1, n) \ll P(i, n)$ and, consequently, several errors per word are much less likely than a few errors per word.

Consider, for instance, a triple-repetition code with codewords 000 and 111. All other received words, such as 001 or 101, clearly indicate the presence of errors. Depending on the decoding scheme, this code can detect or correct erroneous words. For error detection without correction, we say that any word other than 000 or 111 is a detected error. Single and double errors in a word are thereby detected, but triple errors result in an undetected word error with probability

$$P_{we} = P(3, 3) = \alpha^3$$

For error correction, we use majority-rule decoding based on the assumption that at least two of the three bits are correct. Thus, 001 and 101 are decoded as 000 and 111, respectively. This rule corrects words with single errors, but double or triple errors result in a decoding error with probability

$$P_{we} = P(2, 3) + P(3, 3) = 3\alpha^2 - 2\alpha^3$$

Since $P_e = \alpha$ would be the error probability without coding, we see that either decoding scheme for the triple-repetition code greatly improves reliability if, say, $\alpha \leq 0.01$. However, this improvement is gained at the cost of reducing the message bit rate by a factor of 1/3.

More efficient codes are based on the notion of parity. The parity of a binary word is said to be even when the word contains an even number of 1s, while odd parity means an odd number of 1s. The codewords for an error-detecting
parity-check code are constructed with $n - 1$ message bits and one check bit chosen such that all codewords have the same parity. With $n = 3$ and even parity, the valid codewords are 000, 011, 101, and 110, the last bit in each word being the parity check. When a received word has odd parity, 001 for instance, we immediately know that it contains a transmission error—or three errors or, in general, an odd number of errors. Error correction is not possible because we don’t know where the errors fall within the word. Furthermore, an even number of errors preserves valid parity and goes unnoticed.

Under the condition $\alpha \ll 1$, double errors occur far more often than four or more errors per word. Hence, the probability of an undetected error in an n-bit parity-check codeword is

$$P_{ue} = P(2, n) = \frac{n(n - 1)}{2} \alpha^2$$ \hspace{1cm} (2)

For comparison purposes, **uncoded** transmission of words containing $n - 1$ message bits would have

$$P_{uwe} = 1 - P(0, n - 1) = (n - 1)\alpha$$

Thus, if $n = 10$ and $\alpha = 10^{-3}$, then $P_{uwe} = 10^{-2}$. Whereas coding yields $P_{ue} = 5 \times 10^{-5}$ with a rate reductions to just 9/10. These numbers help explain the popularity of parity checking for error detection in computer systems.

As an example of parity checking for error correction, Fig. 13.1–1 illustrates an error-correcting scheme in which the codeword is formed by arranging k message bits in a square array whose rows and columns are checked by $2\sqrt{k}$ parity bits. A transmission error in one message bit causes a row and column parity failure with the error at the intersection, so single errors can be corrected. This code also detects double errors.

![Figure 13.1–1](image-url) **Square array for error correction by parity checking.**
Interleaving

Throughout the foregoing discussion we’ve assumed that transmission errors appear randomly and independently in a codeword. These assumptions hold for errors caused by white or filtered white noise. But impulse noise, produced by lightning and switching transients, causes errors to occur in bursts that span several successive bits. Burst errors also appear when radio-transmission systems suffer from rapid fading or if the channel has memory, where a given data symbol is a function of present and past symbols. Such multiple errors wreak havoc on the performance of conventional codes and must be combated by special techniques. Conventional error-control methods such as parity checking are designed for errors that are isolated or statistically independent events.

One solution is to spread out the transmitted codewords using a system of interleaving as represented in Fig. 13.1–2. Here the message bits are dispersed with the curved line connecting the original message and parity bit sequence in one parity word. These check bits enable us to check for single errors. Consider the case of a system that can only correct single errors. An error burst occurs such that several successive bits have been corrupted. If this happens to the original bit sequence, the system would be overwhelmed and unable to correct the problem. However, let’s say the same error burst occurs in the interleaved transmission. In this case successive bits from different message words have been corrupted. When received, the bit sequence is reordered to its original form and then the FEC can correct the faulty bits. Therefore, our single error-correction system is able to fix several errors.

While our discussion of interleaving has been the disperson of bits within a message stream, we can extend this concept to include the interleaving of bits or words over different frequencies. This was done in the presentation of GSM in Example 7.2–4.

Code Vectors and Hamming Distance

Rather than continuing a piecemeal survey of particular codes, we now introduce a more general approach in terms of code vectors. An arbitrary n-bit codeword can be visualized in an n-dimensional space as a vector whose elements or coordinates equal the bits in the codeword. We thus write the codeword 101 in row-vector notation as \(\mathbf{X} = (1 \ 0 \ 1) \). Figure 13.1–3 portrays all possible 3-bit codewords as dots corresponding to the vector tips in a three-dimensional space. The solid dots in part (a) represent the triple-repetition code, while those in part (b) represent a parity-check code.

![Figure 13.1–2](image-url) Interleaved check bits for error control with burst errors.
Notice that the triple-repetition code vectors have greater separation than the parity-check code vectors. This separation, measured in terms of the Hamming distance, has direct bearing on the error-control power of a code. The Hamming distance \(d(X, Y) \) between two vectors \(X \) and \(Y \) is defined to equal the number of different elements. For instance, if \(X = (1, 0, 1) \) and \(Y = (1, 1, 0) \) then \(d(X, Y) = 2 \) because the second and third elements are different.

The minimum distance \(d_{\text{min}} \) of a particular code is the smallest Hamming distance between valid code vectors. Consequently, error detection is always possible when the number of transmission errors in a codeword is less than \(d_{\text{min}} \) and thus the erroneous word is not a valid vector. Conversely, when the number of errors equals or exceeds \(d_{\text{min}} \), the erroneous word may correspond to another valid vector and the errors cannot be unambiguously detected.

Further reasoning along this line leads to the following distance requirements for various degrees of error control capability:

- Detect up to \(\ell \) errors per word: \(d_{\text{min}} \geq \ell + 1 \) \((3a) \)
- Correct up to \(t \) errors per word: \(d_{\text{min}} \geq 2t + 1 \) \((3b) \)
- Correct up to \(t \) errors and detect \(\ell > t \) errors per word: \(d_{\text{min}} \geq t + \ell + 1 \) \((3c) \)

By way of example, we see from Fig. 13.1–3 that the triple-repetition code has \(d_{\text{min}} = 3 \). Hence, this code could be used to detect \(\ell \leq 3 - 1 = 2 \) errors per word or to correct \(t \leq (3 - 1)/2 = 1 \) error per word — in agreement with our previous observations. A more powerful code with \(d_{\text{min}} = 7 \) could correct triple errors or it could correct double errors and detect quadruple errors.

The power of a code obviously depends on the number of bits added to each codeword for error-control purposes. In particular, suppose that the codewords consist of \(k > n \) message bits and \(n - k \) parity bits checking the message bits. This structure is known as an \((n, k)\) block code. The minimum distance of an \((n, k)\) block code is upper-bounded by
and the code’s efficiency is measured by the **code rate**

\[R_c \triangleq \frac{k}{n} \]

Regrettably, the upper bound in Eq. (4) is realized only by repetition codes, which have \(k = 1 \) and very inefficient code rate \(R_c = 1/n \). Considerable effort has thus been devoted to the search for powerful and reasonably efficient codes, a topic we’ll return to in the next section.

The geometric interpretation of code vectors leads us to another measure of code distance called **Euclidean distance**. In \(n \) - dimensional space, the Euclidean distance between two code vectors \(X \) and \(Y \) is defined as

\[d_{\text{Euclidean}} = \sqrt{(x_n - y_n)^2 + (x_{n-1} - y_{n-1})^2 + \ldots + (x_0 - y_0)^2} \]

Euclidean distances and the goodness of a code for error immunity will be further considered in Sect. 14.6, where coding and modulation are combined.

Forward Error-Correction (FEC) Systems

Now we’re prepared to examine the forward error correction system diagrammed in Fig. 13.1–4. Message bits come from an information source at rate \(r_b \). The encoder takes blocks of \(k \) message bits and constructs an \((n, k)\) block code with code rate \(R_c = k/n \leq 1 \). The bit rate on the channel therefore must be greater than \(r_b \), namely

\[r = (n/k)r_b = r_b/R_c \]

The code has \(d_{\text{min}} = 2t + 1 \leq n - k + 1 \), and the decoder operates strictly in an error-correction mode.

We’ll investigate the performance of this FEC system when additive white noise causes random errors with probability \(\alpha \ll 1 \). The value of \(\alpha \) depends, of course, on the signal energy and noise density at the receiver. If \(E_b \) represents the average

\[G(f) = \frac{N_0}{2} \]

![FEC system diagram](image)
energy per message bit, then the average energy per code bit is \(R_c E_b \) and the ratio of bit energy to noise density is

\[
\gamma_c = \frac{R_c E_b}{N_0} = R_c \gamma_b
\]

where \(\gamma_b = \frac{E_b}{N_0} \). Our performance criterion will be the probability of output message-bit errors, denoted by \(P_{be} \) to distinguish it from the word error probability \(P_{we} \).

The code always corrects up to \(t \) errors per word and some patterns of more than \(t \) errors may also be correctable, depending upon the specific code vectors. Thus, the probability of a decoding word error is upper-bounded by

\[
P_{we} \leq \sum_{i=t+1}^{n} P(i, n)
\]

For a rough but reasonable performance estimate, we’ll take the approximation

\[
P_{we} = P(t + 1, n) = \binom{n}{t + 1} \alpha^{t + 1}
\]

which means that an uncorrected word typically has \(t + 1 \) bit errors. On the average, there will be \((k/n)(t + 1) \) message-bit errors per uncorrected word, the remaining errors being in check bits. When \(Nk \) bits are transmitted in \(N \gg 1 \) words, the expected total number of erroneous message bits at the output is \((k/n)(t + 1)NP_{we} \). Hence,

\[
P_{be} = \frac{t + 1}{n} P_{we} = \binom{n - 1}{t} \alpha^{t + 1}
\]

in which we have used Eq. (1b) to combine \((t + 1)/n\) with the binomial coefficient.

If the noise has a gaussian distribution and the transmission system has been optimized (i.e., polar signaling and matched filtering), then the transmission error probability is given by

\[
\alpha = Q(\sqrt{2\gamma_b}) = Q(\sqrt{2R_c \gamma_b})
\]

\[
= (4\pi R_c \gamma_b)^{-1/2} e^{-R_c \gamma_b} \quad R_c \gamma_b \gg 5
\]

The gaussian tail approximation invoked here follows from Eq. (9), Sect. 8.4, and is consistent with the assumption that \(\alpha \ll 1 \). Thus, our final result for the output error probability of the FEC system becomes

\[
P_{be} = \binom{n - 1}{t} [Q(\sqrt{2R_c \gamma_b})]^{t+1}
\]

\[
= \binom{n - 1}{t} (4\pi R_c \gamma_b)^{-(t+1)/2} e^{-(t+1)R_c \gamma_b}
\]
Uncoded transmission on the same channel would have
\[P_{\text{ube}} = Q\left(\sqrt{2\gamma_b}\right) = (4\pi\gamma_b)^{-1/2}e^{-\gamma_b} \] \hspace{1cm} (13)
since the signaling rate can be decreased from \(r_b/R_c \) to \(r_b \).

A comparison of Eqs. (12) and (13) brings out the importance of the code parameters \(t = (d_{\text{min}} - 1)/2 \) and \(R_c = k/n \). The added complexity of an FEC system is justified provided that \(t \) and \(R_c \) yield a value of \(P_{\text{be}} \) significantly less than \(P_{\text{ube}} \). The exponential approximations show that this essentially requires \((t + 1)R_c > 1 \). Hence, a code that only corrects single or double errors should have a relatively high code rate, while more powerful codes may succeed despite lower code rates. The channel parameter \(\gamma_b \) also enters into the comparison, as demonstrated by the following example.

Probability of Error with FEC

EXAMPLE 13.1–1

Suppose we have a \((15, 11)\) block code with \(d_{\text{min}} = 3 \), so \(t = 1 \) and \(R_c = 11/15 \). An FEC system using this code would have \(\alpha = Q\left(\sqrt{(22/15)\gamma_b}\right) \) and \(P_{\text{be}} = 14\alpha^2 \), whereas uncoded transmission on the same channel would yield \(P_{\text{ube}} = Q\left(\sqrt{2\gamma_b}\right) \).

These three probabilities are plotted versus \(\gamma_b \) in dB in Fig. 13.1–5. If \(\gamma_b > 8 \) dB, we see that coding decreases the error probability by at least an order of magnitude compared to uncoded transmission. At \(\gamma_b = 10 \) dB, for instance, uncoded transmission
yields $P_{\text{ube}} = 4 \times 10^{-6}$ whereas the FEC system has $P_{\text{be}} = 10^{-7}$ even though the higher channel bit rate increases the transmission error probability to $\alpha \approx 6 \times 10^{-5}$.

If $\gamma_b < 8$ dB, however, coding does not significantly improve reliability and actually makes matters worse when $\gamma_b < 4$ dB. Furthermore, an uncoded system could achieve better reliability than the FEC system simply by increasing the signal-to-noise ratio about 1.5 dB. Hence, this particular code doesn’t save much signal power, but it would be effective if γ_b has a fixed value in the vicinity of 8–10 dB.

EXERCISE 13.1–1 Suppose the system in Example 13.1–1 is operated at $\gamma_b = 8$ dB so $\alpha = 0.001$. Evaluate $P(i, n)$ for $i = 0, 1, 2,$ and 3. Do your results support the approximation in Eq. (9)?

ARQ Systems

The automatic-repeat-request strategy for error control is based on error detection and retransmission rather than forward error correction. Consequently, ARQ systems differ from FEC systems in three important respects. First, an (n, k) block code designed for error detection generally requires fewer check bits and has a higher k/n ratio than a code designed for error correction. Second, an ARQ system needs a return transmission path and additional hardware in order to implement repeat transmission of codewords with detected errors. Third, the forward transmission bit rate must make allowance for repeated word transmissions. The net impact of these differences becomes clearer after we describe the operation of the ARQ system represented by Fig. 13.1–6.

Each codeword constructed by the encoder is stored temporarily and transmitted to the destination where the decoder looks for errors. The decoder issues a **positive acknowledgment** (ACK) if no errors are detected, or a **negative acknowledgment** (NAK) if errors are detected. A negative acknowledgment causes the input controller to retransmit the appropriate word from those stored by the input buffer. A particular word may be transmitted just once, or it may be transmitted two or more times, depending on the occurrence of transmission errors. The function of the output controller and buffer is to assemble the output bit stream from the codewords that have been accepted by the decoder.

![Figure 13.1–6](image-url) ARQ system.
Compared to forward transmission, return transmission of the ACK/NAK signal involves a low bit rate and we can reasonably assume a negligible error probability on the return path. Under this condition, all codewords with detected errors are retransmitted as many times as necessary, so the only output errors appear in words with undetected errors. For an \((n, k)\) block code with \(d_{\text{min}} = \ell + 1\), the corresponding output error probabilities are

\[
P_{\text{we}} = \sum_{i=\ell+1}^{n} P(i, n) = P(\ell + 1, n) = \left(\frac{n}{\ell + 1} \right) \alpha^{\ell + 1} \tag{14}
\]

\[
P_{\text{be}} = \frac{\ell + 1}{n} P_{\text{we}} = \left(\frac{n - 1}{\ell} \right) \alpha^{\ell + 1} \tag{15}
\]

which are identical to the FEC expressions in Eqs. (9) and (10), with \(\ell\) in place of \(t\). Since the decoder accepts words that have either no errors or undetectable errors, the word retransmission probability is given by

\[
p = 1 - [P(0, n) + P_{\text{we}}]
\]

But a good error-detecting code should yield \(P_{\text{we}} \ll P(0, n)\). Hence,

\[
p = 1 - P(0, n) = 1 - (1 - \alpha)^n = n\alpha \tag{16}
\]

where we've used the approximation \((1 - \alpha)^n \approx 1 - n\alpha\) based on \(n\alpha \ll 1\).

As for the retransmission process itself, there are three basic ARQ schemes illustrated by the timing diagrams in Fig. 13.1–7. The asterisk marks words received with detected errors which must be retransmitted. The stop-and-wait scheme in part a requires the transmitter to stop after every word and wait for acknowledgment from the receiver. Just one word needs to be stored by the input buffer, but the transmission time delay \(t_d\) in each direction results in an idle time of duration \(D \geq 2t_d\) between words. Idle time is eliminated by the go-back-N scheme in part b where codewords are transmitted continuously. When the receiver sends a NAK signal, the transmitter goes back \(N\) words in the buffer and retransmits starting from that point. The receiver discards the \(N-1\) intervening words, correct or not, in order to preserve proper sequence. The selective-repeat scheme in part c puts the burden of sequencing on the output controller and buffer, so that only words with detected errors need to be retransmitted.

Clearly, a selective-repeat ARQ system has the highest throughput efficiency. To set this on a quantitative footing, we observe that the total number of transmissions of a given word is a discrete random variable \(m\) governed by the event probabilities \(P(m = 1) = 1 - p, P(m = 2) = p(1 - p), \) and so on. The average number of transmitted words per accepted word is then

\[
\bar{m} = 1(1 - p) + 2p(1 - p) + 3p^2(1 - p) + \cdots \tag{17}
\]

\[
= (1 - p)(1 + 2p + 3p^2 + \cdots) = \frac{1}{1 - p}
\]
CHAPTER 13 • Channel Coding

since . On the average, the system must transmit \(k \) message bits, so the throughput efficiency is

\[
R' = \frac{k}{nm} = \frac{k}{n} (1 - p)
\]

in which \(p = n\alpha \), from Eq. (16).

We use the symbol \(R'_c \) here to reflect the fact that the forward-transmission bit rate \(r \) and the message bit rate \(r_b \) are related by

\[
r = r_b / R'_c
\]

comparable to the relationship \(r = r_b / R_c \) in an FEC system. Thus, when the noise has a gaussian distribution, the transmission error probability \(\alpha \) is calculated from Eq. (11) using \(R'_c \) instead of \(R_c = k/n \). Furthermore, if \(p \ll 1 \), then \(R'_c = k/n \). But an error-detecting code has a larger \(k/n \) ratio than an error-correcting code of equivalent error-control power. Under these conditions, the more elaborate hardware

Figure 13.1–7 ARQ schemes: (a) stop-and-wait; (b) go-back-\(N \); (c) selective-repeat.
needed for selective-repeat ARQ may pay off in terms of better performance than an FEC system would yield on the same channel.

The expression for \(\bar{m} \) in Eq. (17) also applies to a stop-and-wait ARQ system. However, the idle time reduces efficiency by the factor \(T_w / (T_w + D) \) where \(D \geq 2t_d \) is the round-trip delay and \(T_w \) is the word duration given by \(T_w = n/r = k/r_b \). Hence,

\[
R'_c = \frac{k}{n} \frac{1 - p}{1 + (D/T_w)} \leq \frac{k}{n} \frac{1 - p}{1 + (2t_d r_b/k)}
\]

in which the upper bound comes from writing \(D/T_w \approx 2t_d r_b/k \).

A go-back-\(N \) ARQ system has no idle time, but \(N \) words must be retransmitted for each word with detected errors. Consequently, we find that

\[
\bar{m} = 1 + \frac{Np}{1 - p}
\]

and

\[
R'_c = \frac{k}{n} \frac{1 - p}{1 - p + Np \leq \frac{k}{n} \frac{1 - p}{1 + (2t_d r_b/k)p}}
\]

where the upper bound reflects the fact that \(N \geq 2t_d/T_w \).

Unlike selective-repeat ARQ, the throughput efficiency of the stop-and-wait and go-back-\(N \) schemes depends on the round-trip delay. Equations (19) and (21) reveal that both of these schemes have reasonable efficiency if the delay and bit rate are such that \(2t_d r_b \ll k \). However, stop-and-wait ARQ has very low efficiency when \(2t_d r_b \geq k \), whereas the go-back-\(N \) scheme may still be satisfactory provided that the retransmission probability \(p \) is small enough.

Finally, we should at least describe the concept of hybrid ARQ systems. These systems consist of an FEC subsystem within the ARQ framework, thereby combining desirable properties of both error-control strategies. For instance, a hybrid ARC system might employ a block code with \(d_{\text{min}} = t + \ell + 1 \), so the decoder can correct up to \(t \) errors per word and detect but not correct words with \(\ell > t \) errors. Error correction significantly reduces the number of words that must be retransmitted, thereby increasing the throughput without sacrificing the higher reliability of ARQ.

Probability of Error with ARQ Systems

Suppose a selective-repeat ARQ system uses a simple parity-check code with \(k = 9 \), \(n = 10 \), and \(\ell = 1 \). The transmission channel is corrupted by gaussian noise and we seek the value of \(\gamma_b \) needed to get \(P_{\text{be}} = 10^{-5} \). Equation (15) yields the required transmission error probability \(\alpha = (10^{-5}/9)^{1/2} = 1.1 \times 10^{-3} \), and the corresponding word retransmission probability in Eq. (16) is \(p = 10 \alpha \ll 1 \). Hence, the throughput efficiency will be \(R'_c = k/n = 0.9 \), from Eq. (18). Since \(\alpha = Q(\sqrt{2R'_c\gamma_b}) \) we call upon the plot of \(Q \) in Table T.6 in the Appendix to obtain our final result \(\gamma_b = 3.1^2/1.8 = 5.3 \) or 7.3 dB. As a comparison, Fig. 13.1–5 shows that uncoded
transmission would have $P_{ube} \approx 6 \times 10^{-4}$ if $\gamma_b = 7.3$ dB and requires $\gamma_b \approx 9.6$ dB to get $P_{ube} = 10^{-5}$. The ARQ system thus achieves a power saving of about 2.3 dB.

EXERCISE 13.1–2

Assume that the system in Example 13.1–2 has $r_b = 50$ kbps and $t_d = 0.2$ ms. By calculating R_c show that the go-back-N scheme would be acceptable but not the stop-and-wait scheme when channel limitations require $r \leq 100$ kbps.

13.2 LINEAR BLOCK CODES

This section describes the structure, properties, and implementation of block codes. We start with a matrix representation of the encoding process that generates the check bits for a given block of message bits. Then we use the matrix representation to investigate decoding methods for error detection and correction. The section closes with a brief introduction to the important class of cyclic block codes.

Matrix Representation of Block Codes

An (n, k) block code consists of n-bit vectors, each vector corresponding to a unique block of $k < n$ message bits. Since there are 2^k different k-bit message blocks and 2^n possible n-bit vectors, the fundamental strategy of block coding is to choose the 2^k code vectors such that the minimum distance is as large as possible. But the code should also have some structure that facilitates the encoding and decoding processes. We’ll therefore focus on the class of systematic linear block codes.

Let an arbitrary code vector be represented by

$$X = (x_1 \ x_2 \ \cdots \ x_n)$$

where the elements x_1, x_2, …, are, of course, binary digits. A code is systematic when the k information bits are a subset of the n-bit codeword. A code is linear if it includes the all-zero vector and if the sum of any two code vectors produces another vector in the code. The sum of two vectors, say X and Z, is defined as

$$X + Z \triangleq (x_1 \oplus z_1 \ x_2 \oplus z_2 \ \cdots \ x_n \oplus z_n)$$

in which the elements are combined according to the rules of modulo-2 (mod-2) addition given in Eq. (2), Sect. 11.4.

As a consequence of linearity, we can determine a code’s minimum distance by the following argument. Let the number of nonzero elements of a vector X be symbolized by $w(X)$, called the vector weight. The Hamming distance between any two code vectors X and Z is then

$$d(X, Z) = w(X + Z)$$
since \(x_i \oplus z_i = 1 \) if \(x_i \neq z_i \), and so on. The distance between \(X \) and \(Z \) therefore equals the weight of another code vector \(X + Z \). But if \(Z = (0 \ 0 \ \cdots \ 0) \) then \(X + Z = X \); hence,

\[
d_{\text{min}} = [w(X)]_{\text{min}} \quad X \neq (0 \ 0 \ \cdots \ 0)
\]

(2)

In other words, the minimum distance of a linear block code equals the smallest nonzero vector weight.

A systematic block code consists of vectors whose first \(k \) elements (or last \(k \) elements) are identical to the message bits, the remaining \(n - k \) elements being check bits. A code vector then takes the form

\[
X = (m_1 \ m_2 \ \cdots \ m_k \ c_1 \ c_2 \ \cdots \ c_q)
\]

(3a)

where

\[
q = n - k
\]

(3b)

Again, note that the \(X \) codeword is systematic, since the information bits are separate from the parity bits. For convenience, we'll also write code vectors in the partitioned notation

\[
X = (M \mid C)
\]

in which \(M \) is a \(k \)-bit message vector and \(C \) is a \(q \)-bit check vector. Partitioned notation lends itself to the matrix representation of block codes.

Given a message vector \(M \), the corresponding code vector \(X \) for a systematic linear \((n, k)\) block code can be obtained by a matrix multiplication

\[
X = MG
\]

(4)

The matrix \(G \) is a \(k \times n \) generator matrix having the general structure

\[
G \triangleq [I_k \mid P]
\]

(5a)

where \(I_k \) is the \(k \times k \) identity matrix and \(P \) is a \(k \times q \) submatrix of binary digits represented by

\[
P = \\
\begin{bmatrix}
p_{11} & p_{12} & \cdots & p_{1q} \\
p_{21} & p_{22} & \cdots & p_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
p_{k1} & p_{k2} & \cdots & p_{kq}
\end{bmatrix}
\]

(5b)

The identity matrix in \(G \) simply reproduces the message vector for the first \(k \) elements of \(X \), while the submatrix \(P \) generates the check vector via

\[
C = MP
\]

(6a)

This binary matrix multiplication follows the usual rules with mod-2 addition instead of conventional addition. Hence, the \(j \)th element of \(C \) is computed using the \(j \)th column of \(P \), and

\[
c_j = m_1 p_{1j} \oplus m_2 p_{2j} \oplus \cdots \oplus m_k p_{kj}
\]

(6b)
for $j = 1, 2, \ldots, q$. All of these matrix operations are less formidable than they appear because every element equals either 0 or 1.

The matrix representation of a block code provides a compact analytical vehicle and, moreover, leads to hardware implementations of the encoder and decoder. However, it does not tell us how to pick the elements of the P submatrix to achieve specified code parameters such as d_{min} and R_c. Consequently, good codes are discovered with the help of considerable inspiration and perspiration, guided by mathematical analysis. In fact, Hamming (1950) devised the first popular block codes several years before the underlying theory was mathematically formalized.

EXAMPLE 13.2–1 Hamming Codes

A Hamming code is an (n, k) linear block code with $q = 3$ check bits and

$$n = 2^q - 1 \quad k = n - q$$ \hspace{1cm} (7a)

The code rate is

$$R_c = \frac{k}{n} = 1 - \frac{q}{2^q - 1}$$ \hspace{1cm} (7b)

and thus $R_c = 1$ if $q \gg 1$. Independent of q, the minimum distance is fixed at

$$d_{\text{min}} = 3$$ \hspace{1cm} (7c)

so a Hamming code can be used for single-error correction and/or double-error detection.

To construct a systematic Hamming code, you simply let the k rows of the P submatrix consist of all q-bit words with two or more 1s, arranged in any order.

For example, consider a systematic Hamming code with $q = 3$, so $n = 2^3 - 1 = 7$ and $k = 7 - 3 = 4$. According to the previously stated rule, an appropriate generator matrix is

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

The last three columns constitute the P submatrix whose rows include all 3-bit words that have two or more 1s. Given a block of message bits $M = (m_1 \ m_2 \ m_3 \ m_4)$, the check bits are determined from the set of equations

$$c_1 = m_1 \oplus m_2 \oplus m_3 \oplus 0$$
$$c_2 = 0 \oplus m_2 \oplus m_3 \oplus m_4$$
$$c_3 = m_1 \oplus m_2 \oplus 0 \oplus m_4$$
These check-bit equations are obtained by substituting the elements of P into Eq. (6).

Figure 13.2–1 depicts an encoder that carries out the check-bit calculations for this (7, 4) Hamming code. Each block of message bits going to the transmitter is also loaded into a message register. The cells of the message register are connected to exclusive-OR gates whose outputs equal the check bits. The check bits are stored in another register and shifted out to the transmitter after the message bits. An input buffer holds the next block of message bits while the check bits are shifted out. The cycle then repeats with the next block of message bits.

Table 13.2–1 lists the resulting $2^4 = 16$ codewords and their weights. The smallest nonzero weight equals 3, confirming that $d_{\text{min}} = 3$. Thus the check bits actually force the codeword distribution to obey the d_{min} specification.

![Figure 13.2–1 Encoder for (7, 4) Hamming code.](image)

Table 13.2–1 Codewords for the (7, 4) Hamming code

<table>
<thead>
<tr>
<th>M</th>
<th>C</th>
<th>$w(X)$</th>
<th>M</th>
<th>C</th>
<th>$w(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>0 0 0</td>
<td>0 1 0 0</td>
<td>0 0 0</td>
<td>0 1</td>
<td>3</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>0 1 1</td>
<td>3 1 0 0</td>
<td>1 1 0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>1 1 0</td>
<td>3 1 0 1</td>
<td>0 1 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>1 0 1</td>
<td>4 1 0 1</td>
<td>0 0 0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1 1 1</td>
<td>4 1 1 0</td>
<td>0 1 0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>1 0 0</td>
<td>3 1 1 0</td>
<td>0 0 1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>0 0 1</td>
<td>3 1 1 1</td>
<td>1 0 0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>0 1 0</td>
<td>4 1 1 1</td>
<td>1 1 1</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
EXERCISE 13.2–1 Consider a systematic (6, 3) block code generated by the submatrix

\[P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \]

Write the check-bit equations and tabulate the codewords and their weights to show that \(d_{\text{min}} = 3 \).

 Syndrome Decoding

Now let \(Y \) stand for the received vector when a particular code vector \(X \) has been transmitted. Any transmission errors will result in \(Y \neq X \). The decoder detects or corrects errors in \(Y \) using stored information about the code.

A direct way of performing error detection would be to compare \(Y \) with every vector in the code. This method requires storing all \(2^k \) code vectors at the receiver and performing up to \(2^k \) comparisons. But efficient codes generally have large values of \(k \), which implies rather extensive and expensive decoding hardware. As an example, you need \(q \geq 5 \) to get \(R_c \geq 0.8 \) with a Hamming code; then \(n \geq 31, k \geq 26 \), and the receiver must store a total of \(n \times 2^k > 10^9 \) bits!

More practical decoding methods for codes with large \(k \) involve parity-check information derived from the code’s \(P \) submatrix. Associated with any systematic linear \((n, k)\) block code is a \(q \times n \) matrix \(H \) called the parity-check matrix. This matrix is defined by

\[H^T = \begin{bmatrix} P \\ I_q \end{bmatrix} \]

(8)

where \(H^T \) denotes the transpose of \(H \) and \(I_q \) is the \(q \times q \) identity matrix. Relative to error detection, the parity-check matrix has the crucial property

\[XH^T = (0 \ 0 \ \cdots \ 0) \]

(9)

provided that \(X \) belongs to the set of code vectors. However, when \(Y \) is not a code vector, the product \(YH^T \) contains at least one nonzero element.

Therefore, given \(H^T \) and a received vector \(Y \), error detection can be based on

\[S = YH^T \]

(10)

a \(q \)-bit vector called the syndrome. If all elements of \(S \) equal zero, then either \(Y \) equals the transmitted vector \(X \) and there are no transmission errors, or \(Y \) equals some other code vector and the transmission errors are undetectable. Otherwise, errors are indicated by the presence of nonzero elements in \(S \). Thus, a decoder for error detection simply takes the form of a syndrome calculator. A comparison of Eqs. (10) and (6) show that the hardware needed is essentially the same as the encoding circuit.

Error correction necessarily entails more circuitry but it, too, can be based on the syndrome. We develop the decoding method by introducing an \(n \)-bit error vector \(E \) whose nonzero elements mark the positions of transmission errors in \(Y \). For instance, if \(X = (1 \ 0 \ 1 \ 1 \ 0) \) and \(Y = (1 \ 0 \ 0 \ 1 \ 1) \) then \(E = (0 \ 0 \ 1 \ 0 \ 1) \). In general,
and, conversely,
\[X = Y + E \] \hspace{1cm} (11b)
since a second error in the same bit location would cancel the original error. Substituting \(Y = X + E \) into \(S = YH^T \) and invoking Eq. (9), we obtain
\[S = (X + E)H^T = XH^T + EH^T = EH^T \] \hspace{1cm} (12)
which reveals that the syndrome depends entirely on the error pattern, not the specific transmitted vector.

However, there are only \(2^q \) different syndromes generated by the \(2^n \) possible \(n \)-bit error vectors, including the no-error case. Consequently, a given syndrome does not uniquely determine \(E \). Or, putting this another way, we can correct just \(2^q - 1 \) patterns with one or more errors, and the remaining patterns are uncorrectable. We should therefore design the decoder to correct the \(2^q - 1 \) most likely error patterns— namely those patterns with the fewest errors, since single errors are more probable than double errors, and so forth. This strategy, known as **maximum-likelihood decoding**, is optimum in the sense that it minimizes the word-error probability. Maximum-likelihood decoding corresponds to choosing the code vector that has the smallest Hamming distance from the received vector.

To carry out maximum-likelihood decoding, you must first compute the syndromes generated by the \(2^q - 1 \) most probable error vectors. The **table-lookup decoder** diagrammed in Fig. 13.2–2 then operates as follows. The decoder calculates \(S \) from the received vector \(Y \) and looks up the assumed error vector \(\hat{E} \) stored in the table. The sum \(Y + \hat{E} \) generated by exclusive-OR gates finally constitutes the decoded word. If there are no errors, or if the errors are uncorrectable, then

Figure 13.2–2 Table-lookup decoder.
S = (0 0 ... 0) so \(Y + \hat{E} = Y \). The check bits in the last q elements of \(Y + \hat{E} \) may be omitted if they are of no further interest.

The relationship between syndromes and error patterns also sheds some light on the design of error-correcting codes, since each of the \(2^q - 1 \) nonzero syndromes must represent a specific error pattern. Now there are \(\binom{n}{1} = n \) single-error patterns for an n-bit word, \(\binom{n}{2} \) double-error patterns, and so forth. Hence, if a code is to correct up to \(t \) errors per word, q and n must satisfy the condition.

\[
2^q - 1 \geq n + \binom{n}{2} + \cdots + \binom{n}{t} \tag{13}
\]

In the particular case of a single-error-correcting code, Eq. (13) reduces to \(2^q - 1 \geq n \). Furthermore, when \(\hat{E} \) corresponds to a single error in the \(j \)th bit of a codeword, we find from Eq. (12) that \(S \) is identical to the \(j \)th row of \(H^T \). Therefore, to provide a distinct syndrome for each single-error pattern and for the no-error pattern, the rows of \(H^T \) (or columns of \(H \)) must all be different and each must contain at least one nonzero element. The generator matrix of a Hamming code is designed to satisfy this requirement on \(H \), while \(q \) and \(n \) satisfy \(2^q - 1 = n \).

EXAMPLE 13.2–2

Table Lookup Decoding For Error Correction

Let’s apply table-lookup decoding to a (7, 4) Hamming code used for single-error correction. From Eq. (8) and the \(P \) submatrix given in Example 13.2–1, we obtain the \(3 \times 7 \) parity-check matrix

\[
H = [P^T \mid I_q] = \begin{bmatrix}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

There are \(2^3 - 1 = 7 \) correctable single-error patterns, and the corresponding syndromes listed in Table 13.2–2 follow directly from the columns of \(H \). To accommodate this table the decoder needs to store only \((q + n) \times 2^q = 80 \) bits.

But suppose a received word happens to have two errors, such that \(E = (1 0 0 0 0 1 0) \). The decoder calculates \(S = YH^T = EH^T = (1 1 1) \) and the syndrome table gives the assumed single-error pattern \(\hat{E} = (0 1 0 0 0 0 0) \). The decoded output word \(Y + \hat{E} \) therefore contains three errors, the two transmission errors plus the erroneous correction added by the decoder.

If multiple transmission errors per word are sufficiently infrequent, we need not be concerned about the occasional extra errors committed by the decoder. If multiple errors are frequent, a more powerful code would be required. For instance, an extended Hamming code has an additional check bit that provides double-error detection along with single-error correction.
Use Eqs. (8) and (10) to show that the jth bit of S is given by

\[s_j = y_1 p_{1j} \oplus y_2 p_{2j} \oplus \cdots \oplus y_k p_{kj} \oplus y_{k+1} \]

Then diagram the syndrome-calculation circuit for a (7, 4) Hamming code, and compare it with Fig. 13.2–1.

Cyclic Codes

The code for a forward-error-correction system must be capable of correcting \(t \geq 1 \) errors per word. It should also have a reasonably efficient code rate \(R_c = k/n \). These two parameters are related by the inequality

\[1 - R_c \geq \frac{1}{n} \log_2 \left(\sum_{i=0}^{t} \binom{n}{i} \right) \]

which follows from Eq. (13) with \(q = n - k = n(1 - R_c) \). This inequality underscores the fact that if we want \(R_c \approx 1 \), we must use codewords with \(n \gg 1 \) and \(k \gg 1 \). However, the hardware requirements for encoding and decoding long codewords may be prohibitive unless we impose further structural conditions on the code. **Cyclic codes** are a subclass of linear block codes with a cyclic structure that leads to more practical implementation. Thus, block codes used in FEC systems are almost always cyclic codes.

To describe a cyclic code, we’ll find it helpful to change our indexing scheme and express an arbitrary \(n \)-bit code vector in the form

\[X = (x_{n-1} x_{n-2} \cdots x_1 x_0) \]

Now suppose that \(X \) has been loaded into a shift register with feedback connection from the first to last stage. Shifting all bits one position to the left yields the **cyclic shift** of \(X \), written as

\[X' \triangleq (x_{n-2} x_{n-3} \cdots x_1 x_0 x_{n-1}) \]
A second shift produces $X'' = (x_{n-1} \cdots x_1 x_0 x_{n-1} x_{n-2})$, and so forth. A linear code is cyclic if every cyclic shift of a code vector X is another vector in the code.

This cyclic property can be treated mathematically by associating a code vector X with the polynomial

$$X(p) = x_{n-1}p^{n-1} + x_{n-2}p^{n-2} + \cdots + x_1p + x_0 \quad (17)$$

where p is an arbitrary real variable. The powers of p denote the positions of the codeword bits represented by the corresponding coefficients of p. Formally, binary code polynomials are defined in conjunction with Galois fields, a branch of modern algebra that provides the theory needed for a complete treatment of cyclic codes. For our informal overview of cyclic codes we’ll manipulate code polynomials using ordinary algebra modified in two respects. First, to be in agreement with our earlier definition for the sum of two code vectors, the sum of two polynomials is obtained by mod-2 addition of their respective coefficients. Second, since all coefficients are either 0 or 1, and since $1 \oplus 1 = 0$, the subtraction operation is the same as mod-2 addition. Consequently, if $X(p) + Z(p) = 0$ then $X(p) = Z(p)$.

We develop the polynomial interpretation of cyclic shifting by comparing

$$pX(p) = x_{n-1}p^n + x_{n-2}p^{n-1} + \cdots + x_1p^2 + x_0p$$

with the shifted polynomial

$$X'(p) = x_{n-2}p^{n-1} + \cdots + x_1p^2 + x_0p + x_{n-1}$$

If we sum these polynomials, noting that $(x_i \oplus x_i)p^2 = 0$, and so on, we get

$$pX(p) + X'(p) = x_{n-1}p^n + x_{n-1}$$

and hence

$$X'(p) = pX(p) + x_{n-1}(p^n + 1) \quad (18)$$

Iteration yields similar expressions for multiple shifts.

The polynomial $p^n + 1$ and its factors play major roles in cyclic codes. Specifically, an (n, k) cyclic code is defined by a generator polynomial of the form

$$G(p) = p^k + g_{q-1}p^{q-1} + \cdots + g_1p + 1 \quad (19)$$

where $q = n - k$ and the coefficients are such that $G(p)$ is a factor of $p^n + 1$. Each codeword then corresponds to the polynomial product

$$X(p) = Q_M(p)G(p) \quad (20)$$

in which $Q_M(p)$ represents a block of k message bits. All such codewords satisfy the cyclic condition in Eq. (18) since $G(p)$ is a factor of both $X(p)$ and $p^n + 1$.

Any factor of $p^n + 1$ that has degree q may serve as the generator polynomial for a cyclic code, but it does not necessarily generate a good code. Table 13.2–3 lists the generator polynomials of selected cyclic codes that have been demonstrated to possess desirable parameters for FEC systems. The table includes some cyclic
Hamming codes, the famous Golay code, and a few members of the important family of BCH codes discovered by Bose, Chaudhuri, and Hocquenghem. The entries under $G(p)$ denote the polynomial's coefficients; thus, for instance, 1011 means that $G(p) = p^3 + 0 + p + 1$.

Cyclic codes may be systematic or nonsystematic, depending on the term $Q_M(p)$ in Eq. (20). For a systematic code, we define the message-bit and check-bit polynomials

$$M(p) = m_{k-1}p^{k-1} + \cdots + m_1p + m_0$$
$$C(p) = c_{q-1}p^{q-1} + \cdots + c_1p + c_0$$

and we want the codeword polynomials to be

$$X(p) = p^qM(p) + C(p) \tag{21}$$

Equations (20) and (21) therefore require $p^qM(p) + C(p) = Q_M(p)G(p)$, or

$$\frac{p^qM(p)}{G(p)} = Q_M(p) + \frac{C(p)}{G(p)} \tag{22a}$$

This expression says that $C(p)$ equals the remainder left over after dividing $p^qM(p)$ by $G(p)$, just as 14 divided by 3 leaves a remainder of 2 since $14/3 = 4 + 2/3$. Symbolically, we write

$$C(p) = \text{rem} \left[\frac{p^qM(p)}{G(p)} \right] \tag{22b}$$

where $\text{rem} \left[\right]$ stands for the remainder of the division within the brackets.

The division operation needed to generate a systematic cyclic code is easily and efficiently performed by the shift-register encoder diagrammed in Fig. 13.2–3. Encoding starts with the feedback switch closed, the output switch in the message-bit position, and the register initialized to the all-zero state. The k message bits are shifted into the register and simultaneously delivered to the transmitter. After k shift cycles, the register contains the q check bits. The feedback switch is now opened and the output switch is moved to deliver the check bits to the transmitter.

<table>
<thead>
<tr>
<th>Table 13.2–3</th>
<th>Selected cyclic codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>n</td>
</tr>
<tr>
<td>Hamming Codes</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td>BCH Codes</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td>Golay Code</td>
<td>23</td>
</tr>
</tbody>
</table>
Syndrome calculation at the receiver is equally simple. Given a received vector \(Y \), the syndrome is determined from

\[
S(p) = \text{rem} \left(\frac{Y(p)}{G(p)} \right)
\]

(23)

If \(Y(p) \) is a valid code polynomial, then \(G(p) \) will be a factor of \(Y(p) \) and \(Y(p)/G(p) \) has zero remainder. Otherwise we get a nonzero syndrome polynomial indicating detected errors.

Besides simplified encoding and syndrome calculation, cyclic codes have other advantages over noncyclic block codes. The foremost advantage comes from the ingenious error-correcting decoding methods that have been devised for specific cyclic codes. These methods eliminate the storage needed for table-lookup decoding and thus make it practical to use powerful and efficient codes with \(n >> 1 \). Another advantage is the ability of cyclic codes to detect error bursts that span many successive bits.

EXAMPLE 13.2–3 Codeword Generation

Consider the cyclic (7, 4) Hamming code generated by \(G(p) = p^3 + 0 + p + 1 \). We’ll use long division to calculate the check-bit polynomial \(C(p) \) when \(M = (1 1 0 0) \). We first write the message-bit polynomial

\[
M(p) = p^3 + p^2 + 0 + 0
\]

so \(p^3M(p) = p^3M(p) = p^6 + p^5 + 0 + 0 + 0 + 0 + 0 \). Next, we divide \(G(p) \) into \(p^3M(p) \), keeping in mind that subtraction is the same as addition in mod-2 arithmetic. Thus,

\[
\begin{align*}
Q_M(p) &= p^3 + p^2 + p + 0 \\
p^3 + 0 + p + 1 & \overset{p^6 + p^5 + 0 + 0 + 0 + 0 + 0}{\overline{\mid}} \\
p^5 + 0 + p^4 + p^3 & \overset{p^5 + 0 + p^3 + 0}{\overline{\mid}} \\
p^5 + 0 + p^3 + 0 & \overset{p^4 + 0 + p^2 + 0}{\overline{\mid}} \\
p^4 + 0 + p^2 + p & \overset{0 + 0 + p + 0}{\overline{\mid}} \\
0 + 0 + 0 + 0 & \overset{C(p) = 0 + p + 0}{\overline{\mid}}
\end{align*}
\]

so the complete code polynomial is

\[
X(p) = p^3M(p) + C(p) = p^6 + p^5 + 0 + 0 + 0 + p + 0
\]

which corresponds to the codeword

\[
X = (1 1 0 0 0 0 0)
\]

You’ll find this codeword back in Table 13.2–1, where you’ll also find the cyclic shift \(X' = (1 0 0 0 1 0 1) \) and all multiple shifts.
Finally, Fig. 13.2–4 shows the shift-register encoder and the register bits for each cycle of the encoding process when the input is $M = (1 1 0 0)$. After four shift cycles, the register holds $C = (0 1 0)$—in agreement with our manual division.

Remember that an error is only detected when $Y(p)$ is not evenly divisible by $G(p)$. If $G(p)$ is not properly chosen, errors could occur in $Y(p)$ making it evenly divisible by $G(p)$ and, therefore, some errors could go undetected. A class of cyclic
We want to transmit an ASCII letter “J,” which in binary is 1001010, and then be able to check for errors using CRC-8 code. Determine the transmitted sequence X and then show how the receiver can detect errors in the two left-most message bits using the CRC calculation of Eq. (23).

M-ary Codes

A subset of the BCH codes that perform well under burst-error conditions and can be used with M-ary modulation systems are the Reed-Solomon (RS) codes. These are nonbinary codes that are members of an M-ary alphabet. If we use an m-bit digital encoder we will then have an alphabet of $M = 2^m$ symbols. An RS code’s minimum distance is

$$d_{\text{min}} = n - k + 1$$

and, as with the binary codes, n is the total number of symbols in the code block and k is the number of message symbols. RS codes are capable of correcting t or fewer symbol errors with

$$t = \frac{d_{\text{min}} - 1}{2} = \frac{n - k}{2}$$

With an M symbol alphabet, we have $n = 2^m - 1$ and thus $k = 2^m - 1 - 2t$.

<table>
<thead>
<tr>
<th>Code</th>
<th>$G(p)$</th>
<th>$q = n - k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC-8</td>
<td>100 000 111</td>
<td>8</td>
</tr>
<tr>
<td>CRC-12</td>
<td>1 100 000 001 111</td>
<td>12</td>
</tr>
<tr>
<td>CRC-16</td>
<td>11 000 000 000 101</td>
<td>16</td>
</tr>
<tr>
<td>CRC-CCITT</td>
<td>10 001 000 000 100</td>
<td>16</td>
</tr>
</tbody>
</table>

EXERCISE 13.2–3

We want to transmit an ASCII letter “J,” which in binary is 1001010, and then be able to check for errors using CRC-8 code. Determine the transmitted sequence X and then show how the receiver can detect errors in the two left-most message bits using the CRC calculation of Eq. (23).
\section*{13.3 Convolutional Encoding}

Convolutional codes have a structure that effectively extends over the entire transmitted bit stream, rather than being limited to codeword blocks. The convolutional structure is especially well suited to space and satellite communication systems that require simple encoders and achieve high performance by sophisticated decoding methods. Our treatment of this important family of codes consists of selected examples that introduce the salient features of convolutional encoding and decoding.

Convolutional Encoding

The fundamental hardware unit for convolutional encoding is a tapped shift register with \(L + 1 \) stages, as diagrammed in Fig. 13.3–1. Each tap gain \(g \) is a binary digit representing a short-circuit connection or an open circuit. The message bits in the register are combined by mod-2 addition to form the encoded bit.
The notation for convolutional codes has not been standardized and varies somewhat from author to author, as does the definition of constraint length.

The name convolutional encoding comes from the fact that Eq. (1) has the form of a binary convolution, analogous to the convolutional integral

$$x(t) = \int m(t - \lambda) g(\lambda) \, d\lambda$$

Notice in Eq. (1) that x_j depends on the current input m_j and on the state of the register defined by the previous L message bits. Also notice that a particular message bit influences a span of $L + 1$ successive encoded bits as it shifts through the register.

To provide the extra bits needed for error control, a complete convolutional encoder must generate output bits at a rate greater than the message bit rate r_b. This is achieved by connecting two or more mod-2 summers to the register and interleaving the encoded bits via a commutator switch. For example, the encoder in Fig. 13.3–2 generates $n = 2$ encoded bits

$$x_j' = m_{j-2} \oplus m_{j-1} \oplus m_j \quad \text{and} \quad x_j'' = m_{j-2} \oplus m_j$$

which are interleaved by the switch to produce the output stream

$$X = x_1 x_2 x_3 x_4 x_5 x_6 \cdots$$

The output bit rate is therefore $2r_b$, and the code rate is $R_c = 1/2$ — like an (n, k) block code with $R_c = k/n = 1/2$.

However, unlike a block code, the input bits have not been grouped into words. Instead, each message bit influences a span of $n(L + 1) = 6$ successive output bits. The quantity $n(L + 1)$ is called the constraint length measured in terms of encoded output bits, whereas L is the encoder’s memory measured in terms of input message bits. We say that this encoder produces an (n, k, L) convolutional code with $n = 2, k = 1$, and $L = 2$.

$$x_j = m_{j-L} g_L \oplus \cdots \oplus m_{j-1} g_1 \oplus m_j g_0 \quad (1)$$

$$= \sum_{i=0}^{L} m_{j-i} g_i \quad (\text{mod-2})$$

The state and input are shown in the diagram.

Figure 13.3–2 Convolutional encoder with $n = 2, k = 1$, and $L = 2$.

†Notation for convolutional codes has not been standardized and varies somewhat from author to author, as does the definition of constraint length.
Three different but related graphical representations have been devised for the study of convolutional encoding: the code tree, the code trellis, and the state diagram. We'll present each of these for our (2, 1, 2) encoder in Fig. 13.3–2, starting with the code tree. In accordance with normal operating procedure, we presume that the register has been cleared to contain all 0s when the first message bit m_1 arrives. Hence, the initial state is $m_{-1}m_0 = 00$ and Eq. (2) gives the output $x'_jx''_j = 00$ if $m_1 = 0$ or $x'_jx''_j = 11$ if $m_1 = 1$.

The code tree drawn in Fig. 13.3–3 begins at a branch point or node labeled a, representing the initial state. If $m_1 = 0$, we take the upper branch from node a to find the output 00 and the next state, which is also labeled a since $m_0m_1 = 00$ in this case. If $m_1 = 1$, we take the lower branch from a to find the output 11 and the next state $m_0m_1 = 01$ signified by the label b. The code tree progressively evolves in this fashion for each new input bit. Nodes are labeled with letters denoting the current state $m_{j-2}m_{j-1}$; we go up or down from a node, depending on the value of m_j; each branch shows the resulting encoded output $x'_jx''_j$ calculated from Eq. (2), and it terminates at another node labeled with the next state. There are 2 possible branches for the jth message bit, but the branch pattern begins to repeat at $j = 3$ since the register length is $L + 1 = 3$.

Figure 13.3–3 Code tree for (2, 1, 2) encoder.
Having observed repetition in the code tree, we can construct a more compact picture called the **code trellis** and shown in Fig. 13.3–4a. Here, the nodes on the left denote the four possible current states, while those on the right are the resulting next states. A solid line represents the state transition or branch for $m_j = 0$, and a broken line represents the branch for $m_j = 1$. Each branch is labeled with the resulting output bits $x'_j x''_j$. Going one step further, we coalesce the left and right sides of the trellis to obtain the **state diagram** in Fig. 13.3–4b. The self-loops at nodes a and d represent the state transitions a-a and d-d.

Given a sequence of message bits and the initial state, you can use either the code trellis or state diagram to find the resulting state sequence and output bits. The procedure is illustrated in Fig. 13.3–4c, starting at initial state a.

Numerous other convolutional codes are obtained by modifying the encoder in Fig. 13.3–2. If we just change the connections to the mod-2 summers, then the code tree, trellis, and state diagram retain the same structure since the states and branching pattern reflect only the register contents. The output bits would be different, of course, since they depend specifically on the summer’s connections.

If we extend the shift register to an arbitrary length $L + 1$ and connect it to $n = 2$ mod-2 summers, we get an (n, k, L) convolutional code with $k = 1$ and code rate $R_c = 1/n \leq 1/2$. The state of the encoder is defined by L previous input bits, so the

![Figure 13.3–4](image-url)
13.3 Convolutional Encoding

Code trellis and state diagram have 2^k different states, and the code-tree pattern repeats after $j = L + 1$ branches. Connecting one commutator terminal directly to the first stage of the register yields the encoded bit stream

$$X = m_1 x_1 x'_1 x''_1 \cdots m_2 x_2 x'_2 x''_2 \cdots m_3 x_3 x'_3 x''_3 \cdots$$ \hspace{1cm} (3)

which defines a systematic convolutional code with $R_c = 1/n$.

Again, note that with the systematic code the information bits are a directly a part of the codeword. With the exception of turbo codes (discussed later in this section) and the codes used in Trellis-Coded Modulation (see Chap. 14), most convolutional codes are nonsystematic.

Code rates higher than $1/n$ require $k \geq 2$ shift registers and an input distributor switch. This scheme is illustrated by the $(3, 2, 1)$ encoder in Fig. 13.3–5. The message bits are distributed alternately between $k = 2$ registers, each of length $L + 1 = 2$. We regard the pair of bits $m_{j-1} m_j$ as the current input, while the pair $m_{j-3} m_{j-2}$ constitute the state of the encoder. For each input pair, the mod-2 summers generate $n = 3$ encoded output bits given by

$$x'_j = m_{j-3} \oplus m_{j-2} \oplus m_j \quad x''_j = m_{j-3} \oplus m_{j-1} \oplus m_j \quad x'''_j = m_{j-2} \oplus m_j$$ \hspace{1cm} (4)

Thus, the output bit rate is $3r_b/2$, corresponding to the code rate $R_c = k/n = 2/3$. The constraint length is $n(L + 1) = 6$, since a particular input bit influences a span of $n = 3$ output bits from each of its $L + 1 = 2$ register positions.

![Figure 13.3-5](3, 2, 1) encoder.
Graphical representation becomes more cumbersome for convolutional codes with \(k > 1 \) because we must deal with input bits in groups of \(2^k \). Consequently, \(2^k \) branches emanate and terminate at each node, and there are \(2^{kl} \) different states. As an example, Fig. 13.3–6 shows the state diagram for the (3, 2, 1) encoder in Fig. 13.3–5. The branches are labeled with the \(k = 2 \) input bits followed by the resulting \(n = 3 \) output bits.

The convolutional codes employed for FEC systems usually have small values of \(n \) and \(k \), while the constraint length typically falls in the range of 7 to 30. All convolutional encoders require a commutator switch at the output, as shown in Figs. 13.3–2 and 13.3–5.

For codes with \(k > 1 \), the input distributor switch can be eliminated by using a single register of length \(kl \) and shifting the bits in groups of \(k \).

In any case, convolutional encoding hardware is simpler than the hardware for block encoding since message bits enter the register unit at a steady rate \(r_b \) and an input buffer is not needed.

EXAMPLE 13.3–1
Analysis of a (3, 1, 3) Convolutonal Encoder

The (2, 1, 2) convolutional encoder of Fig. 13.3–2 can be expressed as two generator polynomials with \(G_1(D) = 1 + D + D^2 \) and \(G_2(D) = 1 + D^2 \). If we...
transform the message sequence into polynomial form, the message sequence of \((1 1 0 1 1 0 0 1 0 0 0)\) is thus described as \(M(D) = 1 + D + D^3 + D^4 + D^5 + D^8\).

This transformation of the message and register gains into the \(D\) domain is analogous to the Fourier transform converting a convolution into a multiplication. The output from the upper branch of our encoder becomes \(X'_1 = M(D)G_1(D) = (1 + D + D^3 + D^4 + D^5 + D^8)(1 + D + D^2) = (1 + D^5 + D^7 + D^8 + D^9 + D^{10})\) and thus \(x'_1 = 100001011110\). Note when doing the multiplication operation, \(D^1 + D^1 = 0\). Similarly for the lower branch we have \(X''_1 = M(D)G_2(D) = (1 + D + D^3 + D^4 + D^5 + D^8)(1 + D^2) = (1 + D + D^2 + D^4 + D^5 + D^7 + D^8 + D^{10})\) and hence \(x''_1 = 1 1 1 0 1 0 1 1 1 0 1 0\). With interleaving, the output becomes \(x_j = 11 01 01 00 10 01 10 11 11 10 11 00\), which is the same result as we obtained using convolution.

Consider a systematic \((3, 1, 3)\) convolutional code. List the possible states and determine the state transitions produced by \(m_j = 0\) and \(m_j = 1\). Then construct and label the state diagram, taking the encoded output bits to be \(m_j, m_{j-2} \oplus m_j, \text{ and } m_{j-3} \oplus m_{j-1}\). (See Fig. P13.3–4 for a convenient eight-state pattern.)

Free Distance and Coding Gain

We previously found that the error-control power of a block code depends upon its minimum distance, determined from the weights of the codewords. A convolutional code does not subdivide into codewords, so we consider instead the weight \(w(X)\) of an entire transmitted sequence \(X\) generated by some message sequence.

The **free distance** of a convolutional code is then defined to be

\[
d_f \triangleq \lfloor w(X) \rfloor_{\text{min}} \quad X \neq 000 \cdots
\]

The value of \(d_f\) serves as a measure of error-control power.

It would be an exceedingly dull and tiresome task to try to evaluate \(d_f\) by listing all possible transmitted sequences. Fortunately, there’s a better way based on the normal operating procedure of appending a “tail” of 0s at the end of a message to clear the register unit and return the encoder to its initial state. This procedure eliminates certain branches from the code trellis for the last \(L\) transitions.

Take the code trellis in Fig. 13.3–4a, for example. To end up at state \(a\), the next-to-last state must be either \(a\) or \(c\) so the last few branches of any transmitted sequence \(X\) must follow one of the paths shown in Fig. 13.3–7. Here the final state is denoted by \(e\), and each branch has been labeled with the number of 1s in the encoded bits—which equals the weight associated with that branch. The total weight of a transmitted sequence \(X\) equals the sum of the branch weights along the path of \(X\). In accordance with Eq. (5), we seek the path that has the smallest branch-weight sum, other than the trivial all-zero path.

Looking backwards \(L + 1 = 3\) branches from \(e\), we locate the last path that emanates from state \(a\) before terminating at \(e\). Now suppose all earlier transitions
followed the all-zero path along the top line, giving the state sequence \(\overline{aa} \cdots abce \). Since an \(a-a \) branch has weight 0, this state sequence corresponds to a **minimum-weight nontrivial path**. We therefore conclude that \(d_f = 0 + 0 + \cdots + 0 + 2 + 1 + 2 = 5 \). There are other minimum-weight paths, such as \(\overline{aa} \cdots abc\overline{ae} \) and \(\overline{aa} \cdots ab\overline{c}e \), but no nontrivial path has less weight than \(d_f = 5 \).

Another approach to the calculation of free distance involves the **generating function** of a convolutional code. The generating function may be viewed as the transfer function of the encoder with respect to state transitions. Thus, instead of relating the input and output bits streams by convolution, the generating function relates the initial and final states by multiplication. Generating functions provide important information about code performance, including the free distance and decoding error probability.

We’ll develop the generating function for our (2, 1, 2) encoder using the modified state diagram in Fig. 13.3–8a. This diagram has been derived from Fig. 13.3–4b with four modifications. First, we’ve eliminated the \(a-a \) loop which contributes nothing to the weight of a sequence \(X \). Second, we’ve drawn the \(c-a \) branch as the final \(c-e \) transition. Third, we’ve assigned a **state variable** \(W_a \) at node \(a \), and likewise at all other nodes. Fourth, we’ve labeled each branch with two “gain” variables \(D \) and \(I \) such that the exponent of \(D \) equals the branch weight (as in Fig. 13.3–7), while the exponent of \(I \) equals the corresponding number of nonzero message bits (as signified by the solid or dashed branch line). For instance, since the \(c-e \) branch represents \(x'_j x'_j = 11 \) and \(m_j = 0 \), it is labeled with \(D^{11} I^0 = D^2 \). This exponential trick allows us to perform sums by multiplying the \(D \) and \(I \) terms, which will become the independent variables of the generating function.

Our modified state diagram now looks like a signal-flow graph of the type sometimes used to analyze feedback systems. Specifically, if we treat the nodes as summing junctions and the \(DI \) terms as branch gains, then Fig. 13.3–8a represents the set of algebraic state equations

\[
\begin{align*}
W_b &= D^2 I W_a + I W_c \\
W_c &= D W_b + D W_d \\
W_d &= DI W_b + DI W_d \\
W_e &= D^2 W_c
\end{align*}
\]

\[(6a) \]

![Figure 13.3-7](image-url) Termination of (2, 1, 2) code trellis.
The encoder’s generating function $T(D, I)$ can now be defined by the input-output equation

$$T(D, I) \triangleq \frac{W_e}{W_a} \quad (6b)$$

These equations are also equivalent to the block diagram in Fig. 13.3–8b, which further emphasizes the relationships between the state variables, the branch gains, and the generating function. Note that minus signs have been introduced here so that the two feedback paths c-b and d-d correspond to negative feedback.

Next, the expression for $T(D, I)$ is obtained by algebraic solution of Eq. (6), or by block-diagram reduction of Fig. 13.3–8b using the transfer-function relations for parallel, cascade, and feedback connections in Fig. 3.1–8. (If you know Mason’s rule, you could also apply it to Fig. 13.3–8a.) Any of these methods produces the final result

$$T(D, I) = \frac{D^5I}{1 - 2DI} \quad (7a)$$

$$= D^5I + 2D^7I^2 + 4D^9I^3 + \cdots$$

$$= \sum_{d=5}^{\infty} 2^{d-5} D^d I^{d-4} \quad (7b)$$

Figure 13.3–8 (a) Modified state diagram for (2, 1, 2) encoder; (b) equivalent block diagram.
where we’ve expanded \((1 - 2Dl)^{-1}\) to get the series in Eq. (7b). Keeping in mind that \(T(D, l)\) represents all possible transmitted sequences that terminate with a c-e transition, Eq. (7b) has the following interpretation: for any \(d \geq 5\), there are exactly \(2^{d-5}\) valid paths with weight \(w(X) = d\) that terminate with a c-e transition, and those paths are generated by messages containing \(d - 4\) nonzero bits. The smallest value of \(w(X)\) is the free distance, so we again conclude that \(d_f = 5\).

As a generalization of Eq. (7), the generating function for an arbitrary convolutional code takes the form

\[
T(D, l) = \sum_{d=d_f}^{\infty} \sum_{i=1}^{\infty} A(d, i) D^{d_i} \tag{8}
\]

Here, \(A(d, i)\) denotes the number of different input-output paths through the modified state diagram that have weight \(d\) and are generated by messages containing \(i\) nonzero bits.

Now consider a received sequence \(Y = X + E\), where \(E\) represents transmission errors. The path of \(Y\) then diverges from the path of \(X\) and may or may not be a valid path for the code in question. When \(Y\) does not correspond to a valid path, a maximum-likelihood decoder should seek out the valid path that has the smallest Hamming distance from \(Y\). Before describing how such a decoder might be implemented, we’ll state the relationship between generating functions, free distance, and error probability in maximum-likelihood decoding of convolutional codes.

If transmission errors occur with equal and independent probability \(\alpha\) per bit, then the probability of a decoded message-bit error is upper-bounded by

\[
P_{be} \leq \frac{1}{k} \left. \frac{\partial T(D, l)}{\partial l} \right|_{D = 2^{\sqrt{\sqrt{d_f(d_f - 1)}}}, l = 1} \tag{9}
\]

When \(\alpha\) is sufficiently small, series expansion of \(T(D, l)\) yields the approximation

\[
P_{be} = M(d_f) \frac{M(d_f)}{k} 2^{d_f} \alpha^{d_f/2} \sqrt{\alpha} \ll 1 \tag{10}
\]

where

\[
M(d_f) = \sum_{i=1}^{\infty} |A(d_f, i)|
\]

The quantity \(M(d_f)\) simply equals the total number of nonzero message bits over all minimum-weight input-output paths in the modified state diagram.

Equation (10) supports our earlier assertion that the error-control power of a convolutional code depends upon its free distance. For a performance comparison with uncoded transmission, we’ll make the usual assumption of gaussian white noise and \((S/N)_R = 2R_c \gamma_b \geq 10\) so Eq. (10), Sect. 13.1, gives the transmission error probability

\[
\alpha = (4\pi R_c \gamma_b)^{-1/2} e^{-R_c \gamma_b}
\]

The decoded error probability then becomes
Convolutional Encoding

whereas uncoded transmission would yield

\[P_{\text{ube}} \approx \frac{1}{(4\pi \gamma_b)^{1/2}} e^{-\gamma_b} \]

Since the exponential terms dominate in these expressions, we see that convolutional coding improves reliability when \(R_c d_f/2 > 1 \). Accordingly, the quantity \(R_c d_f/2 \) is known as the \textit{coding gain}, usually expressed in dB.

Explicit design formulas for \(d_f \) do not exist, unfortunately, so good convolutional codes must be discovered by computer search and simulation. Table 13.3–1 lists the maximum free distance and coding gain of convolutional codes for selected values of \(n, k, \) and \(L \). Observe that the free distance and coding gain increase with increasing memory \(L \) when the code rate \(R_c \) is held fixed. All listed codes are nonsystematic; a systematic convolutional code has a smaller \(d_f \) than an optimum nonsystematic code with the same rate and memory.

We should also point out that some convolutional codes exhibit \textit{catastrophic error propagation}. This occurs when a finite number of channel errors causes an infinite number of decoding errors, even if subsequent symbols are correct. Encoders that exhibit this behavior will show in their state diagram a state where a given nonzero input causes a transition back to that state itself producing a zero output. Catastrophic codes can also be identified if their generator polynomials have a common factor of degree at least one. For example, Fig. 13.3–9 shows a catastrophic encoder and its state diagram. Note at state \(d \) a nonzero input causes the encoder to branch back to itself with a zero output. The code is also found to be catastrophic because generator polynomials \(G_1(D) = 1 + D \) and \(G_2(D) = D + D^2 \) have the common factor of \(1 + D \).

Table 13.3–1

<table>
<thead>
<tr>
<th>(n)</th>
<th>(k)</th>
<th>(R_c)</th>
<th>(L)</th>
<th>(d_f)</th>
<th>(R_c d_f/2)</th>
<th>(R_c d_f/2) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>1/4</td>
<td>3</td>
<td>13</td>
<td>1.63</td>
<td>2.12</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1/3</td>
<td>3</td>
<td>10</td>
<td>1.68</td>
<td>2.25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1/2</td>
<td>3</td>
<td>6</td>
<td>1.50</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>10</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>12</td>
<td>3.00</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2/3</td>
<td>3</td>
<td>7</td>
<td>2.33</td>
<td>3.67</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3/4</td>
<td>3</td>
<td>8</td>
<td>3.00</td>
<td>4.77</td>
</tr>
</tbody>
</table>

\[P_{\text{be}} \approx \frac{M(d_f)2^{d_f}}{k(4\pi R_c \gamma_b)^{d_f/4}} e^{-(R_c d_f/2)\gamma_b} \]

\[(11) \]

\[P_{\text{ube}} \approx \frac{1}{(4\pi \gamma_b)^{1/2}} e^{-\gamma_b} \]

\[(12) \]

Probability of Error with Convolutional Coding

The \((2, 1, 2)\) encoder back in Fig. 13.3–2 has \(T(D, 1) = D^5/(1 - 2D) \), so \(\partial T(D, 1)/\partial l = D^5/(1 - 2D)^2 \). Equation (9) therefore gives
and the small-\(\alpha \) approximation agrees with Eq. (10). Specifically, in Fig. 13.3–8\(a \) we find just one minimum-weight nontrivial path \(\text{abce} \), which has and is generated by a message containing one nonzero bit, so .

If \(g_b/H = 10 \), then , and maximum-likelihood decoding yields , as compared with . This rather small reliability improvement agrees with the small coding gain .

Let the connections to the mod-2 summers in Fig. 13.3–2 be changed such that

\[
(x_1') = m_j \quad \text{and} \quad (x_2') = m_j \oplus m_{j-2} \oplus m_{j-1} \oplus m_i.
\]

(a) Construct the code trellis and modified state diagram for this systematic code. Show that there are two minimum-weight paths in the state diagram, and that \(d_t = 4 \) and \(M(d_t) = 3 \). It is not necessary to find \(T(D, 1) \).

(b) Now assume \(g_b/H = 10 \). Calculate \(\alpha, P_{\text{be}} \), and \(P_{\text{ube}} \). What do you conclude about the performance of a convolutional code when \(R_c d_t/2 = 1 \)?
Decoding Methods

There are three generic methods for decoding convolutional codes. At one extreme, the Viterbi algorithm executes maximum-likelihood decoding and achieves optimum performance but requires extensive hardware for computation and storage. At the other extreme, feedback decoding sacrifices performance in exchange for simplified hardware. Between these extremes, sequential decoding approaches optimum performance to a degree that depends upon the decoder’s complexity. We’ll describe how these methods work with a (2, 1, L) code. The extension to other codes is conceptually straightforward, but becomes messy to portray for \(k > 1 \).

Recall that a maximum-likelihood decoder must examine an entire received sequence \(Y \) and find a valid path that has the smallest Hamming distance from \(Y \). However, there are \(2^N \) possible paths for an arbitrary message sequence of \(N \) bits (or \(Nn/k \) bits in \(Y \)), so an exhaustive comparison of \(Y \) with all valid paths would be an absurd task in the usual case of \(N \gg 1 \). The Viterbi algorithm applies maximum-likelihood principles to limit the comparison to \(2^k \) surviving paths, independent of \(N \), thereby bringing maximum-likelihood decoding into the realm of feasibility.

A Viterbi decoder assigns to each branch of each surviving path a metric that equals its Hamming distance from the corresponding branch of \(Y \). (We assume here that 0s and 1s have the same transmission-error probability; if not, the branch metric must be redefined to account for the differing probabilities.) Summing the branch metrics yields the path metric, and \(Y \) is finally decoded as the surviving path with the smallest metric. To illustrate the metric calculations and explain how surviving paths are selected, we’ll walk through an example of Viterbi decoding.

Suppose that our (2, 1, 2) encoder is used at the transmitter, and the received sequence starts with \(Y = 110111 \). Figure 13.3–10 shows the first three branches of the valid paths emanating from the initial node \(a_0 \) in the code trellis. The number in
parentheses beneath each branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in Y. The circled number at the right-hand end of each branch is the running path metric, obtained by summing branch metrics from a_0. For instance, the metric of the path $a_0b_1c_2b_3$ is $0 + 2 + 2 = 4$.

Now observe that another path $a_0a_1b_3$ also arrives at node b_3 and has a smaller metric $2 + 1 + 0 = 3$. Regardless of what happens subsequently, this path will have a smaller Hamming distance from Y than the other path arriving at b_3 and is therefore more likely to represent the actual transmitted sequence. Hence, we discard the larger-metric path, marked by an \times, and we declare the path with the smaller metric to be the survivor at this node. Likewise, we discard the larger-metric paths arriving at nodes a_3, c_3, and d_3, leaving a total of $2^L = 4$ surviving paths. The fact that none of the surviving path metrics equals zero indicates the presence of detectable errors in Y.

Figure 13.3–11 depicts the continuation of Fig. 13.3–10 for a complete message of $N = 12$ bits, including tail 0s. All discarded branches and all labels except the running path metrics have been omitted for the sake of clarity. The letter T under a node indicates that the two arriving paths had equal running metrics, in which case we just flip a coin to choose the survivor (why?). The maximum-likelihood path follows the heavy line from a_0 to a_{12}, and the final value of the path metric signifies at least two transmission errors in Y. The decoder assumes the corresponding transmitted sequence $Y + \hat{E}$ and message sequence \hat{M} written below the trellis.

A Viterbi decoder must calculate two metrics for each node and store 2^L surviving paths, each consisting of N branches. Hence, decoding complexity increases exponentially with L and linearly with N. The exponential factor limits practical application of the Viterbi algorithm to codes with small values of L.

When $N \gg 1$, storage requirements can be reduced by a truncation process based on the following metric-divergence effect: if two surviving paths emanate from the same node at some point, then the running metric of the less likely path tends to increase more rapidly than the metric of the other survivor within about $5L$.

![Figure 13.3–11](image-url)

Figure 13.3–11 Illustration of the Viterbi algorithm for maximum-likelihood decoding.
branches from the common node. This effect appears several times in Fig. 13.3–11; consider, for instance, the two paths emanating from node b_1. Hence, decoding need not be delayed until the end of the transmitted sequence. Instead, the first k message bits can be decoded and the first set of branches can be deleted from memory after the first $5L\, n$ received bits have been processed. Successive groups of k message bits are then decoded for each additional n bits received thereafter.

Sequential decoding, which was invented before the Viterbi algorithm, also relies on the metric-divergence effect. A simplified version of the sequential algorithm is illustrated in Fig. 13.3–12a, using the same trellis, received sequence, and metrics as in Fig. 13.3–11. Starting at a_0, the sequential decoder pursues a single path by taking the branch with the smallest branch metric at each successive node. If two or more branches from one node have the same metric, such as at node d_2, the decoder selects one at random and continues on. Whenever the current path happens to be unlikely, the running metric rapidly increases, and the decoder eventually decides to go back to a lower-metric node and try another path. There are three of these abandoned paths in our example. Even so, a comparison with Fig. 13.3–11 shows that sequential decoding involves less computation than Viterbi decoding.

The decision to backtrack and try again is based on the expected value of the running metric at a given node. Specifically, if α is the transmission error probability

![Figure 13.3–12](image-url) Illustration of sequential decoding.
per bit, then the expected running metric at the \(j \)th node of the correct path equals \(Jn_\alpha \), the expected number of bit errors in \(Y \) at that point. The sequential decoder abandons a path when its metric exceeds some specified threshold \(\Delta \) above \(Jn_\alpha \). If no path survives the threshold test, the value of \(\Delta \) is increased and the decoder backtracks again. Figure 13.3–12b plots the running metrics versus \(j \), along with \(Jn_\alpha \) and the threshold line \(Jn_\alpha + \Delta \) for \(\alpha = 1/16 \) and \(\Delta = 2 \).

Sequential decoding approaches the performance of maximum-likelihood decoding when the threshold is loose enough to permit exploration of all probable paths. However, the frequent backtracking requires more computations and results in a decoding delay significantly greater than Viterbi decoding. A tighter threshold reduces computations and decoding delay but may actually eliminate the most probable path, thereby increasing the output error probability compared to that of maximum-likelihood decoding with the same coding gain. As compensation, sequential decoding permits practical application of convolutional codes with large \(L \) and large coding gain since the decoder's complexity is essentially independent of \(L \).

We've described sequential decoding and Viterbi decoding in terms of algorithms rather than block diagrams of hardware. Indeed, these methods are usually implemented as software that performs the metric calculations and stores the path data. When circumstances preclude algorithmic decoding, and a higher error probability is tolerable, feedback decoding may be the appropriate method. A feedback decoder acts in general like a “sliding block decoder” that decodes message bits one by one based on a block of \(L \) or more successive tree branches. We'll focus on the special class of feedback decoding that employs majority logic to achieve the simplest hardware realization of a convolutional decoder.

Consider a message sequence \(M = m_1 m_2 \cdots \) and the systematic \((2, 1, L)\) encoded sequence

\[
X = x_1 x_2 x_3 x_4 \cdots
\]

where

\[
x'_j = m_j \quad x''_j = \sum_{i=0}^{L} m_{j-i} g_i \pmod{2} \quad (13b)
\]

We'll view the entire sequence \(X \) as a codeword of indefinite length. Then, borrowing from the matrix representation used for block codes, we'll define a generator matrix \(G \) and a parity-check matrix \(H \) such that

\[
X = MG \quad XH^T = 00 \cdots
\]

To represent Eq. (13), \(G \) must be a semi-infinite matrix with a diagonal structure given by

\[
G = \begin{bmatrix}
1 & g_0 & 0 & g_1 & 0 & \cdots & 0 & g_L \\
1 & g_0 & 0 & g_1 & 0 & \cdots & 0 & g_L \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\end{bmatrix} \quad (14a)
\]
13.3 Convolutional Encoding

This matrix extends indefinitely to the right and down, and the triangular blank spaces denote elements that equal zero. The parity-check matrix is

\[
H = \begin{bmatrix}
g_0 & 1 \\
g_1 & 0 & g_0 & 1 \\
\vdots & g_1 & 0 & g_0 & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
g_L & 0 & \cdots & \cdots & \cdots \\
\end{bmatrix}
\]

which also extends indefinitely to the right and down.

Next, let \(E\) be the transmission error pattern in a received sequence \(Y = X + E\). We’ll write these sequences as

\[Y = y_1 y_2 y_3 \ldots E = e_1 e_2 e_3 \ldots\]

so that \(y'_j = m_j \oplus e'_j\). Hence, given the error bit \(e'_j\), the \(j\)th message bit is

\[m_j = y'_j \oplus e'_j\] \hspace{1cm} (15)

A feedback decoder estimates errors from the syndrome sequence

\[S = YH^T = (X + E)H^T = EH^T\]

Using Eq. (14b) for \(H\), the \(j\)th bit of \(S\) is

\[s_j = \sum_{i=0}^{L} y'_{j-i} g_i y'' = \sum_{i=0}^{L} e'_{j-i} g_i e'' \] \hspace{1cm} (16)

where the sums are mod-2 and it’s understood that \(y'_{j-i} = e'_{j-i} = 0\) for \(j - i \leq 0\).

As a specific example, take a (2, 1, 6) encoder with \(g_0 = g_2 = g_3 = g_6 = 1\) and \(g_1 = g_4 = 0\), so

\[s_j = y'_{j-6} \oplus y'_{j-5} \oplus y'_{j-2} \oplus y'_j \oplus y'' \]

\[= e'_{j-6} \oplus e'_{j-5} \oplus e'_{j-2} \oplus e'_j \oplus e''\] \hspace{1cm} (17a)

Equation (17a) leads directly to the shift-register circuit for syndrome calculation diagrammed in Fig. 13.3–13. Equation (17b) is called a parity-check sum and will lead us eventually to the remaining portion of the feedback decoder.

To that end, consider the parity-check table in Fig. 13.3–14a where checks indicate which error bits appear in the sums \(s_{j-6}, s_{j-4}, s_{j-1},\) and \(s_j\). This table brings out the fact that \(e'_{j-6}\) is checked by all four of the listed sums, while no other error bit is checked by more than one. Accordingly, this set of check sums is said to be orthogonal on \(e'_{j-6}\). The tap gains of the encoder were carefully chosen to obtain orthogonal check sums.
When the transmission error probability is reasonably small, we expect to find at most one or two errors in the 17 transmitted bits represented by the parity-check table. If one of the errors corresponds to \(e_j \), then the four check sums will contain three or four 1s. Otherwise, the check sums contain less than three 1s. Hence, we can apply these four check sums to a majority-logic gate to generate the most likely estimate of \(e_j \).

Figure 13.3–15 diagrams a complete majority-logic feedback decoder for our systematic (2, 1, 6) code. The syndrome calculator from Fig. 13.3–13 has two outputs, \(s_j \) and \(s_i \). The syndrome bit goes into another shift register with taps that connect the check sums to the majority-logic gate, whose output equals the estimated error \(\hat{e}_j \). The mod-2 addition \(y_j \oplus \hat{e}_j = \hat{m}_j \) carries out error correction based on Eq. (15). The error is also fed back to the syndrome register to improve the reliability of subsequent check sums. This feedback path accounts for the name feedback decoding.

Our example decoder can correct any single-error or double-error pattern in six consecutive message bits. However, more than two transmission errors produces erroneous corrections and error propagation via the feedback path. These effects result in a higher output error than that of maximum-likelihood decoding. See Lin and Costello (1983, Chap. 13) for the error analysis and further treatment of majority-logic decoding.
Turbo Codes

Turbo codes, or parallel concatenated codes (PCC), are a relatively new class of convolutional codes first introduced in 1993. They have enabled channel capacities to nearly reach the Shannon limit. Our coverage of turbo codes will be primarily descriptive. Detailed treatments of turbo codes are given by Berrou, Glavieux, and Thitimajshima (1993), Berrou and Glavieux (1996), Hagenauer, Offer, and Papke (1996), Benedetto, al Montorsi (1996) and Johannesson and Zigangirov (1999).

Shannon’s theorem for channel capacity assumes random coding with the bit error rate (BER) approaching zero as the code’s block or constraint length approaches infinity. It is therefore not feasible to decode a completely truly random code. Increases in code complexity accomplished by longer block or constraint lengths require a corresponding exponential increase in decoding complexity. We can, however, achieve a given BER if the code is sufficiently unstructured, and we are willing to pay the associated cost in decoding complexity. This leads us to the following paradox by J. Wolfowitz:

Almost all codes are good, except those we can think of.

Turbo codes overcome this paradox in that they can be made sufficiently random to achieve a given BER and, by using iterative methods, can be efficiently and feasibly decoded.

Figure 13.3–16 illustrates a turbo encoder. Here we have the parallel concatenation of two codes produced from two rate $\frac{1}{2}$ recursive systematic convolutional (RSC) encoders. The second RSC is preceded by a pseudo-random interleaver whose length can vary from 100–10,000 bits or more to permute the symbol
sequence. The RSCs are not necessarily identical, nor do they have to be convolutional, and more than two can be used. Both encoders produce the parity-check bits. These parity bits and the original bit stream (called the systematic bits) are multiplexed and then transmitted. As given, the overall rate is $\frac{1}{2}$. However, we may be able to increase this rate to $R = \frac{3}{5}$ using a process of puncturing, whereby some bits are deleted. This could be done, for example, by eliminating the odd parity bits from the first RSC and the even parity bits from the second RSC.

Figure 13.3–17 shows a G_1, G_2-RSC encoder that has been used for turbo coding. Unlike the nonsystematic convolutional (NSC) encoders described earlier in this section, this encoder is systematic in that the message and parity bits are separate. The feedback connections from the state outputs make this encoder recursive, and thus single output errors produce a large quantity of parity errors. For this particular encoder, the polynomial describing the feedback connections is $1 + D^3 + D^4 = 10011_2 = 23$, and the polynomial for the output is $1 + D + D^2 + D^3 = 11101_2 = 35_8$. Hence, the literature often refers this to as a $G_1 = 23, G_2 = 35$, or simply a $(23, 35)$ encoder.

Figure 13.3–17 Recursive systematic convolutional (RSC) encoder with $R = \frac{1}{2}, G_1 = 23, G_2 = 35$, and $l = 2$.
The turbo decoder is shown in Fig. 13.3–18. It consists of two maximum a posteriori (MAP) decoders and a feedback path that works in similar manner to that of an automobile turbo engine, hence the term turbo code. The first decoder takes the information from the received signal and calculates the a posteriori probability (APP) value. This value is then used as the a priori probability value for the second decoder. The output is then fed back to the first decoder where the process repeats in an iterative fashion with each iteration producing more refined estimates.

Instead of using the Viterbi algorithm, which minimizes the error for the entire sequence, this MAP decoder uses a modified form of the BCJR (Bahl, Cocke, Jelinek, and Raviv, 1972) algorithm that takes into account the recursive character of the RSC codes and computes a log-likelihood ratio to estimate the APP for each bit.

The results by Berrou et al. (1993) are impressive. When encoding using rate $R = 1/2$, $G_1 = 37$ and $G_2 = 21$, with 65,537 interleaving and 18 iterations, they were able to achieve a BER of 10^{-5} at $E_b/N_0 = 0.7$ dB. The main disadvantage of turbo codes with their relatively large codewords and iterative decoding process is their long latency. A system with 65,537 interleaving and 18 iterations may have too long a latency for voice telephony. On the other hand, turbo codes have excellent performance in deep space applications.

13.4 Questions and Problems

Questions

1. What is the chief disadvantage of repetition coding over block codes?
2. What is the advantage of cyclic coding versus other block coding?
3. How do you increase a system’s immunity to burst errors?
4. What is the advantage of an increased number of parity bits if the number of errors that can be corrected is unchanged?
5. Why might convolutional coding result in lower probability of errors than block coding?

6. What is the fundamental difference between block and convolutional coding?

7. Which would you expect to have greater immunity to errors caused by noise bursts: ordinary block coding or convolutional coding? Why?

8. Why are turbo codes inherently more effective than conventional coding?

Problems

13.1–1* Calculate the probabilities that a word has no errors, detected errors, and undetected errors when a parity-check code with \(n = 4 \) is used and \(\alpha = 0.1 \).

13.1–2 Do Prob. 13.1–1 with \(n = 9 \) and \(\alpha = 0.05 \).

13.1–3 Given the following data and corresponding (4,2) code words, determine the Hamming distances between every pair of codes, and then the minimum Hamming distance. Is there an alternative 4-bit codeword scheme that would have a larger \(d_{\text{min}} \)?

<table>
<thead>
<tr>
<th>Data</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0000</td>
</tr>
<tr>
<td>01</td>
<td>1110</td>
</tr>
<tr>
<td>10</td>
<td>0011</td>
</tr>
<tr>
<td>11</td>
<td>1101</td>
</tr>
</tbody>
</table>

13.1–4 Find the Hamming distance between the codeword \(X_1 = 0100101 \) and the following other codewords \(X_2 = 0111111, X_3 = 1010111, \) and \(X_4 = 1101000 \).

13.1–5 Design a 6-bit code in which the minimum distance between any two code words is 3.

13.1–6 Consider the square-array code in Fig. 13.1–1. (a) Confirm that if a word has two errors, then they can be detected but not corrected. (b) Discuss what happens when a word contains three errors.

13.1–7 An FEC system contaminated by gaussian white noise must achieve \(P_{\text{be}} \leq 10^{-4} \) with minimum transmitted power. Three block codes under consideration have the following parameters:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(k)</th>
<th>(d_{\text{min}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>16</td>
<td>7</td>
</tr>
</tbody>
</table>

Determine which code should be used, and calculate the power saving in dB compared to uncoded transmission.
13.1–8* Do Prob. 13.1–7 with $P_{be} \leq 10^{-6}$.

13.1–9 Calculate α, P_{be}, and P_{bue} at $\gamma_b = 2, 5,$ and 10 for an FEC system with gaussian white noise using a $(31, 26)$ block code having $d_{\text{min}} = 3$. Plot your results in a form like Fig. 13.1–5.

13.1–10 Do Prob. 13.1–9 for a $(31, 21)$ code having $d_{\text{min}} = 5$.

13.1–11* Consider a system with polar signaling and matched filtering. Without coding, $P_{be} = 10^{-6}$. For the same P_{be}, what power reduction in the transmitter would result if a $(15, 7)$ BCH code with $d_{\text{min}} = 5$ were used?

13.1–12 Given a bit rate of $r_b = 1$ Mbps and using a $(15, 7)$ BCH code, design a system that will provide greater immunity to occasional burst errors. What is the maximum burst length without causing errors?

13.1–13 A selective-repeat ARQ system with gaussian white noise is to have $P_{be} = 10^{-5}$ using one of the following block codes for error detection:

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>d_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>4</td>
</tr>
</tbody>
</table>

Calculate r_b/r and γ_b for each code and for uncoded transmission. Then plot γ_b in dB versus r_b/r.

13.1–14 Do Prob. 13.1–13 for $P_{be} = 10^{-6}$.

13.1–15* A go-back-N ARQ system has gaussian white noise, $\gamma_c = 6$ dB, $r = 500$ kbps, and a one-way path length of 45 km. Find P_{be}, the minimum value of N, and the maximum value of r_b using a $(15, 11)$ block code with $d_{\text{min}} = 3$ for error detection.

13.1–17 A stop-and-wait ARQ system uses simple parity checking with $n = k + 1$ for error detection. The system has gaussian white noise, $r = 10$ kbps, and a one-way path length of 18 km. Find the smallest value of k such that $P_{be} \leq 10^{-6}$ and $r_b \geq 7200$ bps. Then calculate γ_b in dB.

13.1–18 Do Prob. 13.1–17 with a 60 km path length.

13.1–19† Derive m as given in Eq. (20) for a go-back-N ARQ system. Hint: If a given word has detected errors in i successive transmissions, then the total number of transmitted words equals $1 + Ni$.

13.1–20 Consider a hybrid ARQ system using a code that corrects t errors and detects $\ell > t$ errors per n-bit word. Obtain an expression for the retransmission probability p when $\alpha \ll 1$. Then take $d_{\text{min}} = 4$ and compare your result with Eq. (16).

13.1–21 Suppose a hybrid selective-repeat ARQ system uses an (n, k) block code with $d_{\text{min}} = 2t + 2$ to correct up to t errors and detect $t + 1$ errors per
word. (a) Assume \(\alpha \ll 1 \) to obtain an approximate expression for the retransmission probability \(p \), and show that

\[
p_{\text{re}} = \left(\frac{n - 1}{t + 1} \right)^{t+2}
\]

(b) Evaluate \(\alpha \) and \(p \) for a (24, 12) code with \(d_{\text{min}} = 8 \) when \(p_{\text{re}} = 10^{-5} \).

Then assume gaussian white noise and find \(P_{\text{be}} \) for uncoded transmission with the same value of \(g_b \).

13.1–22 At what SNR is a (15,7) block coding no longer effective?

13.2–1 Let \(U \) and \(V \) be \(n \)-bit vectors. (a) By considering the number of 1's in \(U, V \), and \(U + V \), confirm that \(d(U, V) \leq w(U) + w(V) \). (b) Now let \(U = X + Y \) and \(V = Y + Z \). Show that \(U + V = X + Z \) and derive the triangle inequality:

\[
d(X, Z) \leq d(X, Y) + d(Y, Z)
\]

13.2–2 Let \(X \) be a code vector, let \(Z \) be any other vector in the code, and let \(Y \) be the vector that results when \(X \) is received with \(i \) bit errors. Use the triangle inequality in Prob. 13.2–1 to show that if the code has \(d_{\text{min}} \geq \ell + 1 \) and if \(i \leq \ell \), then the errors in \(Y \) are detectable.

13.2–3 Let \(X \) be a code vector, let \(Z \) be any other vector in the code, and let \(Y \) be the vector that results when \(X \) is received with \(i \) bit errors. Use the triangle inequality in Prob. 13.2–1 to show that if the code has \(d_{\text{min}} \geq 2t + 1 \) and if \(i \leq t \), then the errors in \(Y \) are correctable.

13.2–4 A triple-repetition code is a systematic (3, 1) block code generated using the submatrix \(P = [1 1] \). Tabulate all possible received vectors \(\hat{Y} \) and \(S = YH^T \). Then determine the corresponding maximum-likelihood errors patterns and corrected vectors \(Y + \hat{E} \).

13.2–5 Construct the lookup table for the (6, 3) block code in Exercise 13.2–1.

13.2–6 Given a simple (3, 1) parity check code in which the last bit is the exclusive OR of the first 3 bits, (a) write the valid code words, (b) show that \(d_{\text{min}} = 2 \), and (c) determine the \(G \) matrix.

13.2–7 Consider a (6, 3) code with the following generator matrix:

\[
G = \begin{bmatrix}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Determine (a) the codewords, (b) \(d_{\text{min}} \), and (c) how many errors can be detected or corrected.

13.2–8 Consider a (5, 3) block code obtained by deleting the last column of the \(P \) submatrix in Exercise 13.2–1. Construct the lookup table, and show that this code could be used for error detection but not correction.
13.2–9 Let the P submatrix for a $(15, 11)$ Hamming code be arranged such that the row words increase in numerical value from top to bottom. Construct the lookup table and write the check-bit equations.

13.2–10 Suppose a block code with $t = 1$ is required to have $k = 6$ message bits per word. (a) Find the minimum value of n and the number of bits stored in the lookup table. (b) Construct an appropriate P submatrix.

13.2–11 Do Prob. 13.2–10 with $k = 8$.

13.2–12 It follows from Eq. (4) that $XH^T = MA$ with $A = GH^T$. Prove Eq. (9) by showing that any element of A has the property $a_{ij} = 0$.

13.2–13 The original $(7, 4)$ Hamming code is a nonsystematic code with (a) Construct the lookup table and explain the rationale for this nonsystematic form. (b) Write the equations for $s_1, s_2,$ and s_3 taking $Y = X = (x_1, x_2, \ldots, x_7)$. Then determine which are the message and check bits in X, and obtain the check-bit equations.

13.2–14 The $(7, 4)$ Hamming code can be extended to form an $(8, 4)$ code by appending a fourth check bit chosen such that all codewords have even parity. (a) Apply this extension process to Table 13.2–1 to show that $d_{\text{min}} = 4$. (b) Find the corresponding equation for c_4 in terms of the message bits. (c) Explain how the decoding system in Fig. 13.2–2 should be modified to perform double-error detection as well as single-error correction.

13.2–15* Consider a systematic $(7, 3)$ cyclic code generated by $G(p) = p^4 + p^3 + p^2 + 1$. Find $Q_M(p), C(p),$ and X when $M = (1 0 1)$. Then take $Y = X'$ and confirm that $S(p) = 0$. You may carry out the divisions using binary words rather than polynomials if you wish.

13.2–16 Do Prob. 13.2–15 with $G(p) = p^4 + 0 + p^2 + p + 1$.

13.2–17 Given $G(p)$, the equivalent generator matrix of a systematic cyclic code can be found from the polynomials $R_i(p) = \text{rem} [p^{i-1}/G(p)], 1 \leq i \leq k$, which correspond to the rows of the P submatrix. Use this method to obtain P for a $(7, 4)$ Hamming code generated by $G(p) = p^3 + 0 + p + 1$. (You may carry out the divisions using binary words rather than polynomials if you wish.) Compare your result with the G matrix in Example 13.2–1.

13.2–18 Do Prob. 13.2–17 with $G(p) = p^3 + p^2 + 0 + 1$.

13.2–19 Figure P13.2–19 is a shift-register circuit that divides an arbitrary mth-order polynomial $Z(p)$ by a fixed polynomial $G(p) = p^3 + g_q p^{q-1} + \cdots + g_0$. If the register has been cleared before $Z(p)$ is shifted in, then the output equals the quotient and the remainder...
appears in the register after \(m \) shift cycles. Confirm the division operation by constructing a table similar to Fig. 13.2–4b, taking \(Z(p) = p^mM(p) \) and \(G(p) \) as in Example 13.2–3.

13.2–20 Use the shift-register polynomial divider in Prob. 13.2–19 to diagram a circuit that produces the syndrome \(S(p) \) from \(Y(p) \) for the code in Example 13.2–3. Then construct a table like Fig. 13.2–4b to show that \(S(p) = 0 \) when \(Y = (1 1 0 0 0 1 0) \).

13.2–21* Suppose an uncoded system has a \(P_{be} = 10^{-5} \). What is \(P_{be} \) and \(\alpha \) for the following Hamming codes: (a) (7, 4), (b) (15, 11), and (c) (31, 26)?

13.2–22 For a fixed value of \(\gamma_c \) show that a (7, 4) code has a lower \(P_{be} \) than a (31, 26) code. Why is this the case, and what is the advantage of the (31, 26) code?

13.2–23 Suppose an uncoded system has a \(P_{be} = 10^{-5} \). What would be the overall \(P_{be} \) if the data were sent three times but at three times the data rate with the receiver deciding the bit value based on a majority vote? Compare your results to an equivalent system that uses (7, 4) and (15, 11) FEC coding.

13.2–24 Given a channel with \(\alpha = 0.4 \times 10^{-2} \) at \(\gamma_b \approx 6 \) dB, and using one of the codes in Table 13.2–3, specify a block code system with minimal latency so that \(P_{be} \leq 10^{-5} \).

13.2–25 What is the transmitted sequence if the message \(M = 1001001 \) has been encoded using a CRC-8 code?

13.2–26 Determine \(M \) given the following \(Y \) vectors that were generated via a (7, 4) Hamming code. Each one may have a single error. (a) \(Y = [0100101] \), (b) \(Y = [0111111] \), (c) \(Y = [1010111] \), (d) \(Y = [1101000] \).

13.2–27* Determine \(X \) for ASCII letter “E” and CRC-12 polynomial.

13.2–28 For the transmitted codeword in Prob. 13.2–23, show that errors in the last two digits will be detected.

13.2–29 A channel that transmits 7-bit ASCII information at 9600 bits per second often has noise bursts lasting 125 ms, but with at least 125 ms between
bursts. Using a (63, 45) BCH code, design an interleaving system to eliminate the effects of these error bursts. What is the maximum delay time between interleaving and deinterleaving?

13.3–1 Diagram the encoder for a systematic (3, 2, 3) convolutional code. Label the input and output rates and the current input and state at an arbitrary time.

13.3–2 Diagram the encoder for a systematic (4, 3, 1) convolutional code. Label the input and output rates and the current input and state at an arbitrary time.

13.3–3 A (3, 1, 2) encoder achieves maximum free distance when

\[x'_j = m_{j-2} \oplus m_j \quad x''_j = x'_j = m_{j-1} \oplus x'_j \]

(a) Construct the code trellis and state diagram. Then find the state and output sequence produced by the input sequence 1011001111. (b) Construct the modified state diagram like Fig. 13.1–8a, identify the minimum-weight path or paths, and determine the values of \(d_i \) and \(M(d_i) \).

13.3–4 Do Prob. 13.3–3 for a (2, 1, 3) encoder with

\[x'_j = m_{j-3} \oplus m_{j-1} \oplus m_j \quad x''_j = m_{j-2} \oplus x'_j \]

which achieves maximum free distance. Use the pattern in Fig. P13.3–4 for your state diagram.

13.3–5 Determine the output from the encoder of Fig. P13.3–5 for message input of \(M = (1101011101110000 \ldots) \).
A convolutional encoder is described by $G_1 = H_1, G_2 = H_1 D, G_3 = H_1 D^2$. (a) Determine the output equations and output sequence if the input is $M = (1101011011110000 \ldots)$. (b) Draw the code trellis, and (c) show the state table. Is it catastrophic? Is it systematic?

Determine if the codes produced by the encoders of Figs. 13.3–2, P13.3–5, P13.3–7, and P13.3–9 are catastrophic.
13.3–10 Show that a systematic convolutional code can never be catastrophic.

13.3–11 Use block-diagram reduction of Fig. 13.3–8b to get \(T(D, I) \) as in Eq. (7a).

13.3–12 Derive Eq. (10) from Eqs. (8) and (9).

13.3–13* Consider a (2, 1, 1) code with \(x'_j = m_j \) and \(x''_j = m_{j-1} \oplus m_j \). (a) Construct the code trellis and modified state diagram. Then identify the minimum-weight path or paths and find the values of \(d_i \) and \(M(d_i) \). (b) Use block-diagram reduction to obtain \(T(D, I) \) in the form of Eq. (7a). (c) Find and compare \(P_{se} \) from Eqs. (9) and (10), assuming \(\alpha \ll 1 \).

13.3–14 Do Prob. 13.3–13 for a (3, 1, 2) code with \(x'_j = m_j \), \(x''_j = m_{j-2} \oplus m_j \), and \(x''''_j = m_{j-3} \oplus m_{j-1} \oplus m_j \).

13.3–15 Do Prob. 13.3–14 with \(Y = 01 10 11 01 11 01 10 01 \).

13.3–16* Use the Viterbi algorithm and the code trellis in Fig. 13.3–4 to find the sequences \(Y + \hat{E} \) and \(\hat{M} \) when \(Y = 01 11 01 01 11 01 10 11 \). If two paths arriving at a given node have equal running metrics, arbitrarily keep the upper path.

13.3–17 Construct the code trellis for a (2, 1, 2) code with \(x'_j = m_{j-1} \oplus m_j \) and \(x''_j = m_{j-2} \oplus m_{j-1} \). Then apply the Viterbi algorithm to find the sequences \(Y + \hat{E} \) and \(\hat{M} \) when \(Y = 10 11 01 01 10 01 10 11 \). If two paths arriving at a given node have equal running metrics, arbitrarily keep the upper path.

13.3–18 A systematic (2, 1, 4) code intended for feedback decoding with majority logic has \(x''''_j = m_{j-4} \oplus m_{j-3} \oplus m_j \). Construct a parity-check table like Fig. 13.3–14 showing all the error bits that appear in the check sums \(s_{j-4} \) through \(s_j \). Then find an orthogonal set of three check sums, and draw a complete diagram of the decoder.

13.3–19 Do Prob. 13.3–18 with \(x''''_j = m_{j-4} \oplus m_{j-1} \oplus m_j \).

13.3–20 Show the block diagrams for the following RSC encoders: (a) (35, 21) and (b) (34, 23).
Bandpass Digital Transmission

CHAPTER OUTLINE

14.1 Digital CW Modulation
Spectral Analysis of Bandpass Digital Signals
Amplitude Modulation Methods
Phase Modulation Methods
Frequency Modulation Methods
Minimum-Shift Keying (MSK) and Gaussian-Filtered MSK

14.2 Coherent Binary Systems
Optimum Binary Detection
Coherent OOK, BPSK, and FSK
Timing and Synchronization
Interference

14.3 Noncoherent Binary Systems
Envelope of a Sinusoid Plus Bandpass Noise
Noncoherent OOK
Noncoherent FSK
Differentially Coherent PSK

14.4 Quadrature-Carrier and M-ary Systems
Quadrature-Carrier Systems
M-ary PSK Systems
M-ary QAM Systems
M-ary FSK Systems
Comparison of Digital Modulation Systems

14.5 Orthogonal Frequency Division Multiplexing (OFDM)
Generating OFDM Using the Inverse Discrete Fourier Transform
Channel Response and Cyclic Extensions

14.6 Trellis-Coded Modulation
TCM Basics
Hard Versus Soft Decisions
Modems
Long-haul digital transmission usually requires CW modulation to generate a bandpass signal suited to the transmission medium—be it radio, cable, telephone lines (for personal computer Internet connection), or whatever. Just as there are a multitude of modulation methods for analog signals, there are many ways of impressing digital information upon a carrier wave. This chapter applies concepts of baseband digital transmission and CW modulation to the study of bandpass digital transmission.

We begin with waveforms and spectral analysis of digital CW modulation for binary and M-ary modulating signals. Then we focus on the demodulation of binary signals in noise to bring out the distinction between coherent (synchronous) detection and noncoherent (envelope) detection. Next we deal with quadrature-carrier M-ary systems and constant-envelope M-ary frequency-shift keyed systems (FSK). This leads to a comparison of modulation methods with regard to spectral efficiency, hardware complexity, and system performance in the face of corrupting noise. We then consider orthogonal frequency division multiplexing (OFDM), a form of multicarrier (MC) modulation. We conclude with a discussion of trellis-coded modulation (TCM), where we combine convolutional coding and M-ary digital modulation.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Identify the format of binary ASK, FSK, PSK, and DSB with baseband pulse-shaping waveforms (Sect. 14.1).
2. State the distinctions between the various ASK, PSK, and FSK methods (Sect. 14.1).
3. Calculate the error probabilities of binary and M-ary modulation systems. Or, for a specified error probability and noise level, specify the transmitter or receiver power (Sects. 14.2, 14.3, and 14.4).
4. Describe the operation of the correlation receiver (Sect. 14.2).
5. Predict error probabilities given conditional PDFs (Sect. 14.2).
6. Specify the appropriate detector(s) for each of the binary and M-ary modulation systems (Sects. 14.2, 14.3, and 14.4).
7. Describe the operation of OFDM systems (Sect. 14.5)
8. Explain trellis-coded modulation and predict the corresponding coding gains over conventional digital modulation methods (Sect. 14.6).

14.1 DIGITAL CW MODULATION

A digital signal can modulate the amplitude, frequency, or phase of a sinusoidal carrier wave. If the modulating waveform consists of NRZ rectangular pulses, then the modulated parameter will be switched or *keyed* from one discrete value to another. Figure 14.1–1 illustrates binary **amplitude-shift keying** (ASK), **frequency-shift keying** (FSK), and **phase-shift keying** (PSK). Also shown, for contrast, is the waveform produced by DSB modulation with Nyquist pulse shaping at baseband. Other modulation techniques combine amplitude and phase modulation, with or without baseband pulse shaping.

In this section we’ll define specific types of digital modulation in terms of mathematical models and/or transmitter diagrams. We’ll also examine their power spectra and estimate therefrom the transmission bandwidth required for a given digital signaling rate. As preparation, we first develop a technique for spectral analysis of bandpass digital signals.
Spectral Analysis of Bandpass Digital Signals

Any modulated bandpass signal may be expressed in the quadrature-carrier form

\[x_c(t) = A_c [x_i(t) \cos (\omega_c t + \theta) - x_q(t) \sin (\omega_c t + \theta)] \]

The carrier frequency \(f_c \), amplitude \(A_c \), and phase \(\theta \) are constant, while the time-varying \(i \) (in-phase) and \(q \) (quadrature) components contain the message. Spectral analysis of \(x_c(t) \) is relatively easy when the \(i \) and \(q \) components are statistically independent signals and at least one has zero mean. Then, from the superposition and modulation relations in Sect. 9.2, the power spectrum of \(x_c(t) \) becomes

\[G_c(f) = \frac{A_c^2}{4} [G_i(f - f_c) + G_i(f + f_c) + G_q(f - f_c) + G_q(f + f_c)] \]

where \(G_i(f) \) and \(G_q(f) \) are the power spectra of the \(i \) and \(q \) components. For a more compact expression, we define the *equivalent lowpass spectrum*

\[G_{ei}(f) \triangleq G_i(f) + G_q(f) \]
so that
\[G_c(f) = \frac{A_c^2}{4} \left[G_{\Theta p}(f - f_c) + G_{\Theta p}(f + f_c) \right] \]
(3)

Thus, the bandpass spectrum is obtained from the equivalent lowpass spectrum by simple frequency translation.

Now suppose that the \(i \) component is an \(M \)-ary digital signal, say
\[x_i(t) = \sum_k a_k p(t - kD) \]
(4a)

where \(a_k \) represents a sequence of source digits with rate \(r = 1/D \). We assume throughout that source digits are equiprobable, statistically independent, and uncorrelated. Consequently, Eq. (11), Sect. 11.1, applies here and
\[G_i(f) = \sigma^2_a r |P(f)|^2 + (m_o r)^2 \sum_{n=-\infty}^{\infty} |P(nr)|^2 \delta(f - nr) \]
(4b)

Similar expressions hold when the \(q \) component is another digital waveform.

The pulse shape \(p(t) \) in Eq. (4a) depends on the baseband filtering, if any, and on the type of modulation. Keyed modulation involves NRZ rectangular pulses, and we’ll find it convenient to work with pulses that start at \(t = kD \), rather than being centered at \(t = kD \) as in Chap. 11. Accordingly, let
\[p_D(t) \triangleq u(t) - u(t - D) = \begin{cases} 1 & 0 < t < D \\ 0 & \text{otherwise} \end{cases} \]
(5a)

whose Fourier transform yields
\[|P_D(f)|^2 = D^2 \text{sinc}^2 fD = \frac{1}{r^2} \text{sinc}^2 \frac{f}{r} \]
(5b)

If \(p(t) = p_D(t) \) in Eq. (4a), then the continuous spectral term in Eq. (4b) will be proportional to \(|P_D(f)|^2 \). Since \(\text{sinc}^2 (f/r) \) is not bandlimited, we conclude from Eqs. (2) and (3) that keyed modulation requires \(f_c \gg r \) in order to produce a \(\text{bandpass} \) signal. Before we conclude this section, let’s recall from Sect. 11.1, Eq. (3), with binary signaling, \(D = T_b \).

Amplitude Modulation Methods

The binary ASK waveform illustrated in Fig. 14.1–1a could be generated simply by turning the carrier on and off, a process described as \textbf{on-off keying} (OOK). In general, an \(M \)-ary ASK waveform has \(M - 1 \) discrete “on” amplitudes as well as the “off” state. Since there are no phase reversals or other variations, we can set the \(q \) component of \(x_c(t) \) equal to zero and take the \(i \) component to be a \textbf{unipolar} NRZ signal, namely
\[x_i(t) = \sum_k a_k p_D(t - kD) \quad a_k = 0, 1, \ldots, M - 1 \]
(6a)
The mean and variance of the digital sequence are

\[m_a = \bar{a}_k = \frac{M - 1}{2}, \quad \sigma_a^2 = \bar{a}_k^2 - m_a^2 = \frac{M^2 - 1}{12} \]

Hence, the equivalent lowpass spectrum is

\[G_{\phi_k}(f) = G_c(f) = \frac{M^2 - 1}{12r} \text{sinc}^2 \frac{f}{r} + \frac{(M - 1)^2}{4} \delta(f) \]

obtained with the help of Eqs. (2), (4b), and (5b).

Figure 14.1–2 shows the resulting bandpass spectrum \(G_c(f) \) for \(f > 0 \). Most of the signal power is contained within the range \(f_c \pm r/2 \), and the spectrum has a second-order rolloff proportional to \(|f - f_c|^2 \) away from the carrier frequency. These considerations suggest the estimated transmission bandwidth to be \(B_T = r \).

If an \(M \)-ary ASK signal represents binary data at rate \(r_b = r \log_2 M \), then \(B_T = r_b/\log_2 M \) or

\[r_b/B_T = \log_2 M \quad \text{bps/Hz} \]

This ratio of bit rate to transmission bandwidth serves as our measure of modulation “speed” or spectral efficiency. Binary OOK has the poorest spectral efficiency since \(r_b/B_T = 1 \) bps/Hz when \(M = 2 \).

Drawing upon the principle of quadrature-carrier multiplexing, quadrature-carrier AM (QAM) achieves twice the modulation speed of binary ASK. Figure 14.1–3a depicts the functional blocks of a binary QAM transmitter with a polar binary input at rate \(r_b \). The serial-to-parallel converter divides the input into two streams consisting of alternate bits at rate \(r = r_b/2 \). Thus, the \(i \) and \(q \) modulating signals are represented by

\[x_i(t) = \sum_k a_{2k} p(t - kD) \quad x_q(t) = \sum_k a_{2k+1} p(t - kD) \]
where $D = 1/r = 2T_s$ and $a_k = \pm 1$. The peak modulating values are $x_i = x_q = \pm 1$ during an arbitrary interval $kD < t < (k + 1)D$. Figure 14.1–3 conveys this information as a two-dimensional signal constellation. The four signal points have been labeled with the corresponding pairs of source bits, known as dibits.

Summing the modulated carriers finally yields the QAM signal in the form of Eq. (1). The i and q components are independent but they have the same pulse shape and the same statistical values, namely, $m_a = 0$ and $\sigma_a^2 = 1$. Thus,

$$G_{ij}(f) = 2 \times r|P_{ij}(f)|^2 = \frac{4}{r_b} \sin^2 \frac{2f}{r_b}$$

where we've used Eqs. (4b) and (5b) with $r = r_b/2$. Binary QAM achieves $r_b/B_T = 2$ bps/Hz because the dibit rate equals one-half of the input bit rate, reducing the transmission bandwidth to $B_T = r_b/2$.

Keep in mind, however, that ASK and QAM spectra actually extend beyond the estimated transmission bandwidth. Such spectral “spillover” outside B_T becomes an important concern in radio transmission and frequency-division multiplexing systems when it creates interference with other signal channels. Bandpass filtering at the output of the modulator controls spillover, but heavy filtering introduces ISI in the modulated signal and should be avoided.

Spectral efficiency without spillover is achieved by the vestigial-sideband modulator diagrammed in Fig. 14.1–4a. This VSB method applies Nyquist pulse shaping to a polar input signal, as covered in Sect. 11.3, producing a bandlimited modulating signal with $B = (r/2) + \beta_N$. The VSB filter then removes all but a vestige of width β_V from one sideband, so $G_c(f)$ looks something like Fig. 14.4b—a bandlimited spectrum with $B_T = (r/2) + \beta_N + \beta_V$. Therefore, if $r = r_b/\log_2 M$,

$$r_b/B_T \leq 2 \log_2 M$$

and the upper bound holds when $\beta_N \ll r$ and $\beta_V \ll r$.

Figure 14.1–3 Binary QAM: (a) transmitter; (b) signal constellation.
Binary data is to be transmitted on a 1 MHz carrier. Spillover is not a concern, but B_T must satisfy the fractional bandwidth constraint $B_T/f_c \leq 0.1$. Estimate the maximum possible bit rate r_b when the modulation is (a) OOK, (b) binary QAM, (c) VSB with $M = 8$.

Phase Modulation Methods

The binary PSK waveform back in Fig. 14.1–1 contains phase shifts of $\pm \pi$ radians, often described as **binary phase-shift keying** (BPSK) or **phase-reversal keying** (PRK). An M-ary PSK signal has phase shift ϕ_k in the time interval $kD < t < (k + 1)D$, expressed in general by

$$x_c(t) = A_c \sum_k \cos(\omega_c t + \theta + \phi_k)p_D(t - kD)$$

(11)

Trigonometric expansion of the cosine function yields our desired quadrature-carrier form with

$$x_i(t) = \sum_k I_k p_D(t - kD) \quad x_q(t) = \sum_k Q_k p_D(t - kD)$$

(12a)

where

$$I_k = \cos \phi_k \quad Q_k = \sin \phi_k$$

(12b)

To ensure the largest possible phase modulation for a given value of M, we’ll take the relationship between ϕ_k and α_k to be

$$\phi_k = \pi(2\alpha_k + N)/M \quad \alpha_k = 0, 1, \ldots, M - 1$$

(13)

in which N is an integer, usually 0 or 1.

Examples of PSK signal constellations are shown in Fig. 14.1–5, including the corresponding binary words in Gray code. The binary words for adjacent signal
points therefore differ by just one bit. The PSK signal with \(M = 4 \) and \(N = 0 \) represented in Fig. 14.1–5a is designated **quaternary** or **quadriphase** PSK (QPSK). Had we taken QPSK with \(N = 1 \), the signal points would have been identical to binary QAM (Fig. 14.1–3b). Indeed, you can think of binary QAM as two BPSK signals on quadrature carriers. \(M \)-ary PSK differs from \(M \)-ary ASK, of course, since an ideal PSK waveform always has a constant envelope.

PSK spectral analysis becomes a routine task after you note from Eqs. (12b) and (13) that

\[
I_k = Q_k = 0 \quad I_k^2 = Q_k^2 = 1/2 \quad I_k Q_j = 0
\]

Hence, the \(i \) and \(q \) components are statistically independent, and

\[
G_{i}(f) = 2 \times \left(\frac{r}{2} \right) |P_{ij}(f)|^2 = \frac{1}{r} \sin^2 \frac{f}{r} \quad \text{(14)}
\]

Comparison with Eq. (7) reveals that \(G_{i}(f) \) will have the same shape as an ASK spectrum (Fig. 14.1–2) without the carrier-frequency impulse. The absence of a discrete carrier component means that PSK has better power efficiency, but the spectral efficiency is the same as ASK.

Some PSK transmitters include a BPF to control spillover. However, bandpass filtering produces envelope variations via the FM-to-AM conversion effect discussed in Sect. 5.2. (Remember that a stepwise phase shift is equivalent to an FM impulse.) The typical nonlinear amplifier used at microwave carrier frequencies will flatten out these envelope variations and restore spillover—largely negating the function of the BPF. A special form of QPSK called **staggered** or **offset-keyed** QPSK (OQPSK) has been devised to combat this problem. The OQPSK transmitter diagrammed in Fig. 14.1–6 delays the quadrature signal such that modulated phase shifts occur every \(D/2 = T_{ch} \) seconds but they never exceed \(\pm \pi/2 \) radians. Cutting the maximum phase shift in half results in much smaller envelope variations after bandpass filtering.
When envelope variations are allowable, combined amplitude-phase keying (APK) is an attractive family of modulation methods. APK has essentially the same spectral efficiency as PSK, but it can achieve better performance with respect to noise and errors. Further discussion is postponed to Sect. 14.4.

When envelope variations are allowable, combined amplitude-phase keying (APK) is an attractive family of modulation methods. APK has essentially the same spectral efficiency as PSK, but it can achieve better performance with respect to noise and errors. Further discussion is postponed to Sect. 14.4.

EXERCISE 14.1–2

Draw the signal constellation for binary PSK with $\phi_k = \pi(2a_k - 1)/4$ and $a_k = 0, 1$. Then determine the lowpass equivalent spectrum and sketch $G_c(f)$.

Frequency Modulation Methods

There are two basic methods for digital frequency modulation. Frequency-shift keying (FSK) is represented conceptually by Fig. 14.1–7a, where the digital signal $x(t)$ controls a switch that selects the modulated frequency from a bank of M oscillators. The modulated signal is discontinuous at every switching instant $t = kD$. Unless the amplitude, frequency, and phase of each oscillator has been carefully adjusted, the resultant output spectrum will contain relatively large sidelobes which don’t carry any additional information and thus waste bandwidth. Discontinuities are avoided in continuous-phase FSK (CPFSK) represented in Fig. 14.1–7b, where $x(t)$ modulates the frequency of a single oscillator. Both forms of digital frequency modulation pose significant difficulty for spectral analysis, so we’ll limit our consideration to some selected cases.

First, consider M-ary FSK. Let all oscillators in Fig. 14.1–7a have the same amplitude A_c and phase θ, and let their frequencies be related to a_k by

$$f_k = f_c + f_d a_k \quad a_k = \pm 1, \pm 3, \ldots, \pm (M - 1) \quad (15a)$$

which assumes that M is even, then

$$x_c(t) = A_c \sum_k \cos (\omega_c t + \theta + \omega_d a_k t)p_d(t - kD) \quad (15b)$$
Figure 14.1–7 Digital frequency modulation: (a) FSK; (b) continuous-phase FSK.

where $\omega_d = 2\pi f_d$. The parameter f_d equals the frequency shift away from f_c when $a_k = \pm 1$, and adjacent frequencies are spaced by $2f_d$. Continuity of $x_i(t)$ at $t = kD$ is assured if $2\omega_d D = 2\pi N$ where N is an integer.

We’ll analyze a version of binary FSK known as Sunde’s (1959) FSK, defined by the foregoing relations with $M = 2$, $D = T_b = 1/r_b$, and $N = 1$. Then $p_i(t) = u(t) - u(t - T_b)$ and

$$f_d = r_b/2$$

After trigonometric expansion of $x_i(t)$, we use the fact that $a_k = \pm 1$ to write

$$\cos \omega_d a_k t = \cos \omega_d t \quad \sin \omega_d a_k t = a_k \sin \omega_d t$$

The i component thereby reduces to

$$x_i(t) = \cos \pi r_b t$$

independent of a_k. The q component contains a_k in the form

$$x_q(t) = \sum_k a_k \sin (\pi r_b t)[u(t - kT_b) - u(t - kT_b - T_b)]$$

$$= \sum_k Q_k p(t - kT_b) \quad Q_k = (-1)^k a_k$$

where

$$p(t) = \sin (\pi r_b t)[u(t) - u(t - T_b)]$$

The intervening manipulations are left to you as an instructive exercise.

Once again, we have independent i and q components. The i component, being a sinusoid, just contributes spectral impulses at $\pm r_b/2$ in the equivalent lowpass spectrum. The power spectrum of the q component contains no impulses since $Q_k = 0$, whereas $Q_k^2 = a_k^2 = 1$. Thus,

$$G_{q}(f) = \frac{1}{4} \left[\delta \left(f - \frac{r_b}{2} \right) + \delta \left(f + \frac{r_b}{2} \right) \right] + r_b |p(f)|^2$$

where
The resulting bandpass spectrum is shown in Fig. 14.1–8.

Figure 14.1–8 Power spectrum of binary FSK with $f_d = r_b/2$.

To bring out the difference between CPFSK and FSK, consider the integral

$$
\int_{0}^{t} x(\lambda) d\lambda = \sum_{k=0}^{\infty} a_k \int_{0}^{t} P_D(\lambda - kD) d\lambda
$$

in which \(p_d(\lambda - kD) = 0 \) except for \(kD < \lambda < (k + 1)D \) when \(p_d(\lambda - kD) = 1 \). Piecewise integration yields

$$
\int_{0}^{t} x(\lambda) d\lambda = a_0 t \quad 0 < t < D
$$

$$
= a_0 D + a_1 (t - D) \quad D < t < 2D
$$

$$
= \left(\sum_{j=0}^{k-1} a_j \right) D + a_d (t - kD) \quad kD < t < (k + 1)D
$$

Now we can express \(x_c(t) \) in the summation form

$$
x_c(t) = A_c \sum_{k=0}^{\infty} \cos \left[\omega_c t + \theta + \phi_k + \omega_d a_k (t - kD) \right] p_d(t - kD) \quad (20a)
$$

where \(t \geq 0 \) and

$$
\phi_k \triangleq \omega_d D \sum_{j=0}^{k-1} a_j \quad (20b)
$$

with the understanding that \(\phi_k = 0 \) for \(k = 0 \).

Equation (20) shows that CPFSK has a frequency shift \(f_d a_k \) in the interval \(kD < t < (k + 1)D \), just like FSK. But it also has a phase shift \(\phi_k \) that depends on the previous digits. This phase shift results from the frequency-modulation process and ensures phase continuity for all \(t \). Unfortunately, the past history embodied in \(\phi_k \) greatly complicates CPFSK spectral analysis. Proakis (2001, Chap. 4) gives further details and plots of \(G_c(f) \) for various values of \(f_d \) when \(M = 2, 4, \) and \(8 \). To conclude this section, we’ll examine an important special case of binary CPFSK called **minimum-shift keying** (MSK).

EXERCISE 14.1–3

Carry out the details omitted in the derivation of Eqs. (17a)–(17c). *Hint:* Show that

$$
\sin \omega_d t = \sin \left[\omega_d (t - kT_b) + k\pi \right] = \cos \left(k\pi \right) \times \sin \left[\omega_d (t - kT_b) \right].
$$

Minimum-Shift Keying (MSK) and Gaussian-Filtered MSK

Minimum-shift keying, also known as **fast** FSK, is binary CPFSK with

$$
f_d = \frac{r_b}{4} \quad a_k = \pm 1 \quad \phi_k = \frac{\pi}{2} \sum_{j=0}^{k-1} a_j \quad (21)
$$
Notice that the frequency spacing \(2f_c = r_b / 2 \) is half that of Sunde’s FSK. This fact, together with the continuous-phase property, results in a more compact spectrum, free of impulses. Subsequent analysis will prove that \(G(f) = G_q(f) \) and

\[
G_{rp}(f) = \frac{1}{r_b} \left[\text{sinc} \left(\frac{f - (r_b/4)}{(r_b/2)} \right) + \text{sinc} \left(\frac{f + (r_b/4)}{(r_b/2)} \right) \right]^2
\]

\[
= \frac{16}{\pi^2 r_b} \left[\frac{\cos \left(2\pi f / r_b \right)}{\left(4f / r_b \right)^2 - 1} \right]^2
\]

The bandpass spectrum \(G_q(f) \) plotted in Fig. 14.1–9 has minuscule spillover beyond the central lobe of width \(3r_b / 2 \). The rapid rolloff justifies taking \(B_T \approx r_b / 2 \), so

\[
r_b / B_T = 2 \text{ bps/Hz}
\]

which is twice the modulation speed of Sunde’s FSK and accounts for the name “fast” FSK.

Our investigation of MSK starts with the usual trigonometric expansion to put \(x_c(t) \) in quadrature-carrier form with

\[
x_c(t) = \sum_{k=0}^{\infty} \cos \left(\phi_k + a_k c_k \right) p_T(t - kT_b)
\]

\[
x_q(t) = \sum_{k=0}^{\infty} \sin \left(\phi_k + a_k c_k \right) p_T(t - kT_b)
\]

where

\[
c_k = \frac{\pi r_b}{2} \left(t - kT_b \right)
\]

\[
p_T(t) = u(t) - u(t - kT_b)
\]

We’ll also draw upon the behavior of \(\phi_k \) versus \(k \) as displayed in the trellis pattern of Fig. 14.1–10. This pattern clearly reveals that \(\phi_k = 0, \pm \pi, \pm 2\pi, \ldots \) for even values of \(k \) while \(\phi_k = \pm \pi / 2, \pm 3\pi / 2, \ldots \) for odd values of \(k \).
As a specific example, let the input message sequence be 10010111. The resulting phase path ϕ_k is shown in Fig. 14.1–11a, taking $a_k = +1$ for input bit 1 and $a_k = -1$ for input bit 0. The corresponding i and q waveforms calculated from the foregoing expressions are sketched in Fig. 14.1–11b. We see that both waveforms have zeros spaced by $2T_b$, but staggered such that the zeros of $x_i(t)$ coincide with the peaks of $x_q(t)$, and vice versa. These observations will guide our subsequent work.

Consider an arbitrary time interval between adjacent zeros of the i component, i.e.,

$$(k - 1)T_b < t < (k + 1)T_b$$

with k being even. During this interval,

$$x_i(t) = \cos (\phi_{k-1} + a_{k-1}c_{k-1})p_{\tau_i}(t - (k - 1)T_b) + \cos (\phi_k + a_k c_k)p_{\tau_i}(t - kT_b)$$

which we seek to combine into a single term. Since k is even, $\sin \phi_k = 0$, and routine trigonometric manipulations yield

$$\cos (\phi_k + a_k c_k) = \cos \phi_k \cos (a_k c_k) = \cos \phi_k \cos c_k$$

Likewise, using

$$\cos \phi_{k-1} = 0 \quad \phi_{k-1} = \phi_k - a_{k-1} \pi/2 \quad c_{k-1} = c_k + \pi/2$$

we get

$$\cos (\phi_{k-1} + a_{k-1}c_{k-1}) = -\sin \phi_{k-1} \sin (a_{k-1} c_{k-1})$$

$$= a_{k-1}^2 \cos \phi_k \cos c_k = \cos \phi_k \cos c_k$$
14.1 Digital CW Modulation

Thus, for the interval in question,

\[x_i(t) = \cos \phi_k \cos c_k \{ p_{T_i}(t - (k - 1)T_b) + p_{T_i}(t - kT_b) \} \]

\[= \cos \phi_k \cos \left[\left(\pi r_b/2 \right)(t - kT_b) \right] \left[u(t - kT_b + T_b) - u(t - kT_b - T_b) \right] \]

Summing intervals to encompass all \(t \geq 0 \) finally yields

\[x_i(t) = \sum_{k \text{ even}} I_k p(t - kT_b) \quad I_k = \cos \phi_k \quad (23) \]

where

\[p(t) = \cos (\pi r_b t/2) \left[u(t + T_b) - u(t - T_b) \right] \quad (24) \]
This result checks out against the waveform in Fig. 14.1–11b since \(I_k = \cos \phi_k \) = \(\pm 1 \) when \(k \) is even.

Now, for the \(q \) component, we consider the interval \((k - 1)T_b < t < (k + 1)T_b \) with \(k \) odd. Similar manipulations as before lead to

\[
x_q(t) = \sin \phi_k \cos c_k \{ p_T(t - (k - 1)T_b) + p_T(t - kT_b) \}
\]

Thus, for all \(t \geq 0 \),

\[
x_q(t) = \sum_{k \text{ odd}} Q_k p(t - kT_b) \quad Q_k = \sin \phi_k
\]

which also agrees with Fig. 14.1–11b. Equation (22) follows from Eqs. (23)–(25) since the \(i \) and \(q \) components are independent, with \(I_k = Q_k = 0 \) and \(I_k^2 = Q_k^2 = 1 \).

A further variation on MSK to achieve sharper rolloff in the sidelobes is **gaussian-filtered MSK** (GMSK). Recall, earlier in this section, the data pulse \(p_{Tb}(t) \) had a rectangular shape, which has considerable spectral sidelobes. To reduce these sidelobes and thus reduce \(BTb \), we prefilter the baseband binary pulses using the following gaussian LPF function,

\[
H(f) = e^{-[\sqrt{2} f/B]^2}
\]

As with the LPFs of Chap. 3, \(B \) is the value that specifies the LPF’s half-power (i.e., \(-3 \) dB) frequency. Function \(p_{Tb}(t) \) used in the derivations of Eqs. (24) and (25) becomes (Murota & Hirade, 1981; Ziemer & Peterson, 2001)

\[
p_{Tb}(t) = 2Q \left[-\sqrt{2} \left\lfloor \frac{1}{\ln \sqrt{2} \pi BT_b \left(\frac{1}{T_b} + \frac{1}{2} \right) } \right\rfloor \right] + 2Q \left[\sqrt{2} \ln \sqrt{2} \pi BT_b \left(\frac{1}{T_b} - \frac{1}{2} \right) \right]
\]

An important design parameter with GMSK is \(BTb \). Murota and Hirade (1981) have characterized the power spectral densities of GMSK for various values of \(BTb \). They are shown in Table 14.1–1.

<table>
<thead>
<tr>
<th>Table 14.1–1</th>
<th>Occupied bandwidth for GMSK containing a given percentage of power</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BTb)</td>
<td>% power</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>(\infty) (MSK)</td>
<td></td>
</tr>
</tbody>
</table>

GMSK Bandwidth

Consider the case of GMSK where $BT_b = 0.5$ and $r_b = 100$ kbps; thus $T_b = 1/r_b = 10 \mu\text{sec}$. The gaussian filter’s half-power frequency is $B = 0.5/10 \times 10^{-6} = 50$ kHz. The bandwidth required to contain 99 percent of the signal energy is then $B_{99\%} = 1.04 \times r_b = 1.04 \times 100$ kHz = 104 kHz, and the bandwidth to contain 90 percent of the signal energy is $B_{90\%} = 0.69 \times 100$ kHz = 69 kHz. The bandwidth efficiency of GMSK as compared to MSK is one reason why it was chosen as the modulation standard for GSM wireless phones.

14.2 COHERENT BINARY SYSTEMS

Coherent bandpass digital systems employ information about the carrier frequency and phase at the receiver to detect the message—like synchronous analog detection. Noncoherent systems don’t require synchronization with the carrier phase, but they fall short of the optimum performance made possible by coherent detection.

This section examines coherent binary transmission, starting with a general treatment of optimum binary detection in the presence of additive white gaussian noise (AWGN). The results are then applied to assess the performance of specific binary modulation systems. We’ll focus throughout on keyed modulation (OOK, PRK, and FSK), without baseband filtering or transmission distortion that might produce ISI in the modulated signal.

Optimum Binary Detection

Any bandpass binary signal with keyed modulation can be expressed in the general quadrature-carrier form

$$x_c(t) = A_c \left(\sum_k I_k p_k(t - kT_b) \cos(\omega_c t + \theta) - \sum_k Q_k p_k(t - kT_b) \sin(\omega_c t + \theta) \right)$$

For practical coherent systems, the carrier wave should be synchronized with the digital modulation. Accordingly, we’ll take $\theta = 0$ and impose the condition

$$f_c = N_c/T_b = N_c r_b$$

(1)

where N_c is an integer—usually a very large integer. Then

$$x_c(t) = A_c \sum_k \left[I_k p_k(t - kT_b) \cos(\omega_c(t - kT_b)) - Q_k p_k(t - kT_b) \sin(\omega_c(t - kT_b)) \right]$$

and we can concentrate on a single bit interval by writing

$$x_c(t) = s_m(t - kT_b) \quad kT_b < t < (k + 1)T_b$$

(2)

with

$$s_m(t) \triangleq A_c \left[I_k p_k(t) \cos(\omega_c t) - Q_k p_k(t) \sin(\omega_c t) \right]$$
Here, \(s_m(t) \) stands for either of two signaling waveforms, \(s_0(t) \) and \(s_1(t) \), representing the message bits \(m = 0 \) and \(m = 1 \).

Now consider the received signal \(x_c(t) \) corrupted by white gaussian noise. We showed in Sect. 11.2 that an optimum baseband receiver minimizes error probability with the help of a filter matched to the baseband pulse shape. However, binary CW modulation involves two different signaling waveforms, as in Eq. (2), rather than one pulse shape with two different amplitudes. Consequently, we must redo our previous analysis in terms of \(s_0(t) \) and \(s_1(t) \).

Figure 14.2–1 shows the proposed receiver structure labeled with the relevant signals and noise for the interval under consideration. This bandpass receiver is just like a baseband receiver with a BPF in place of an LPF. The filtered signal plus noise \(y(t) \) is sampled at \(t_k = (k + 1)T_b \), the end of the bit interval, and compared with a threshold level to regenerate the most likely message bit \(\hat{m} \). We seek the BPF impulse response \(h(t) \) and threshold level \(V \) for optimum binary detection, resulting in the smallest average regeneration error probability.

As in Sect. 11.2, let \(H_1 \) and \(H_0 \) denote the hypotheses that \(m = 1 \) and \(m = 0 \), respectively. The receiver decides between \(H_1 \) and \(H_0 \) according to the observed value of the random variable

\[
Y = y(t_k) = z_m + n
\]

where

\[
z_m = z_m(t_k) = \left[s_m(t - kT_b) * h(t) \right]_{t=t_k} = \int_{(k+1)T_b}^{(k+1)T_b} s_m(\lambda - kT_b)h(t_k - \lambda) \, d\lambda
\]

\[
= \int_0^{T_b} s_m(\lambda)h(T_b - \lambda) \, d\lambda
\]

The noise sample \(n = n(t_k) \) is a gaussian RV with zero mean and variance \(\sigma_n^2 \), so the conditional PDFs of \(Y \) given \(H_1 \) or \(H_0 \) will be gaussian curves centered at \(z_1 \) or \(z_0 \), portrayed by Fig. 14.2–2. With the usual assumption of equally likely zeros and ones, the optimum threshold is at the intersection point, i.e.,

\[
V_{opt} = \frac{1}{2}(z_1 + z_0)
\]
Then, from the symmetry of the PDFs, $P_{e_1} = P_{e_0}$ and

$$P_e = Q\left(\frac{|z_1 - z_0|}{2\sigma}\right)$$

in which the absolute-value notation $|z_1 - z_0|$ includes the case of $z_1 < z_0$.

But what BPF impulse response $h(t)$ maximizes the ratio $|z_1 - z_0|/2\sigma$ or, equivalently, $|z_1 - z_0|^2/4\sigma^2$? To answer this question, we note from Eq. (3) that

$$|z_1 - z_0|^2 = \left| \int_{-\infty}^{\infty} [s(t) - s_0(t)] h(T_b - \lambda) d\lambda \right|^2 \tag{4a}$$

where the infinite limits are allowed since $s_m(t) = 0$ outside of $0 < t < T_b$. We also note that

$$\sigma^2 = \frac{N_0}{2} \int_{-\infty}^{\infty} |h(t)|^2 dt = \frac{N_0}{2} \int_{-\infty}^{\infty} |h(T_b - \lambda)|^2 d\lambda \tag{4b}$$

Application of Schwartz’s inequality now yields

$$\frac{|z_1 - z_0|^2}{4\sigma^2} \leq \frac{1}{2N_0} \int_{-\infty}^{\infty} [s(t) - s_0(t)]^2 dt \tag{5}$$

and the ratio is maximum if $h(T_b - t) = K[s(t) - s_0(t)]$. Thus,

$$h_{opt}(t) = K[s(T_b - t) - s_0(T_b - t)] \tag{6}$$

with K being an arbitrary constant.

Equation (6) says that:

The filter for optimum binary detection should be matched to the difference between the two signaling waveforms.
Alternatively, you could use two matched filters with \(h_1(t) = K s_1(T_b - t) \) and \(h_0(t) = K s_0(T_b - t) \) arranged in parallel per Fig. 14.2–3: subtracting the output of the lower branch from the upper branch yields the same optimum response. In either case, any stored energy in the filters must be discharged after each sampling instant to prevent ISI in subsequent bit intervals.

Another alternative, with built-in discharge, is based on the observation that the sampled signal value from the upper branch in Fig. 14.2–3 is

\[
zm(t_k) = \int_0^{T_b} s_m(\lambda) h_1(T_b - \lambda) \, d\lambda = \int_{kT_b}^{(k+1)T_b} s_m(t - kT_b) K s_1(t - kT_b) \, dt
\]

and likewise for \(zm_0(t_k) \). Hence, optimum filtering can be implemented by the system diagrammed in Fig. 14.2–3b, which requires two multipliers, two integrators, and stored copies of \(s_0(t) \) and \(s_1(t) \).

This system is called a correlation detector because it correlates the received signal plus noise with noise-free copies of the signaling waveforms. Note that correlation detection is a generalization of the integrate-and-dump technique for matched filtering. It should also be noted that the matched filter and correlation detector are equivalent only at the sample time \(t_k \).

Regardless of the particular implementation method, the error probability with optimum binary detection depends upon the ratio maximized in Eq. (5). This ratio, in

Figure 14.2–3 Optimum binary detection: (a) parallel matched filters; (b) correlation detector.
turn, depends on the signal energy per bit and on the similarity of the signaling waveforms. To pursue this point, consider the expansion
\[\int_{0}^{T_b} [s_1(t) - s_0(t)]^2 \, dt = E_1 + E_0 - 2E_{10} \]
where
\[E_1 \triangleq \int_{0}^{T_b} s_1(t) t \, dt \quad E_0 \triangleq \int_{0}^{T_b} s_0(t) t \, dt \quad (7) \]
\[E_{10} \triangleq \int_{0}^{T_b} s_1(t)s_0(t) \, dt \]
We identify \(E_1 \) and \(E_0 \) as the respective energies of \(s_1(t) \) and \(s_0(t) \), while \(E_{10} \) is proportional to their correlation coefficient. We define this correlation coefficient as
\[\rho \triangleq \frac{1}{\sqrt{E_1 E_0}} \int_{0}^{T_b} s_1(t)s_0(t) \, dt \quad (8) \]
Since zeros and ones are equally likely, the average signal energy per bit is
\[E_b = \frac{1}{2}(E_1 + E_0) \]
Therefore,
\[\left(\frac{z_1 - z_0}{2\sigma} \right)^2_{\max} = \frac{E_1 + E_0 - 2E_{10}}{2N_0} = \frac{E_b - E_{10}}{N_0} \quad (9a) \]
and
\[P_\epsilon = Q\left[\frac{\sqrt{(E_b - E_{10})/N_0}}{N_0} \right] \quad (9b) \]
or, if equal signal energies,
\[P_\epsilon = Q\left[\frac{\sqrt{E_0(1 - \rho)/N_0}}{N_0} \right] \quad (9c) \]
Equation (9) brings out the importance of \(E_{10} \) relative to system performance when \(E_b \) and \(N_0 \) are fixed and how system performance depends on the correlation coefficient of the two signals.

Finally, substituting Eq. (6) into Eq. (3) yields \(z_1 = K(E_1 - E_{10}) \) and \(z_0 = K(E_{10} - E_0) \), so
\[V_{\text{opt}} = \frac{1}{2}(z_1 + z_0) = \frac{K}{2}(E_1 - E_0) \quad (10) \]
Note that the optimum threshold does not involve \(E_{10} \).
EXERCISE 14.2–1 Derive Eqs. (5) and (6) from Eqs. (4a) and (4b). Use Eq. (17), Sect. 3.6, written in the form

\[
\left| \int_{-\infty}^{\infty} V(\lambda)W^*(\lambda) \, d\lambda \right|^2 \lesssim \int_{-\infty}^{\infty} |V(\lambda)|^2 \, d\lambda
\]

and recall that the equality holds when \(V(\lambda) \) and \(W(\lambda) \) are proportional functions.

Coherent OOK, BPSK, and FSK

Although the crude nature of ASK hardly warrants sophisticated system design, a brief look at coherent on-off keying helps clarify optimum detection concepts. The OOK signaling waveforms are just

\[
s_1(t) = A_c \, p_{T_b}(t) \cos \omega_c t \quad s_0(t) = 0
\]

Our carrier-frequency condition \(f_c = N_c/T_b \) means that \(s_1(t - kT_b) = A_c \cos \omega_c t \) for any bit interval while, of course, \(s_0(t - kT_b) = 0 \). Thus, a receiver with correlation detection simplifies to the form of Fig. 14.2–4, in which a local oscillator synchronized with the carrier provides the stored copy of \(s_1(t) \). The bit sync signal actuates the sample-and-hold unit and resets the integrator. Both sync signals may be derived from a single source, thanks to the (assumed) harmonic relationship between \(f_c \) and \(r_b \).

Now we use Eqs. (7) and (11) to obtain \(E_0 = E_{10} = 0 \) and

\[
E_1 = A_c^2 \int_0^{T_b} \cos^2 \omega_c t \, dt = \frac{A_c^2 T_b}{2} \left[1 + \frac{4f_c}{r_b} \right] = \frac{A_c^2 T_b}{2}
\]

so \(E_b = E_1/2 = A_c^2 T_b/4 \). Setting the threshold at \(V = K(E_1 - E_0)/2 = KE_b \) yields the minimum average error probability given by Eq. (9), namely

\[
P_e = Q(\sqrt{E_b/N_0}) = Q(\sqrt{\gamma_b})
\]

\[
\text{Figure 14.2–4} \quad \text{Correlation receiver for OOK or BPSK.}
\]
Not surprisingly, the performance of coherent OOK is identical to unipolar baseband transmission.

Better performance is achieved by coherent BPSK. Let the two phase shifts be 0 and \(\pi \) radians, so

\[
s_1(t) = A_c P_{r_1}(t) \cos \omega_c t \quad s_0(t) = -s_1(t) \tag{13}
\]

The relation \(s_0(t) = -s_1(t) \) defines antipodal signaling, analogous to polar baseband transmission. It quickly follows that

\[
E_b = E_1 = E_0 = A_c^2 T_b/2 \quad E_{10} = -E_b
\]

so \(E_b - E_{10} = 2E_b \) and

\[
P_e = Q\left(\sqrt{2E_b/N_0}\right) = Q\left(\sqrt{2\gamma_b}\right) \tag{14}
\]

BPSK therefore gets by with 3 dB less signal energy than OOK, all other factors being equal.

Since \(s_0(t) = -s_1(t) \), a coherent BPSK receiver requires only one matched filter or correlator, just like OOK. But now \(V = 0 \) since \(E_1 = E_0 \), so the BPSK threshold level need not be readjusted if the received signal undergoes fading. Furthermore, the approximately constant envelope of BPSK makes it relatively invulnerable to nonlinear distortion. BPSK is therefore superior to OOK on several counts, and has the same spectral efficiency. We’ll see next that BPSK is also superior to binary FSK.

Consider binary FSK with frequency shift \(\pm f_d \) and signaling waveforms

\[
s_1(t) = A_c P_{r_1}(t) \cos 2\pi (f_c + f_d)t \tag{15}
\]
\[
s_0(t) = A_c P_{r_1}(t) \cos 2\pi (f_c - f_d)t
\]

When \(f_c \approx f_d \gg r_b \), \(E_b \approx A_c^2 T_b/2 \), whereas

\[
E_{10} = E_b \text{sinc} \left(4 f_d/r_b\right) \tag{16}
\]

which depends on the frequency shift. If \(f_d = r_b/2 \), corresponding to Sunde’s FSK, then \(E_{10} = 0 \) and the error probability is the same as OOK.

Some improvement is possible when phase discontinuities are allowed in \(x_c(t) \), but \(E_b - E_{10} \approx 1.22E_b \) for any choice of \(f_d \). Hence, binary FSK does not provide any significant wideband noise reduction, and BPSK has an energy advantage of at least 10 log \((2/1.22) \approx 2 \text{ dB}\). Additionally, an optimum FSK receiver is more complicated than Fig. 14.2–4.

In the case of MSK whereby \(f_d = r_b/4 \), then the probability of error is identical to that of BSPK, or \(P_{be} = Q\left(\sqrt{2\gamma_b}\right) \). Murota and Hirade (1981) have empirically determined the error probability of GMSK to be

\[
P_{be} = Q\left(\sqrt{2\alpha E_d/N_0}\right) \text{ where } \alpha = \begin{cases}
0.68 & \text{for } B_T T_b = 0.25 \\
0.85 & \text{for simple MSK } (B_T T_b \rightarrow \infty)
\end{cases} \tag{17}
\]
Note that their empirical results for simple MSK differ from the theoretical.

EXERCISE 14.2–2 Suppose the optimum receiver for Sunde’s FSK is implemented in the form of Fig. 14.2–3a. Find and sketch the amplitude response of the two filters.

Timing and Synchronization

Finally, we should give some attention to the timing and synchronization problems associated with optimum coherent detection. For this purpose, consider the bandpass signaling waveform and matched filter

\[
s(t) = A_c p(t_c) \cos \omega_c t \quad f_c T_b = N_c \gg 1
\]

\[
h(t) = K s(T_b - t) = KA_c p(t_c) \cos \omega_c t
\]

When \(s(t) \) is applied to its matched filter, the resulting response is

\[
z(t) = s(t) * h(t) \approx KE \Lambda\left(\frac{t - T_b}{T_b}\right) \cos \omega_c t
\]

where \(E = A_c^2 T_b / 2 \). The sketch of \(z(t) \) in Fig. 14.2–5 shows the expected maximum value \(z(T_b) = KE \), and the response for \(t > T_b \) would be eliminated by discharging the filter after the sampling instant. Note the dotted line that describes the envelope of \(z(t) \) would be the output of the correlation receiver’s integrator. This will be shown explicitly in the next set of exercises, 14.2–3 and 14.2–4. Fig. 14.2–5 also confirms the point that we made earlier that the integrator outputs for the matched filter and correlator are identical only at \(t = kT_b \).

But suppose there’s a small timing error such that sampling actually occurs at \(t_k = T_b(1 \pm \epsilon) \). Then

\[
z(t_k) \approx KE \cos \theta \quad \theta = \omega_c T_b \epsilon = 2\pi N_c \epsilon
\]

so the timing error reduces the effective signal level by the factor \(\cos \theta \). Since \(|z_1 - z_0|^2 \) will be reduced by \(\cos^2 \theta \), while \(\sigma^2 \) remains unchanged, the error probability becomes

![Figure 14.2–5](image)
Figure 14.2–5 Response of bandpass matched filter.
which follows from Eq. (9). As an example of the magnitude of this problem, take BPSK with $\gamma_b = 8$, $r_b = 2$ kbps, and $f_c = 100$ kHz; perfect timing gives $P_e = Q(\sqrt{16}) \approx 3 \times 10^{-5}$, while an error of just 0.3 percent of the bit interval results in $\theta_e = 2\pi(100/2) \times 0.003 = 54^\circ$ and $P_e = Q(\sqrt{16 \cos^2 54^\circ}) \approx 10^{-2}$. These numbers illustrate why a bandpass matched filter is not a practical method for coherent detection.

A correlation detector like Fig. 14.2–4 has much less sensitivity to timing error, since the integrated output does not oscillate at the carrier frequency. Correlation detection is therefore used in most coherent binary systems. However, the local oscillator must be synchronized accurately with the carrier, and a phase synchronization error θ_e again reduces the effective signal level by the factor $\cos \theta_e$.

In the case of BPSK, the carrier sync signal can be derived from using techniques such as the Costas PLL system back in Fig. 7.3–4. Another approach known as phase-comparison detection is discussed in the next section, along with noncoherent detection of OOK and FSK.

Using MATLAB, show the output of the matched filter’s integrator for an OOK signal consisting of a 1011 sequence that has been corrupted by zero mean white Gaussian noise with $\sigma = 1$. The OOK signal has the following parameters: $f_c = 1$ Hz, $T_b = 150$ secs., and the sampling period is $T_s = 1/f_s = 1/50$ secs. Also, show the output from the matched filter with a noiseless OOK input. Compare the integrator output with that of Fig. 14.2–5, and note the ability of the matched filter to reject additive noise.

Repeat Exercise 14.2–3, except with a correlation detector.

Interference

In Sect. 5.4 we looked at the effects of narrowband interference with linear and exponential modulation systems, and in Sect. 7.2, the effects of inadequate guard times or guard bands. Let’s extend the discussion now to multiple-access interference (MAI) of signals in digital modulation systems with coherent detection. MAI can be caused by multipath, adjacent channel interference, non-ideal multiplexing, etc., and results in the detector’s input receiving two or more “colliding” signals during the same time interval. This collision of signals will corrupt the desired signal and may cause errors. This is particularly relevant with the proliferation of wireless systems whose signals share the same frequency and time slots. As can SNR, MAI can be quantified by the **signal-to-interference ratio** (SIR).
Consider a binary 1 signal at time interval $kT_b \rightarrow (k + 1)T_b$ in the presence of interference and noise received at the input of the correlation detector in Fig. 14.2–3b. The input to the upper branch of the correlator is thus

$$v_1(t - kT_b) = s_{i1}(t - kT_b) + \sum_{j \neq i}^{N} s_{j0,1}(t - kT_b) + n(t + kT_b) \quad (20)$$

where $s_{i1}(t - kT_b)$ is ith desired binary 1 signal, $\sum_{j \neq i}^{N} s_{j0,1}(t - kT_b)$ is the sum of $(N - 1)$ interfering signals, and $n(t - kT_b) =$ noise. Since we intend to transmit either a 0 or 1, we can say that $s_{i1}(t - kT_b)$ and $s_{i0}(t - kT_b)$ are mutually exclusive; thus, $s_{i0}(t - kT_b)$ is not received in this branch.

The integrator output will be

$$z_{m1}(t - kT_b) = \frac{1}{kT_b} \int_{kT_b}^{(k+1)T_b} \left[s_{i1}(t - kT_b) + \sum_{j \neq i}^{N} s_{j0,1}(t - kT_b) + n(t - kT_b) \right] s_{i1}(t - kT_b) dt \quad (21a)$$

$$= \frac{1}{kT_b} \int_{kT_b}^{(k+1)T_b} s_{i1}^2(t - kT_b) dt + \frac{1}{kT_b} \int_{kT_b}^{(k+1)T_b} \sum_{j \neq i}^{N} s_{j0,1}(t - kT_b)s_{i1}(t - kT_b) dt$$

$$+ \frac{1}{kT_b} \int_{kT_b}^{(k+1)T_b} n(t - kT_b)s_{i1}(t - kT_b) dt \quad (21b)$$

MAI is minimized if $s_{j0,1}(t - kT_b)$ and $s_{i1}(t - kT_b)$ are orthogonal for all $j \neq i$. However, this is often not possible for several reasons including multipath and the inherent difficulty of designing signals that are orthogonal—that is, other users may use similar signal shapes. In fact, MAI can often exceed random noise. In Sects. 15.1 and 15.2 we develop expressions for MAI for CDMA systems. Similarly, if the noise and signal are mutually orthogonal, then the third term of Eq. (21b) is minimized. Sect. 5.4 has some end-of-chapter problems that deal with losses due to multipath interference. Finally, as we said with Aloha and CSMA systems, we try not only to tolerate the interference but to implement a system where interference is to be expected.
14.3 NONCOHERENT BINARY SYSTEMS

Optimum coherent detection may not be essential if the signal is strong enough for adequate reliability with a less sophisticated receiver. A prime example of this situation is digital transmission over voice telephone channels, which have relatively large signal-to-noise ratios dictated by analog performance standards. There are also applications in which it would be very difficult and expensive to carry out coherent detection. For instance, the propagation delay on some radio channels changes too rapidly to permit accurate tracking of the carrier phase at the receiver, and unsynchronized or noncoherent detection becomes the only viable recourse.

Here we examine the suboptimum performance of noncoherent OOK and FSK systems that employ envelope detection to bypass the synchronization problems of coherent detection. We’ll also look at differentially coherent PSK systems with phase-comparison detection. For all three cases we must first analyze the envelope of a sinusoid plus bandpass noise.

Envelope of a Sinusoid Plus Bandpass Noise

Consider the sinusoid $A_c \cos (\omega_c t + \theta)$ plus gaussian bandpass noise $n(t)$ with zero mean and variance σ^2. Using the quadrature-carrier expression

$$n(t) = n_i(t) \cos (\omega_c t + \theta) - n_q(t) \sin (\omega_c t + \theta)$$

we write the sum as

$$A_c \cos (\omega_c t + \theta) + n(t) = A(t) \cos [\omega_c t + \theta + \phi(t)]$$

where, at any instant t,

$$A = \sqrt{(A_c + n_i)^2 + n_q^2}, \quad \phi = \arctan \left(\frac{n_q}{A_c + n_i} \right) \tag{1}$$

We recall from Sect. 10.1 that the i and q noise components are independent RVs having the same distribution as $n(t)$. Now we seek the PDF of the envelope A.

Before plunging into the analysis, let’s speculate on the nature of A under extreme conditions. If $A_c = 0$, then A reduces to the noise envelope A_n, with the Rayleigh distribution

$$p_{A_n}(A_n) = \frac{A_n}{\sigma^2} e^{-A_n^2/2\sigma^2} \quad A_n \geq 0 \tag{2}$$

At the other extreme, if $A_c \gg \sigma$, then A_c will be large compared to the noise components most of the time, so

$$A = A_c \sqrt{1 + \frac{2 n_i}{A_c} + \left(\frac{n_i^2 + n_q^2}{A_c^2}\right)} \approx A_c + n_i$$

which implies that A will be approximately gaussian.
For an arbitrary value of A_c, we must perform a rectangular-to-polar conversion following the procedure that led to Eq. (10), Sect. 8.4. The joint PDF of A and ϕ then becomes

$$p_{A\phi}(A, \phi) = \frac{A}{2\pi \sigma^2} \exp\left(-\frac{A^2 - 2A_cA \cos \phi + A_c^2}{2\sigma^2}\right)$$

for $A \geq 0$ and $|\phi| \leq \pi$. The term $A \cos \phi$ in the exponent prevents us from factoring Eq. (3) as a product of the form $p_A(A)p_\phi(\phi)$, meaning that A and ϕ are not statistically independent. The envelope PDF must therefore be found by integrating the joint PDF over the range of ϕ, so

$$p_A(A) = \frac{A}{2\pi \sigma^2} \exp\left(-\frac{A^2 + A_c^2}{2\sigma^2}\right) \int_{-\pi}^{\pi} \exp\left(\frac{A_cA \cos \phi}{\sigma^2}\right) d\phi$$

Now we introduce the modified Bessel function of the first kind and order zero, defined by

$$I_0(v) \triangleq \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp(v \cos \phi) \, d\phi \quad (4a)$$

with the properties

$$I_0(v) \approx \begin{cases} \frac{e^{v^2/4}}{\sqrt{2\pi v}} & v \ll 1 \\ \frac{e^v}{\sqrt{2\pi v}} & v \gg 1 \end{cases} \quad (4b)$$

We then have

$$p_A(A) = \frac{A}{\sigma^2} e^{-(A^2 + A_c^2)/2\sigma^2} I_0\left(\frac{A_cA}{\sigma^2}\right) \quad A \geq 0 \quad (5)$$

which is called the Rician distribution.

Although Eq. (5) has a formidable appearance, it easily simplifies under large-signal conditions to

$$p_A(A) \approx \sqrt{\frac{A}{2\pi A_c \sigma^2}} e^{-\left(\frac{A-A_c}{\sigma^2}\right)^2} \quad A_c \gg \sigma \quad (6)$$

obtained from the large-v approximation in Eq. (4b). Since the exponential term dominates in Eq. (6), we have confirmed that the envelope PDF is essentially a gaussian curve with variance σ^2 centered at $\bar{A} \approx A_c$. Figure 14.3–1 illustrates the transition of the envelope PDF from a Rayleigh curve to a gaussian curve as A_c becomes large compared to σ.

Noncoherent OOK

Noncoherent on-off keying is intended to be a simple system. Usually the carrier and data are unsynchronized so, for an arbitrary bit interval $kT_b < t < (k+1)T_b$, we write
The signaling energies are and \(a_k = 0, 1 \) \(\quad (7) \)

The average signal energy per bit is then \(\frac{E_b}{2} = \frac{A_c^2}{2} \) for 1s and 0s are equally likely.

The OOK receiver diagrammed in Fig. 14.3–2 consists of a BPF followed by an envelope detector and regenerator. The BPF is a matched filter with \(h(t) = KA_c p_{r_0}(t) \cos \omega_c t \) \(\quad (8) \)

which ignores the carrier phase \(\theta \). The envelope detector eliminates dependence on \(\theta \) by tracing out the dashed line back in Fig. 14.2–5. Thus, when \(a_k = 1 \), the peak signal component of the envelope \(y(t) \) is \(A_1 = KE_1 \). Let’s take \(K = A_c/E_1 \) for convenience, so that \(A_1 = A_c \). Then

\[
A_2^2/\sigma^2 = 4E_b/N_0 = 4\gamma_b \quad (9)
\]

where \(\sigma^2 \) is the variance of the bandpass noise at the input to the envelope detector, calculated from \(h(t) \) using Eq. \((4b) \), Sect. 14.2.

Now consider the conditional PDFs of the random variable \(Y = y(t_b) \). When \(a_k = 0 \), we have a sample value of the envelope of the noise alone; hence, \(p_y(y|H_0) \) is the Rayleigh function \(p_A(y) \). When \(a_k = 1 \), we have a sample value of the envelope of a sinusoid plus noise; hence, \(p_y(y|H_1) \) is the Rician function \(p_A(y) \). Figure 14.3–3 shows these two curves for the case of \(\gamma_b \gg 1 \), so the Rician PDF has a nearly gaussian shape. The intersection point defines the optimum threshold, which turns out to be

\[
V_{opt} = \frac{A_c}{2} \left[1 + \frac{2}{\gamma_b} \right] = \frac{A_c}{2} \quad \gamma_b \gg 1
\]
Unfortunately, we no longer have symmetry with respect to the threshold and, consequently, $P_{e_0} \neq P_{e_1}$ when P_e is minimum.

Noncoherent OOK systems require $\gamma_b \gg 1$ for reasonable performance, and the threshold is normally set at $A_c/2$. The resulting error probabilities are

$$P_{e_0} = \int_{A_c/2}^{\infty} p_A(y) \, dy = e^{-\frac{A_c^2}{8\sigma^2}} = e^{-\gamma_b^2} \quad (10a)$$

$$P_{e_1} = \int_0^{A_c/2} p_A(y) \, dy = Q\left(\frac{A_c}{2\sigma}\right) = Q(\sqrt{\gamma_b})$$

$$= \frac{1}{\sqrt{2\pi\gamma_b}} e^{-\gamma_b^2/2} \gamma_b \gg 1 \quad (10b)$$

where we’ve introduced the asymptotic approximation for $Q(\sqrt{\gamma_b})$ to bring out the fact that $P_{e_1} \ll P_{e_0}$ when $\gamma_b \gg 1$. Finally,

$$P_e = \frac{1}{2}(P_{e_0} + P_{e_1}) = \frac{1}{2} e^{-\gamma_b^2/2} + Q(\sqrt{\gamma_b})$$

$$= \frac{1}{2} e^{-\gamma_b^2/2} \gamma_b \gg 1 \quad (11)$$

which is plotted versus γ_b in Fig. 14.3–4 along with curves for other binary systems.
Consider the BPF output $z(t) = x_c(t)h(t)$ when $x_c(t) = A_c p_T(t) \cos (\omega_c t + \theta)$ and $K = 2/A_c T_b$. Show that, for $0 < t < T_b$,

$$z(t) = \frac{A_c t}{T_b} \left[\cos \theta \cos \omega_c t - \left(\sin \theta - \frac{\cos \theta}{\omega_c t} \right) \sin \omega_c t \right]$$

Then find and sketch the envelope of $z(t)$ assuming $f_c \gg r_b$.

EXERCISE 14.3–1

Noncoherent FSK

Although envelope detection seems an unlikely method for FSK, a reexamination of the waveform back in Fig. 14.1–1b reveals that binary FSK equivalently consists of two interleaved OOK signals with the same amplitude A_c but different carrier frequencies, $f_1 = f_c + f_d$ and $f_0 = f_c - f_d$. Accordingly, noncoherent detection can be implemented with a pair of bandpass filters and envelope detectors, arranged per Fig. 14.3–5 where

$$h_1(t) = KA_c p_T(t) \cos \omega_c t \quad h_0(t) = KA_c p_T(t) \cos \omega_0 t \quad (12)$$

We’ll take $K = A_c/E_b$, noting that $E_b = E_1 = E_0 = A_c^2 T_b/2$. Then

$$\frac{A_c^2}{\sigma^2} = 2E_b/N_0 = 2\gamma_b \quad (13)$$

where σ^2 is the noise variance at the output of either filter.

We’ll also take the frequency spacing $f_1 - f_0 = 2f_d$ to be an integer multiple of (i.e., orthogonal with) r_b, as in Sunde’s FSK. This condition ensures that the BPFs effectively separate the two frequencies, and that the two bandpass noise waveforms are uncorrelated at the sampling instants. Thus, when $a_k = 1$, the sampled output $y_1(t_k)$ at the upper branch has the signal component $A_1 = KE_1 = A_c$ and a Rician distribution, whereas $y_0(t_k)$ at the lower branch has a Rayleigh distribution—and vice versa when $a_k = 0$.

Regeneration is based on the envelope difference $Y_1 - Y_0 = y_1(t_k) - y_0(t_k)$. Without resorting to conditional PDFs, we conclude from the symmetry of the receiver that the threshold should be set at $V = 0$, regardless of A_c. It then follows that $P_{e_1} = P(Y_1 - Y_0 < 0|H_1)$ and $P_{e_0} = P_{e_1} = P_e$. Therefore,

$$P_e = P(Y_0 > Y_1|H_1)$$

$$= \int_0^{\infty} p_{Y_1}(y_1|H_1) \left[\int_{y_1}^{\infty} p_{Y_0}(y_0|H_1) \, dy_0 \right] \, dy_1$$

where the inner integral is the probability of the event $Y_0 > Y_1$ for a fixed value of y_1. Inserting the PDFs $p_{Y_0}(y_0|H_1) = p_A(y_0)$ and $p_{Y_1}(y_1|H_1) = p_A(y_1)$ and performing the inner integration yields

$$P_e = \int_0^{\infty} y_1 \frac{A_c}{\sigma^2} e^{-(2y_1^2 + A_c^2)/2\sigma^2} \, I_0 \left(\frac{A_c y_1}{\sigma^2} \right) \, dy_1$$
Figure 14.3–4 Binary error probability curves: (a) coherent BPSK; (b) DPSK; (c) coherent OOK or FSK; (d) noncoherent FSK; (e) noncoherent OOK.

Rather amazingly, this integral can be evaluated in closed form by letting \(\lambda = \sqrt{2} y_1 \) and \(\alpha = A_c / \sqrt{2} \) so that

\[
P_e = \frac{1}{2} e^{-\lambda^2/4\sigma^2} \int_{0}^{\infty} \frac{\lambda}{\sigma^2} e^{-(\lambda^2 + \alpha^2)/2\sigma^2} I_0\left(\frac{\alpha\lambda}{\sigma^2}\right) d\lambda
\]

Figure 14.3–5 Noncoherent detection of binary FSK.
The integrand is now exactly the same function as the Rician PDF in Eq. (5), whose total area equals unity. Hence, our final result simply becomes
\[P_e = \frac{1}{2} e^{-\kappa^2/4\sigma^2} = \frac{1}{2} e^{-\gamma/2} \]
having used Eq. (13). Eq. (14) also applies to noncoherent MSK.

A comparison of the performance curves for noncoherent FSK and OOK plotted in Fig. 14.3–4 reveals little difference except at small values of \(\gamma \). However, FSK does have three advantages over OOK: constant modulated signal envelope, equal-digit error probabilities, and fixed threshold level \(V = 0 \). These advantages usually justify the extra hardware needed for the FSK receiver.

Differentially Coherent PSK

Noncoherent detection of binary PSK would be impossible since the message information resides in the phase. Instead, the clever technique of **phase-comparison detection** gets around the phase synchronization problems associated with coherent BPSK and provides much better performance than noncoherent OOK or FSK. The phase-comparison detector in Fig. 14.3–6 looks something like a correlation detector except that the local oscillator signal is replaced by the BPSK signal itself after a delay of \(T_b \). A BPF at the front end prevents excess noise from swamping the detector.

Successful operation requires \(f_c \) to be an integer multiple of \(r_b \), as in coherent BPSK. We therefore write
\[x_k(t) = A_c p_{T_b} (t - kT_b) \cos (\omega_c t + \theta + a_k \pi) \]
\[a_k = 0, 1 \quad kT_b < t < (k + 1)T_b \]

In the absence of noise, the phase-comparison product for the \(k \)th bit interval is
\[x_k(t) \times 2 x_k(t - T_b) = 2A_c^2 \cos (\omega_c t + \theta + a_k \pi) \times \cos [\omega_c(t - T_b) + \theta + a_{k-1} \pi] \]
\[= A_c^2 \left\{ \cos [(a_k - a_{k-1})\pi] + \cos [2\omega_c t + 2\theta + (a_k + a_{k-1})\pi] \right\} \]

where we’ve used the fact that \(\omega_c T_b = 2\pi N_c \). Lowpass filtering then yields
\[z(t_k) = \begin{cases} +A_c^2 & a_k = a_{k-1} \\ -A_c^2 & a_k \neq a_{k-1} \end{cases} \]

![Figure 14.3-6](image-url)
Differentially coherent receiver for binary PSK.
so we have polar symmetry and the threshold should be set at $V = 0$.

Since $z(t_k)$ only tells us whether a_k differs from a_{k-1}, a BPSK system with phase-comparison detection is called **differentially coherent** PSK (DPSK). Such systems generally include **differential encoding** at the transmitter, which makes it possible to regenerate the message bits directly from $z(t_k)$. Differential encoding starts with an arbitrary initial bit, say $a_0 = 1$. Subsequent bits are determined by the message sequence m_k according to the rule: $a_k = a_{k-1}$ if $m_k = 1$, $a_k \neq a_{k-1}$ if $m_k = 0$. Thus, $z(t_k) = +A_0^2$ means that $m_k = 1$ and $z(t_k) = -A_0^2$ means that $m_k = 0$.

Figure 14.3–7 shows a logic circuit for differential encoding; this circuit implements the logic equation

$$a_k = a_{k-1} m_k \oplus \overline{a_{k-1}} \overline{m_k} \quad (17)$$

where the overbar stands for logical inversion. An example of differential encoding and phase-comparison detection (without noise) is given in Table 14.3–1.

To analyze the performance of DPSK with noise, we’ll assume that the BPF performs most of the noise filtering, like the BPFs in an FSK receiver. Hence, the carrier amplitude and noise variance at the BPF output are related by

$$A_c^2/\sigma^2 = 2E_b/N_0 = 2\gamma_b$$

We’ll also exploit the symmetry and focus on the case when $a_k = a_{k-1} = 0$, so an error occurs if $y(t_k) < 0$.

Now let the delayed i and q noise components be denoted by $n'_i(t) = n_i(t - T_b)$ and $n'_q(t) = n_q(t - T_b)$. The inputs to the multiplier during the kth bit interval are

$$x(t) + n(t) = [A_c + n_i(t)] \cos (\omega_c t + \theta) - n_q(t) \sin (\omega_c t + \theta) \quad \text{and} \quad 2[x(t) - n(t) + n_i(t)] = 2[A_c + n'_i(t)] \cos (\omega_c t + \theta) - 2 n'_q(t) \sin (\omega_c t + \theta).$$

The LPF then removes the high-frequency terms from the product, leaving

$$Y = y(t_k) = (A_c + n_i)(A_c + n'_i) + n_q n'_q \quad (18)$$

where all four noise components are independent gaussian RVs with zero mean and variance σ^2.

Equation (18) has a **quadratic form** that can be simplified by a diagonalization process, resulting in

$$Y = \alpha^2 - \beta^2 \quad (19a)$$

![Figure 14.3–7](image-url) Logic circuit for differential encoding.
Table 14.3–1
Example of differential encoding and phase comparison

Input message	1 0 1 1 0 1 0 0
Encoded message	1 1 0 0 0 1 1 0 1
Transmitted phase	π π 0 0 0 π π 0 π
Phase-comparison sign	+ + + + + + +
Regenerated message	1 0 1 1 0 1 0 0

with

\[
\alpha^2 = (A_c + \alpha_i)^2 + \alpha_q^2 \quad \beta^2 = \beta_i^2 + \beta_q^2 \quad (19b)
\]

and

\[
\alpha_i \equiv \frac{1}{2} (n_i + n_i') \quad \beta_i \equiv \frac{1}{2} (n_i - n_i') \\
\alpha_q \equiv \frac{1}{2} (n_q + n_q') \quad \beta_q \equiv \frac{1}{2} (n_q - n_q') \quad (19d)
\]

Note that \(\alpha_i\) is a zero-mean gaussian RV with variance \(\alpha_i^2 = (n_i^2 + n_i'^2)/4 = 2\sigma_i^2/4 = \sigma_i^2/2\); identical conclusions hold for the other \(i\) and \(q\) components of \(\alpha\) and \(\beta\). Therefore, \(\alpha\) has a Rician PDF given by Eq. (5) with \(\sigma_i^2/2\) in place of \(\sigma_i^2\), while \(\beta\) has a Rayleigh PDF given by Eq. (2) with \(\sigma_i^2/2\) in place of \(\sigma_i^2\).

Lastly, since \(\alpha\) and \(\beta\) are nonnegative, we can write the average error probability as

\[
P_e = P(Y < 0 | a_k = a_{k-1}) = P(\alpha^2 < \beta^2) = P(\beta > \alpha)
\]

and we’ve arrived at an expression equivalent to the one previously solved for noncoherent FSK. Substituting \(\sigma_i^2/2\) for \(\sigma_i^2\) in Eq. (14) now gives our DPSK result

\[
P_e = \frac{1}{2} e^{-\gamma / 2\sigma_i^2} = \frac{1}{2} e^{-\gamma_0} \quad \text{(20)}
\]

The performance curves in Fig. 14.3–4 now show that DPSK has a 3 dB energy advantage over noncoherent binary systems and a penalty of less than 1 dB compared to coherent BPSK at \(P_e \approx 10^{-4}\).

DPSK does not require the carrier phase synchronization essential for coherent BPSK, but it does involve somewhat more hardware than noncoherent OOK or FSK—including differential encoding and carrier-frequency synchronization with \(r_k\) at the transmitter. A minor annoyance is that DPSK errors tend to occur in groups of two (why?).

Comparison of Transmitted Power for Various Modulation/Detection Methods

EXAMPLE 14.3–1

Binary data is to be sent at the rate \(r_h = 100 \text{ kbps}\) over a channel with 60 dB transmission loss and noise density \(N_0 = 10^{-12} \text{ W/Hz}\) at the receiver. What transmitted power \(S_T\) is needed to get \(P_e = 10^{-5}\) for various types of modulation and detection?
To answer this question, we first write the received signal power as
\[S_R = E_b r_b = N_0 \gamma_b r_b = S_T/L \] with \(L = 10^6 \). Thus,
\[S_T = L N_0 \gamma_b r_b = 0.1 \gamma_b \]
Next, using the curves in Fig. 14.3–4 or our previous formulas for \(P_e \), we find the value of \(\gamma_b \) corresponding to the specified error probability and from it calculate \(S_T \).

Table 14.3–2 summarizes the results. The systems have been listed here in order of increasing difficulty of implementation, bringing out the tradeoff between signal power and hardware complexity.

<table>
<thead>
<tr>
<th>System</th>
<th>(S_T, \text{W})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncoherent OOK or FSK</td>
<td>1.26</td>
</tr>
<tr>
<td>Differentially coherent PSK</td>
<td>0.62</td>
</tr>
<tr>
<td>Coherent BPSK</td>
<td>0.48</td>
</tr>
</tbody>
</table>

EXERCISE 14.3–2

Suppose the system in the previous example has a limitation on the *peak envelope power*, such that \(L A_c^2 \leq 2 \) watts at the transmitter. Find the resulting minimum error probability for noncoherent OOK and FSK and for DPSK.

14.4 QUADRATURE-CARRIER AND M-ARY SYSTEMS

This section investigates the performance of M-ary modulation systems with coherent or phase-comparison detection, usually in a quadrature-carrier configuration. Our primary motivation here is the increased modulation speed afforded by QAM and related quadrature-carrier methods, and by M-ary PSK and M-ary QAM modulation. These are the modulation types best suited to digital transmission on telephone lines and other bandwidth-limited channels.

As in previous sections, we continue to assume independent equiprobable symbols and AWGN contamination. We also assume that \(M \) is a power of two, consistent with binary to M-ary data conversion. This assumption allows a practical comparison of binary and M-ary systems.

Quadrature-Carrier Systems

We pointed out in Sect. 14.1 that both quadrature PSK and keyed polar QAM (also known as 4 QAM) are equivalent to the sum of two BPSK signals impressed on quadrature carriers. Here we’ll adopt that viewpoint to analyze the performance of QPSK/QAM with coherent detection. Accordingly, let the source information be grouped into *dibits* represented by \(I_k Q_k \). Each dibit corresponds to one symbol from a quaternary (\(M = 4 \)) source or two successive bits from a binary source. In the
latter case, which occurs more often in practice, the dibit rate is \(r = r_b/2 \) and \(D = 1/r = 2T_b \).

Coherent quadrature-carrier detection requires synchronized modulation, as discussed in Sect. 14.2. Thus, for the \(k \)th dibit interval \(kD < t < (k + 1)D \), we write

\[
x_c(t) = s_i(t - kD) - s_q(t - kD)
\]

(1a)

with

\[
s_i(t) = A_c I_k p_D(t) \cos \omega_c t \quad I_k = \pm 1
\]

(1b)

\[
s_q(t) = A_c Q_k p_D(t) \sin \omega_c t \quad Q_k = \pm 1
\]

Since \(f_c \) is assumed to be harmonically related to \(r = 1/D \), the signaling energy is

\[
\int_{kD}^{(k+1)D} x_c^2(t) \, dt = \frac{1}{2} A_c^2 (I_k^2 + Q_k^2)D = A_c^2 D
\]

and we have

\[
E = 2E_b \quad E_b = A_c^2 D/2
\]

(2)

where \(E \) is the energy per dibit or quaternary symbol.

From Eq. (1) and our prior study of coherent BPSK, it follows that the optimum quadrature-carrier receiver can be implemented with two correlation detectors arranged as in Fig. 14.4–1. Each correlator performs coherent binary detection, independent of the other. Hence, the average error probability per bit is

\[
P_{be} = Q(\sqrt{2E_b/N_0}) = Q(\sqrt{2\gamma_b})
\]

(3)

where the function \(Q(\sqrt{2\gamma_b}) \) denotes the area under the gaussian tail—not to be confused with \(Q \), symbolizing quadrature modulation.

We see from Eq. (3) that coherent QPSK/QAM achieves the same bit-error probability as coherent BPSK. Now we recall that the transmission bandwidth for QPSK/QAM is

\[
B_r = r_b/2
\]
whereas BPSK requires $B_p = r_p$. This means that the additional quadrature-carrier hardware allows you to cut the transmission bandwidth in half for a given bit rate or to double the bit rate for a given transmission bandwidth. The error probability remains unchanged in either case.

Equation (3) and the bandwidth/hardware tradeoff also hold for minimum-shift keying, whose i and q components illustrated back in Fig. 14.1–11b suggest quadrature-carrier detection. An MSK receiver has a structure like Fig. 14.4–1 modified in accordance with the pulse shaping and staggering of the i and q components. There are only two significant differences between MSK and QPSK: (1) the MSK spectrum has a broader main lobe but smaller side lobes than the spectrum of QPSK with the same bit rate; (2) MSK is inherently binary frequency modulation, whereas QPSK can be viewed as either binary or quaternary phase (or amplitude) modulation.

When QPSK/QAM is used to transmit quaternary data, the output converter in Fig. 14.4–1 reconstructs quaternary symbols from the regenerated dibits. Since bit errors are independent, the probability of obtaining a correct symbol is

$$ P_e = (1 - P_{ew})^2 $$

The average error probability per symbol thus becomes

$$ P_e = 1 - P_c = 2Q\left(\sqrt{E/N_0}\right) - Q^2\left(\sqrt{E/N_0}\right) $$

$$ = 2Q\left(\sqrt{E/N_0}\right) \quad E/N_0 \gg 1 $$

where $E = 2E_b$ represents the average symbol energy.

Various methods have been devised to generate the carrier sync signals necessary for coherent detection in quadrature-carrier receivers. Figure 14.4–2 shows a simple PLL system based on the fact that the fourth power of $x_c(t)$ contains a discrete frequency component at $4f_c$. However, since $\cos 4\omega_c t = \cos (4\omega_c t + 2\pi N)$, fourfold frequency division produces $\cos (\omega_c t + N\pi/2)$, so the output has a fixed phase error of $N\pi/2$ with N being an integer whose value depends on the lock-in transient. A known preamble may be transmitted at the start of the message to permit phase adjustment, or differential encoding may be used to nullify the phase error effects. Another carrier sync system will be described in conjunction with M-ary PSK; additional methods are covered by Lindsey (1972).

Phase-comparison detection is also possible in quadrature-carrier systems with differential encoding. From our study of DPSK in Sect. 14.3, you may correctly infer that differentially coherent QPSK (DQPSK) requires somewhat more signal energy.

![Figure 14.4–2](image-url) PLL system for carrier synchronization in a quadrature-carrier receiver.
than coherent QPSK to get a specified error probability. The difference turns out to be about 2.3 dB.

Consider a QPSK signal like Eq. (1) written as \(x_c(t) = A_c \cos (\omega_c t + \phi_k) \) with \(\phi_k = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4 \) Show that \(x'_c(t) \) includes an unmodulated component at \(4f_c \).

M-ary PSK Systems

Now let’s extend our investigation of coherent quadrature-carrier detection to encompass \(M \)-ary PSK. The carrier is again synchronized with the modulation, and \(f_c \) is harmonically related to the symbol rate \(r \). We write the modulated signal for a given symbol interval as

\[
x_c(t) = s_i(t - kD) - s_q(t - kD)
\]

with

\[
s_i(t) = A_c \cos \phi_k p_d(t) \cos \omega_c t
\]

\[
s_q(t) = A_c \sin \phi_k p_d(t) \sin \omega_c t
\]

where

\[\phi_k = 2\pi a_k/M \quad a_k = 0, 1, \ldots, M - 1 \]

from Eq. (13), Sect. 14.1, taking \(N = 0 \). The signaling energy per symbol then becomes

\[
E = \frac{1}{2} A_c^2 (\cos^2 \phi_k + \sin^2 \phi_k) D = \frac{1}{2} A_c^2 D
\]

equivalent to \(E_b = E/\log_2 M \) if each symbol represents \(\log_2 M \) binary digits. The transmission bandwidth requirement is \(B_T = r = r_b/\log_2 M \), from our spectral analysis in Sect. 14.1.

An optimum receiver for \(M \)-ary PSK can be modeled in the form of Fig. 14.4–3. We’ll let \(K = A_d/E \) so, in absence of noise, the quadrature correlators produce \(z_i(t_k) = A_c \cos \phi_k \) and \(z_q(t_k) = A_c \sin \phi_k \) from which \(\hat{\phi}_k = \arctan z_q/z_i \).

Figure 14.4–3 Coherent \(M \)-ary PSK receiver.
When $x(t)$ is contaminated by noise, message symbol regeneration is based on the noisy samples

$$y_i = A_c \cos \phi_k + n_i \quad y_q = A_c \sin \phi_k + n_q$$

in which the i and q noise components are independent Gaussian RVs with zero mean and variance

$$\sigma^2 = K^2 EN_0/2 = A_c^2 N_0/2E = N_0 \sigma^2$$ \hspace{1cm} (7)

The generator has M angular thresholds equispaced by $2\pi/M$, as illustrated in Fig. 14.4–4, and it selects the point from the signal constellation whose angle is closest to $\arctan(y_q/y_i)$.

The circular symmetry of Fig. 14.4–4, together with the symmetry of the noise PDFs, means that all phase angles have the same error probability. We'll therefore focus on the case of $\phi_k = 0$, so

$$\arctan \frac{y_q}{y_i} = \arctan \frac{n_q}{A_c + n_i} = \phi$$

and we recognize ϕ as the phase of a sinusoid plus bandpass noise. Since no error results if $|\phi| < \pi/M$, the symbol error probability can be calculated using

$$P_e = P(|\phi| > \pi/M) = 1 - \int_{-\pi/M}^{\pi/M} p_\phi(\phi) \, d\phi$$ \hspace{1cm} (8)

for which we need the PDF of the phase ϕ.

The joint PDF for the envelope and phase of a sinusoid plus bandpass noise was given in Eq. (3), Sect. 14.3. The PDF of the phase alone is found by integrating the joint PDF over $0 \leq A < \infty$. A few manipulations lead to the awesome-looking expression

Figure 14.4–4 Decision thresholds for M-ary PSK.
14.4 Quadrature-Carrier and M-Ary Systems

\[p_\phi(\phi) = \frac{1}{2\pi} e^{-\lambda^2/2\sigma^2} + \frac{A_c \cos \phi}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{A_c^2 \sin^2 \phi}{2\sigma^2} \right) \left[1 - Q\left(\frac{A_c \cos \phi}{\sigma} \right) \right] \]

(9)

for $-\pi < \phi < \pi$. Under the large-signal condition $A_c \gg \sigma$, Eq. (9) simplifies to

\[p_\phi(\phi) = \frac{A_c \cos \phi}{\sqrt{2\pi\sigma^2}} e^{-(A_c \sin \phi)^2/2\sigma^2} \quad |\phi| < \frac{\pi}{2} \]

(10)

which, for small values of ϕ, approximates a gaussian with $\bar{\phi} = 0$ and $\bar{\phi}^2 = \sigma^2/A_c^2$. Equation (10) is invalid for $|\phi| > \pi/2$, but the probability of that event is small if $A_c \gg \sigma$. Figure 14.4–5 depicts the transition of $p_\phi(\phi)$ from a uniform distribution when $A_c = 0$ to a gaussian curve when A_c becomes large compared to σ. (See Fig. 14.3–1 for the corresponding transition of the envelope PDF.)

We’ll assume that $A_c \gg \sigma$ so we can use Eq. (10) to obtain the error probability of coherent M-ary PSK with $M > 4$. (We already have the results for $M = 2$ and 4.) Inserting Eq. (10) with $A_c^2/\sigma^2 = 2E/N_0$ into Eq. (8) gives

\[P_e = 1 - \frac{1}{\sqrt{2\pi}} \int_{-\pi/M}^{\pi/M} \frac{2E}{N_0} \cos \phi \, e^{-(2E/N_0)(\sin \phi)^2/2} \, d\phi \]

(11)

\[= 1 - \frac{2}{\sqrt{2\pi}} \int_{0}^{L} e^{-\lambda^2/2} \, d\lambda \]

where we’ve noted the even symmetry and made the change of variable $\lambda = \sqrt{2E/N_0} \sin \phi$ so $L = \sqrt{2E/N_0} \sin (\pi/M)$. But the integrand in Eq. (11) is a gaussian function, so $P_e = 1 - [1 - 2Q(L)] = 2Q(L)$. Hence,

Figure 14.4–5 PDFs for the phase of a sinusoid plus bandpass noise.
which is our final result for the symbol error probability with $M > 4$. We’ll discuss the equivalent bit error probability in our comparisons at the end of the chapter.

Returning to the receiver in Fig. 14.4–3, the carrier sync signals can be derived from the Mth power of $x_c(t)$ using a modified version of Fig. 14.4–2. The more sophisticated decision-feedback PLL system in Fig. 14.4–6 uses the estimated phase $\hat{\phi}_k$ to generate a control signal $v(t)$ that corrects any VCO phase error. The two delay blocks here simply account for the fact that $\hat{\phi}_k$ is obtained at the end of the kth symbol interval.

If accurate carrier synchronization proves to be impractical, then differentially coherent detection may be used instead. The noise analysis is quite complicated, but Lindsey and Simon (1973) have obtained the simple approximation

\[
P_e = 2Q\left(\sqrt{\frac{2E}{N_0 \sin^2 \frac{\pi}{M}}}
ight) \tag{12}
\]

which holds for $E/N_0 >> 1$ with $M \approx 4$. We see from Eqs. (12) and (13) that M-ary DPSK achieves the same error probability as coherent PSK when the energy is increased by the factor

\[
\Gamma = \frac{\sin^2 (\pi/M)}{2 \sin^2 (\pi/2M)}
\]

This factor equals 2.3 dB for DQPSK ($M = 4$), as previously asserted, and it approaches 3 dB for $M >> 1$.

Figure 14.4–6
M-ary PSK receiver with decision-feedback system for carrier synchronization.
Derive Eq. (7) by replacing one of the correlation detectors in Fig. 14.4–3 with an equivalent BPF, as in Fig. 14.2–3.

M-ary QAM Systems

We can represent the source symbols by combining amplitude and phase modulation to form **M-ary QAM**. M-ary QAM is also called M-ary amplitude-phase keying (APK). It is useful for channels having limited bandwidth and provides lower error rates than other M-ary systems with keyed modulation operating at the same symbol rate. Here we’ll study the class of M-ary QAM systems defined by square signal constellations, after a preliminary treatment of suppressed-carrier M-ary ASK.

Consider M-ary ASK with synchronized modulation and suppressed carrier. Carrier-suppression is readily accomplished by applying a polar modulating signal. Thus, for the kth symbol interval, we write

\[x_c(t) = A_c I_k p_D(t - kD) \cos \omega_c t \]

(14a)

where

\[I_k = \pm 1, \pm 3, \ldots, \pm (M - 1) \]

(14b)

The transmission bandwidth is \(B_T \approx r \), the same as M-ary PSK.

An optimum coherent receiver consists of just one correlation detector, since there’s no quadrature component, and regeneration is based on the noisy samples

\[y_i = A_c I_k + n_i \]

The noise component is a zero-mean gaussian RV with variance \(\sigma^2 = N_0 r \), as in Eq. (7). Figure 14.4–7 shows the one-dimensional signal constellation and the corresponding \(M - 1 \) equispaced thresholds when \(M = 4 \). The symbol error probability for any even value of \(M \) is

\[P_e = 2 \left(1 - \frac{1}{M} \right) Q \left(\frac{A_c}{\sqrt{N_0 r}} \right) \]

(15)

obtained by the same analysis used for polar M-ary baseband transmission in Sect. 11.2.

![Figure 14.4–7](image)

Figure 14.4–7 Decision thresholds for ASK with \(M = 4 \).
Suppose that two of these ASK signals are transmitted on the same channel via quadrature-carrier multiplexing, which requires no more bandwidth than one signal. Let the information come from an M-ary source with $M = 2^m$ so the message can be converted into two M-ary digit streams, each having the same rate r. The performance of M-ary QAM fundamentally depends upon the M-ary error rate and therefore will be superior to direct M-ary modulation with $M > 2$.

Figure 14.4–8a diagrams the structure of our M-ary QAM transmitter. The output signal for the kth symbol interval is

$$x_k(t) = s_i(t - kD) - s_q(t - kD)$$ \hspace{1cm} (16a)

with

$$s_i(t) = A_c I_k p_D(t) \cos \omega_c t \quad I_k = \pm 1, \pm 3, \ldots, \pm (\mu - 1)$$ \hspace{1cm} (16b)

$$s_q(t) = A_c Q_k p_D(t) \sin \omega_c t \quad Q_k = \pm 1, \pm 3, \ldots, \pm (\mu - 1)$$

The average energy per M-ary symbol is

$$E = \frac{1}{2} A_c^2 (I_k^2 + Q_k^2) D = \frac{1}{3} A_c^2 (\mu^2 - 1) D$$ \hspace{1cm} (17)

since $I_k^2 = Q_k^2 = (\mu^2 - 1)/3$.

Coherent QAM detection is performed by the receiver in Fig. 14.4–8b, whose quadrature correlators produce the sample values

$$y_i = A_c I_k + n_i \quad y_q = A_c Q_k + n_q$$

We then have a square signal constellation and threshold pattern, illustrated in Fig. 14.4–8c taking $M = 4^2 = 16$. Now let P denote the probability of error for I_k or Q_k, as given by Eq. (15) with M replaced by $\mu = \sqrt{M}$. The error probability per M-ary symbol is $P_e = 1 - (1 - P)^2$ and $P_e \approx 2P$ when $P \ll 1$. Therefore,

$$P_e \approx 4 \left(1 - \frac{1}{\sqrt{M}}\right) Q\left[\sqrt{\frac{3E}{(M - 1)N_0}}\right]$$ \hspace{1cm} (18)

in which we’ve inserted the average symbol energy from Eq. (17).

Calculations using this result confirm the superior performance of M-ary QAM. By way of example, if $M = 16$ and $E/N_0 = 100$, then $P_e \approx 4 \times 3/4 \times Q(\sqrt{20}) = 1.2 \times 10^{-5}$, whereas an equivalent PSK system with $M = 16$ would have $P_e \approx 2Q(\sqrt{7.6}) = 6 \times 10^{-3}$.

M-ary FSK Systems

As we said earlier, we can also represent M source symbols by frequency modulating the carrier with M keyed frequencies equispaced by $2f_d = 1/2 = \pi r/2$. According to Ziemer and Peterson (2001), the upper bound on the symbol error probability is
14.4 Quadrature-Carrier and M-Ary Systems

$M = \mu^2$

M-ary to μ-ary converter

$\cos \omega t$

+ 90°

$x_n(t)$

(a)

$\int y_q$

Regen

\hat{i}_k

$\int y_i$

Regen

\hat{Q}_k

(b)

μ-ary to M-ary converter

M-ary QAM system: (a) transmitter; (b) receiver; (c) square signal constellation and thresholds with $M = 16$.

$M = \frac{\mu^2}{M}$

μ-ary to M-ary converter

M-ary QAM system: (a) transmitter; (b) receiver; (c) square signal constellation and thresholds with $M = 16$.
The M-ary FSK coherent and noncoherent receivers are shown in Figs. 14.4–9 and 14.4–10 respectively. As you might expect, in order to detect M symbols, from M–carrier frequencies, they are M times more complex than their binary counterparts of Figs. 14.2–3 and 14.3–5, whereas the M-ary PSK and M-ary QAM receivers of Figs. 14.4–3 and 14.4–8 have similar complexities to their binary counterparts.

M-ary orthogonal FSK is often implemented as orthogonal frequency division multiplexing (OFDM), which is covered in the next section.

Comparison of Digital Modulation Systems

A performance comparison of digital modulation systems should consider several factors, including: error probability, transmission bandwidth, spectral spillover, hardware requirements, and the differences between binary and M-ary signaling. To establish an equitable basis for comparison, we’ll make the realistic assumption that the information comes from a binary source with bit rate r_b. This allows us to compare systems in terms of the modulation speed r_b/B_T and the energy-to-noise ratio γ_b needed to get a specified error probability per bit.

Our previous results for binary modulation systems apply directly to the comparison at hand, especially the error probability curves back in Fig. 14.3–4. Table 14.4–1 serves as a more abbreviated summary when γ_b is large enough to justify the applicable approximations. (Thus, in the case of noncoherent OOK, almost

$$P_e \leq \begin{cases} (M-1) Q(\sqrt{\gamma_b \log_2 M}) & \text{coherent detection} \\ \frac{M-1}{2} e^{-\frac{1}{2} \gamma_b \log_2 M} & \text{noncoherent (envelope) detection} \end{cases}$$

Figure 14.4–9 Coherent M-ary FSK receiver.
14.4 Quadrature-Carrier and M-Ary Systems

all the errors correspond to the carrier “off” state.) This listing emphasizes the fact that doubled modulation speed goes hand-in-hand with coherent quadrature-carrier detection. Also recall that minimizing spectral spillover requires staggered keyed modulation (M SK or OQPSK) or additional pulse shaping.

Now consider M-ary transmission with symbol rate r and energy E per symbol. We’ll take M = 2^K and introduce the data-conversion factor

\[K = \log_2 M \]

which equals the number of bits per M-ary symbol. The equivalent bit rate and energy are \(r_b = Kr \) and \(E_b = E/K \), so

\[y_b = E/KN_0 \]

The modulation speed of M-ary PSK or M-ary QAM is

\[r_b/B_1 = K \]

since \(B_1 = r = r_b/K \). The error probability per bit is given by

Recall from Eq. (24), Sect. 11.2, that when the data converter uses the Gray code, then \(P_{be} \approx P_e/K \). With M-ary PSK and M-ary QAM, we can Gray code the

<table>
<thead>
<tr>
<th>Table 14.4-1 Summary of binary modulation systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulation</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>OOK or FSK ((f_c = r_c/2))</td>
</tr>
<tr>
<td>DPSK</td>
</tr>
<tr>
<td>BPSK</td>
</tr>
<tr>
<td>M SK, 4-QAM, or QPSK</td>
</tr>
</tbody>
</table>
signal constellation so that the error probability is most likely to be one error per symbol. This is because the signal constellation is such that the probability of confusing adjacent signal points is greater than non-adjacent points, and if the probability of error is relatively small, then it is reasonable to assume that the maximum bit errors per symbol is 1. Therefore, with M-ary PSK and M-ary QAM with Gray coding, the error probability per bit is

$$P_{be} = \frac{P_e}{K}$$

(21)

On the other hand, with M-ary FSK, and by the inherent nature of the frequency to symbol logic, Gray coding has no advantage, since all symbol errors are equally likely. Thus, it can be shown that for M-ary FSK (Ziemer & Peterson, 2001),

$$P_{be} = \frac{P_e M}{2(M - 1)}$$

(22)

After incorporating these adjustments in our previous expressions, we get the comparative results listed in Table 14.4–2. The quantity r_d/B_T is often referred to as bandwidth efficiency.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Detection</th>
<th>P_{be}</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPSK ($M \geq 4$)</td>
<td>Phase-comparison quadrature</td>
<td>$2 \frac{1}{K} Q\left(\sqrt{4K\gamma_0 \sin^2 \frac{\pi}{2M}}\right)$</td>
</tr>
<tr>
<td>PSK ($M \geq 8$)</td>
<td>Coherent quadrature</td>
<td>$2 \frac{1}{K} Q\left(\sqrt{2K\gamma_0 \sin^2 \frac{\pi}{M}}\right)$</td>
</tr>
<tr>
<td>QAM (K even)</td>
<td>Coherent quadrature</td>
<td>$\frac{4}{K}\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3K}{M - 1}}\gamma_0\right)$</td>
</tr>
</tbody>
</table>

All of the quadrature-carrier and M-ary systems increase modulation speed at the expense of error probability or signal energy. Suppose, for example, that you want to keep the error probability fixed at $P_{be} = 10^{-4}$ —a common standard for comparison purposes. The value of γ_0 needed for different modulation systems with various modulation speeds then can be calculated from our tabulated expressions. Figure 14.4–11 depicts the results as plots of r_d/B_T versus γ_0 in dB, and each point is labeled with the corresponding value of M. Clearly, you would choose QAM over PSK for $r_d/B_T \geq 4$ with coherent detection. M-ary DPSK eliminates the carrier-synchronization problems of coherent detection, but it requires at least 7 dB more energy than QAM for $r_d/B_T \geq 4$.

As our final comparison, Table 14.4–3 combines M-ary data from Fig. 14.4–11 and calculates values for binary systems with the same error probability. The various systems are listed here in order of increasing complexity to bring out the trade-offs between modulation speed, signal energy, and hardware expense.
You should keep two points in mind when we examine this table. First, the numerical values correspond to ideal systems. The modulation speed of an actual system is typically about 80 percent of the theoretical value, and the required energy is at least 1–2 dB higher. This 1–2 dB difference is often referred to as implementation loss. Second, the characteristics of specific transmission channels may impose additional considerations. In particular, rapidly changing transmission delay prohibits coherent detection, while transmission nonlinearities dictate against the envelope dc demodulation modulation of OOK and M-ary QAM.
One practical item to mention is that of hardware implementation. GMSK, as well as other FSK methods, has a constant amplitude output, and thus because amplifier linearity is not an issue, higher efficiency class-C amplifiers can be used for the transmitter’s final amplifier. In the case of GSM wireless phones, this means significantly longer battery life.

Other factors not covered here include the effects of interference, fading, and delay distortion. These are discussed in an excellent paper by Oetting (1979), which also contains an extensive list of references.

14.5 ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM)

You will recall in Sect. 7.2 the case of FDM in which each user was assigned a specific frequency slot such that the channel bandwidth W Hz could support K users, each one occupying Δf Hz. It was noted that there was the challenge of crosstalk caused by non-ideal filters and that analog FDM does not lend itself very well to implementation using today’s digital technologies. We now want to consider a variation of FDM called **orthogonal frequency division multiplexing** (OFDM). OFDM is also one implementation of **multicarrier modulation** (MC). The major difference between the FDM and OFDM lies in the fact that OFDM uses multiple carriers that are mutually orthogonal; OFDM includes multiplexing in the **phase domain** as well as the **frequency domain**. Initially, we will present OFDM as a means to divide up a single user’s message and transmit it over a set of orthogonal frequencies. We then consider OFDM for its multiple access uses. OFDM is currently used in digital subscriber lines (DSL), wireless networks, Wi-Fi; (IEEE 802.11) and WiMax (IEEE 802.16). See Andrews, Ghosh and Muhamed (2007) and http://www.ieee.802.org for more information on the Wi-Fi and WiMax standards.

Since the subcarriers in OFDM do not interfere with each other due to their orthogonality, the spectrum of each tone is allowed to be overlapped, thus the amount of required spectrum for OFDM compared to conventional FDM. OFDM used in conjunction with PSK or QAM modulation techniques overcomes the above-mentioned limitations of FDM. In particular, OFDM does not require the use of expensive bandpass filters required in conventional FDM systems. It should be noted, however, that OFDM requires strict frequency synchronization.

Given that the total channel bandwidth W is divided up into K slots, each one having a subcarrier frequency of f_k with spacing

$$\Delta f = f_{k+1} - f_k$$

then

$$f_k = k\left(\frac{W}{K}\right).$$

Furthermore, we select the symbol rate to be

$$r = 1/T = \Delta f$$
where $T =$ symbol duration such that the modulated subcarriers will be mutually orthogonal, or

$$\int_0^T \cos(2\pi f_k t)(\cos 2\pi f_{j\neq k} t) \, dt = 0 \quad \text{for all } j, k, j \neq k \quad (1)$$

Thus, with orthogonal frequency division multiplexing (OFDM) we have a method of sending K symbols concurrently without interference. In other words, we take a given message that consists of a set of frames where each frame consists of K symbols, so that, instead of sending the entire frame over the channel at a bandwidth and rate of $r_s = 1/T_s = K/T = W$, we send each symbol over a separate subcarrier frequency f_k and thus send K symbols in parallel over the channel at the slower rate of $r = r_s/K$ Hz and thus the symbol duration becomes $T = KT_s$. An important consequence of this lower data rate is the corresponding reduction in ISI, and multipath effects.

To minimize ISI, and to minimize errors caused by multipath, we select K and T so that T is significantly greater than the duration of the channel’s impulse response function and greater than the delay spread time.

Consider a message frame that is divided into K sets of symbols where each symbol is modulated using QAM. The subcarrier function is

$$v_k(t) = I_k p_D(t) \cos(2\pi f_k t) - Q_k p_D(t) \sin(2\pi f_k t) \quad k = 0, 1, \ldots K - 1 \quad (2)$$

where I_k and Q_k define the kth symbol constellation point, and $p_D(t) = u(t) - u(t - D)$. To simplify the notation, let’s assume that the constellation points incorporate pulse shaping and thus $I_k p_D(t)$ and $Q_k p_D(t) \rightarrow I_k(t)$ and $Q_k(t)$ respectively. The constellation points become

$$X_k(t) = I_k(t) + jQ_k(t) \quad \text{and} \quad X_k(t) = |X_k(t)|e^{j\theta_k(t)} \quad (3)$$

It can be shown that

$$v_k(t) = \text{Re}[X_k(t)e^{j2\pi f_k t}] \quad (4)$$

Note that the subcarrier signal is a real function. The output consists of the sum of the subcarriers, or

$$x_c(t) = \sum_{k=0}^{K-1} v_k(t) = \text{Re}[\sum_{k=0}^{K-1} X_k(t)e^{j2\pi f_k t}] \quad (5)$$

and can be implemented as shown in Fig. 14.5-1.

Generating OFDM Using the Inverse Discrete Fourier Transform

We now describe a more elegant and common way of implementing OFDM using the inverse discrete Fourier transform (IDFT).

Suppose we modify Eq. (5) to include both the real and imaginary components to get

$$w(t) = \sum_{k=0}^{K-1} X_k(t)e^{j2\pi f_k t} \quad (6)$$
We then sample the function $w(t) \rightarrow w(nT_\delta) \rightarrow w(n)$, giving us

$$w(t) \rightarrow w(nT_\delta) = \sum_{k=0}^{K-1} X_k e^{j2\pi f_k t} e^{j2\pi fnT_\delta}, \quad n = 0, 1, \ldots K-1 \quad (7a)$$

With $f_k = k \left(\frac{W}{K} \right)$ and $W = 1/T_\delta$ we get

$$w(nT_\delta) = \sum_{k=1}^{K-1} X_k e^{j2\pi k(W/K)nT_\delta} \Rightarrow w(n) = \sum_{k=0}^{K-1} X_k e^{j2\pi kn/K} \quad n = 0, 1, \ldots K-1 \quad (7b)$$
Recalling Eq. (2) in Sect. 2.6, we observe that Eq. (7b) describes \(w(n) \) as the IDFT of \(X_k \) or

\[
w(n) = \text{IDFT}[X_k(n)]
\]

OFDM can thus be implemented as shown in Fig. 14.5–2. Observe that the real and imaginary output signals from the IDFT block occur at a rate of \(1/T \) and feed to a set of digital-to-analog converters (DACs). The DAC outputs \(w(t) \) and \(w_q(t) \) constitute the in-phase and quadrature components respectively and are QAM'd to generate the final OFDM signal

\[
x_c(t) = w_i(t) \cos 2\pi f_c t - w_q(t) \sin 2\pi f_c t
\]

Modulating them via QAM ensures that \(x_c(t) \) is a real function.

At this point, we have developed a digital frequency multiplexing system that can be implemented using the IDFT structure. If we are willing to constrain the value of \(K \) to be a power of 2, then the IDFT can be more efficiently and economically realized using existing IDFT technology. However, we still need additional analog

\[x(n) \rightarrow \text{Serial to parallel converter} \rightarrow X_0(n) \rightarrow \text{Constellation Mapping} \rightarrow I_0(n) \]

\[X_1(n) \rightarrow \text{Constellation Mapping} \rightarrow I_1(n) \]

\[\cdots \]

\[X_{K-1}(n) \rightarrow \text{Constellation Mapping} \rightarrow I_{K-1}(n) \]

\[\Leftrightarrow \text{IDFT} \]

\[\rightarrow \text{DAC} \]

\[w_i(n) = \text{Re}[w(n)] \]

\[w_q(n) = \text{Im}[w(n)] \]

\[+ \]

\[\times \cos 2\pi f_c t \]

\[90^\circ \]

\[\times \]

\[+ x_c(t) \]

\[- \]

Figure 14.5–2 An OFDM transmitter implemented via the IDFT.

\[^a\]In this case we use \(n \) instead of \(k \) as the independent variable for \(W(n) \) because \(W(n) \) is the input to the IDFT.
hardware to perform the QAM operations to ensure that \(x_c(t) \) is a real function. Also, there are applications, such as data transmission over telephone copper-wire lines (i.e., DSLs), where it is not necessary or desirable to modulate the signal to a higher carrier frequency. Therefore, we would like to dispense with the analog modulation hardware altogether. The symmetry property of a \(N - \) point IDFT states that, if the last \(N/2 \) symbols of its input are the complex conjugates of the first \(N/2 \) symbols, then the output of the IDFT consists of only real values, the imaginary components being zero. This is easily implemented by concatenating the IDFT input with \(K \) additional symbols that are the complex conjugates of the first \(K \) symbols. Thus the input of the IDFT is

\[
X_k'(n) = \begin{cases}
X_k(n) & k = 1, 2, \ldots, K - 1 \\
X_k^*(n) & k = 2K - 1, 2K - 2, \ldots, K + 1
\end{cases} \tag{9}
\]

To further satisfy this property of the IDFT, it is required that \(X_0'(n) \) and \(X_K'(n) \) be real, and therefore, unless they are zero, we set \(X_0'(n) = \text{Re}[X_0(n)] \) and \(X_{N/2}' = \text{Im}[X_0(n)] \). The new IDFT structure would thus have \(N = 2K \) inputs and \(N = 2K \) outputs and thus Eq (7) becomes \(w(n) = \sum_{k=0}^{2K-1} X_k' \text{e}^{j2\pi nk/N} \). The new constellation mapping would give us

\[
X_k'(n) = l_k(n) + jQ_k(n) \quad k = 0, 1, \ldots, N - 1 \tag{10}
\]

We can then feed the real vector to a DAC to create the OFDM-modulated signal, where the rate is \(2K \Delta f \), as shown in Fig. 14.5–3. The imaginary components of the IDFT’s output is zero, and Eq. (8) becomes

\[
x_c(t) = w_i(t) \tag{11}
\]

Channel Response and Cyclic Extensions

We recall in Sect. 3.2 that often the entire channel does not have a constant or flat frequency response, and thus our signal is subject to spectral amplitude distortion. In Sect. 11.3 we discussed using channel equalization to minimize this problem. Now let’s consider a section of channel spectrum shown in Fig. 14.5–4. We will observe variation in the frequency response of the respective subchannels such that

\[
H_k(f) \neq H_{j\neq k}(f)
\]

However, if \(\Delta f \) is sufficiently small, then it is reasonable to assume that the each subchannel has a relatively constant response, or

\[
H_k(f) \approx A \text{ with } f - f_k/2 \leq f \leq f + f_k/2 \tag{12}
\]

Thus, using OFDM simplifies channel equalization.

Due to the transmission of data over several subcarriers, OFDM inherently is a form of frequency diversity. This reduces the problem of narrowband fading as well as frequency-selective multipath distortion. The dispersion of data over several channels allows us to interleave our data over various frequencies in the same way we employed time-data interleaving in Sect. 13.1. You will recall that time-data
14.5 Orthogonal Frequency Division Multiplexing (OFDM)

Interleaving allowed us to better take advantage of the error-control bits to reduce the effects of burst errors. In a similar fashion, frequency interleaving allows us to reduce the adverse effects of frequency-selective channel fading.

OFDM suffers less from intersymbol interference (ISI) caused by multipath due to the narrower frequency intervals of the K subchannels, and the symbol duration is thus relatively long compared to the channel’s changing time characteristics. Reduction of ISI is achieved by inserting guard intervals between the OFDM symbols, where the guard interval duration is longer than the channel delay spread. Recall the discussion of delay spread in Sect. 3.2. An obvious drawback of the guard interval is

![Figure 14.5-3](image1)

OFDM baseband transmitter.

![Figure 14.5-4](image2)

Frequency response of a portion of a channel.
its overhead, which causes a reduction in bandwidth efficiency. Let’s consider this in more detail. Note that we will neglect noise. As already noted, we assume the frequency response of the kth subchannel is

$$H_k(f) = A\text{Rect}[f_k/\Delta f]$$

with the corresponding response time of

$$h_k(t) = 2A\Delta f \text{sinc}(\Delta ft).$$

The subchannel output signal is thus

$$y_k(t) = h_k(t) \ast x_k(t)$$

and in the sequence domain,

$$y_k(n) = h_k(n) \ast x_k(n)$$

where \ast denotes a linear convolution, and $x_k(t)$ and its discretized version $x_k(n)$ are the channel input signals. The effect of linear convolution of $h_k(t)$ with $x_k(n)$ is to cause ISI. Consider that the respective lengths of sequences $x_k(n)$ and $h_k(n)$ are N and M, respectively, where M is the length of the subchannel’s memory. Now, if we zero-pad $x_k(n)$ so it has the same length as the response of $h_k(n)$ and allow for the subchannel to have a guard time that allows the fitting of M additional symbols, then we can implement Eq. (13b) as a circular convolution,

$$y_k(n) = h_k(n) \otimes x_k(n) = DFT [H_k(j)] \times DFT [X_k(j)]$$

and thus avoid ISI. We call these guard times **prefix and postfix (or suffix) cyclic extensions**. With suitable shifting of the sequence, it is only necessary to have a prefix extension. At detection, the M symbols are stripped off, leaving us with the original N symbols. The minimum value of M is larger than the channel’s delay spread.

The combination of OFDM and frequency division multiple access (FDMA) protocol forms **orthogonal frequency-division multiple-access** (OFDMA). OFDM allows transmission only to users who occupy all the subcarriers of the symbol. OFDMA, however, allows transmission to different users occupying different subcarriers of the same symbol. To accomplish this we modify the structure of Fig. 14.5–3 to enable K' users, with each user occupying K subchannels. For example, let’s say we have $K' = 4$ users each to be OFDM’d over $K = 32$ subchannels. Thus, user 1 would occupy frequency channels 1–32, user 2 would occupy 33–64, and so on for a total of 128 channels. We could also employ a pseudorandom frequency-hopping scheme so that each user occupies a different group of frequencies for every frame.

EXAMPLE 14.5–1 Delay Spread and Guard Symbols

Consider a WiMax OFDM system with $W = 20$ MHz, $K = 2048$ subchannels, and a delay spread of 4μsec $\Rightarrow 250$ kHz $= 0.250$ MHz. Each of the 2048 subchannels has a bandwidth of $\Delta f = 20$ MHz/2048 = 9765 Hz/subchannel. If the channel’s symbol rate is 20 MHz and the delay spread is 4μ sec, then the overhead associated with the guard symbols is $20 \times 10^6 \text{ symbols/sec} \times 4 \times 10^{-6} \text{ secs/guard symbol} = 80$ guard
symbols. With respect to the subchannels, 80 guard symbols/2048 subchannels = 0.039 guard symbols/subchannel. The WiMax standards call for ratios of the guard time to channel time to be 1/4, 1/8, 1/16, and 1/32, and therefore, 80 guard symbols/512 subchannels < 1/4 is acceptable. We could even reduce the number of subchannels to 512 and still stay within the WiMax minimum of 1/4. See Andrews et al. (2007) for more information.

The OFDM signal consists of separate carrier frequencies that will be outputted through a single power amplifier. Because it is often the case that these signals will add coherently, at the amplifier’s output we get a large **peak-to-average power ratio** (PAR). For example, with \(K \) in-phase signals it is possible to have a PAR of \(K \). In contrast, a PSK signal has a unity PAR. The large dynamic range associated with the large PAR increases the complexity of the DACs and ADCs. A high PAR requires the transmitter’s power amplifier to have a relatively large linear dynamic range. Several methods to reduce PAR requirements include the following: (a) signal-distortion techniques, whereby the peak amplitudes are reduced by clipping or some other nonlinear method; (b) coding methods that change the transmitted symbols to minimize PAR; and (c) scrambling the OFDM symbols in order to minimize the PAR. See Prasad (2004), Andrews et al. (2007), and Bahai and SaHzberg (1999) for more information on OFDM and methods of reducing the PAR.

Assuming the subcarrier signals leaving the transmitter are mutually orthogonal, how is it possible that the received versions would not be orthogonal?

Prove Eq. (4).

14.6 TRELLOIS-CODED MODULATION

Let’s consider a standard voice-telephone line with a 3.2 kHz bandwidth and a S/N of 35 dB used in conjunction with a modem to transmit a digital message. According to the Hartley-Shannon law, discussed in Sect. 16.3, the line’s capacity, or message rate, should be \(C = 37.2 \) kbps. However, for a fixed \(P_{be} \), practical modems using conventional digital modulation methods such as \(M \)-ary PSK and QAM have only achieved rates of up to 9.6 kbps—nowhere near the Hartley-Shannon limit. The rate could be increased without requiring additional bandwidth by simply adding more points in the signal constellation. But since the euclidean distances between these points are decreased, \(P_{be} \) increases. Conventional error correction codes could be employed, but the added redundancy reduces the overall message rate. The newly developed turbo codes would also allow us to approach the Hartley-Shannon limit, but due to their iterative nature they have a relatively long latency time which may not be acceptable.
In order to achieve message rates closer to the Hartley-Shannon limit on band-limited channels such as telephone and cable TV lines, we now consider **trellis-coded modulation** (TCM) which was developed in the early 1980s by Gottfried Ungerboeck of IBM Zurich Research Laboratory (Ungerboeck, 1982, 1987).

TCM is a scheme that combines convolutional coding and modulation.

TCM enables coding gains of at least 7 dB without bandwidth expansion and has enabled much higher baud rates for telephone modems. The cost incurred for this improvement is somewhat increased decoder complexity.

TCM Basics

We first consider the M-ary PSK system whose constellation is shown in Fig. 14.6–1. Recall,

$$P_{bc} = \frac{2}{K} Q \left(\frac{2E}{N_0} \sin^2 \frac{\pi}{M} \right)$$ \hspace{1cm} (1)$$

with errors most likely to occur when adjacent points are confused. Thus,

Minimizing errors requires that we maximize the euclidean distance between adjacent points.

In this case, the distance squared between adjacent points is

$$d_{\text{min}}^2 = 4 \sin^2 \frac{\pi}{M}$$ \hspace{1cm} (2)$$

Figure 14.6–1 PSK signal constellation: (a) $M = 4$; (b) $M = 8$.
and thus we can express Eq. (1) as

\[P_{be} = \frac{2}{K} Q \left(\sqrt{ \frac{E}{2N_0} d_{\text{min}}^2 } \right) \]

(3)

To explain TCM, we first look at a QPSK system that has two bits per symbol and a constellation diagram as shown in Fig. 14.6–1a. In this case, \(x_1x_2 = 01 \) is mapped to \(\pi/2 \) radians, \(x_1x_2 = 10 \) is mapped to \(3\pi/2 \) radians, and so on. As Fig. 14.6–1 and Eq. (2) show, after mapping into the signal constellation, the minimum distance squared between adjacent symbols is \(d_{\text{min}}^2 = d_{00-01}^2 = 2 \). We use this as a reference for \(M \)-ary PSK TCM systems.

The generic TCM system of Fig. 14.6–2 expands \(m \) message inputs \(x_1, x_2, \ldots, x_m \) to generate \(m + 1 \) signal outputs \(y_1, y_2, \ldots, y_{m+1} \) giving us \(M = 2^{m+1} \) channel symbols that are then mapped to an \(M \)-ary signal constellation. The overall encoding rate is thus \(R = \frac{m}{m+1} \). The TCM structure includes using an \(\tilde{m}/(\tilde{m} + 1) \) rate convolutional encoder, where \(\tilde{m} \) is equal to number of coded message bits and \(\tilde{m} \leq m \). This encoder expands \(\tilde{m} \) message bits into \(\tilde{m} + 1 \) signal outputs.

The system of Fig. 14.6–3a, uses an \(\tilde{m}/(\tilde{m} + 1) = 1/2 \), 4-state, convolutional encoder to encode message bit \(x_1 \) into two bits, \(y_1 \) and \(y_2 \), while the system of Fig. 14.6–3b, uses an \(\tilde{m}/(\tilde{m} + 1) = 2/3 \), 8-state convolutional encoder to encode the two message bits \(x_1, x_2 \) into three bits \(y_1, y_2, \) and \(y_3 \). In both systems, bits \(y_1, y_2, \) and \(y_3 \) are then mapped into an \(8 \)-ary PSK signal constellation of Fig. 14.6–1b with \(y_3y_2y_1 = 001 \) mapped to \(\pi/4 \) radians, \(y_3y_2y_1 = 010 \) mapped to \(\pi/2 \), and so on.

The basic idea of TCM is to maximize the euclidean distance between message symbols most likely to be confused by using set partitioning. This amounts to maximizing the free distance between different message sequences.

This is in contrast to conventional error control coding schemes that seek to maximize Hamming distances. An example of an 8-PSK partitioning process is shown in Fig. 14.6–4.

![Figure 14.6–2](car80407_ch14_647-720.qxd 1/1/70 2:47 PM Page 705)
Consider the system of 14.6–3 and its corresponding trellis diagram of Fig. 14.6–5. From each node, we have \(M \) branches corresponding to \(M \) outputs. Note that the parallel transitions are caused by the uncoded message bits. Let’s assume the message is a successive sequence of \(x_2x_1 = 00 \) inputs which produces

\[
\begin{align*}
d_0 &= 2 \sin \pi/8 \\
d_1 &= \sqrt{2} \\
d_2 &= 2
\end{align*}
\]

Figure 14.6–4 Partitioning of an 8-PSK signal set.

a corresponding sequence of $y_3 y_2 y_1 = 000$ outputs as shown in the dashed line of Fig. 14.6–6. At the destination, the signal is decoded using a similar trellis structure and the Viterbi algorithm to determine the trellis path that most likely correlates with the received sequence. Therefore to minimize errors, we want to maximize the free distance between alternate sequences.

Figure 14.6–5 Trellis diagram for the encoder of Figure 14.5–3a.

Figure 14.6–6 Two possible error events for the encoder of Figure 14.6–3a. Dashed line is transmitted sequence; solid lines are alternate received sequences; bold line is most likely error.
Let's say due to noise, an error occurs so that during decoding the received sequence diverges from the correct path. However, inherent in the TCM design, only certain deviations are allowed; therefore it may take several transmission intervals until the signal path eventually remerges back to the correct node. This serves to increase the free distance between the correct and alternate paths.

Two different error events are shown in the solid lines of Fig. 14.6–6. Deviations from the correct path are measured by their respective euclidean distances away from 000 on the signal constellation. The shorter error path has a distance squared of \(d_1^2 = d_{000\rightarrow100}^2 = 4 \). Another possible error path sequence has a distance squared of\
\[
\begin{align*}
 d_2^2 &= d_{000\rightarrow010}^2 + d_{000\rightarrow001}^2 + d_{000\rightarrow010}^2 = 2 + 4 \sin^2 \frac{\pi}{8} + 2 = 4.586.
\end{align*}
\]
Therefore, when an error event does occur, its distance will be at least \(d_{\min}^2 = 4 \). There are other possible error paths, but these will have the same or greater euclidean distances, and thus we select \(d_{\min}^2 = d_{\text{free}}^2 = \min(d_1^2, d_2^2 \ldots) \).

For TCM, we define coding gain as
\[
g = \frac{(d_{\min}^2/E')_{\text{coded}}}{(d_{\min}^2/E)_{\text{uncoded}}}
\]
with \(E' \) and \(E \) being the energy of the coded and uncoded signals respectively. If both the coded and uncoded signals have the same normalized energy levels then
\[
g = \frac{(d_{\min}^2)_{\text{coded}}}{(d_{\min}^2)_{\text{uncoded}}}
\]
and the coding gain is the same as the distance gain squared. With uncoded QPSK as our reference, the coding gain for the system of Fig. 14.6–3a is \(g = 4/2 = 2 \), or 3 dB.

For increased coding gain, we go to the 8-state, \(m = 2 \) TCM system of Fig. 14.6–3b with its corresponding trellis diagram of Fig. 14.6–7. Because all the message bits are coded, there are no parallel transitions to the next state. As before, let's assume the correct signal is a sequence of \(y_3 y_2 y_1 = 000 \)'s as shown in the dashed line of Fig. 14.6–8 with the minimum distance error event shown in the solid lines. Again, when an error does occur causing the signal to stray from the correct path, because only certain transitions are allowed, the signal may take several transitions before it remerges to the correct node. As we also stated before, other error paths exist, but they will have the same or larger distances than this one. For the signal constellation distances of Fig. 14.6–1b, we get
\[
d_{\min}^2 = (d_{000\rightarrow110}^2 + d_{000\rightarrow111}^2 + d_{000\rightarrow110}^2) = 2 + 4 \sin^2 \frac{\pi}{8} + 2 = 4.586
\]
and the coding gain becomes \(g = 4.586/2 = 2.293 \) or 3.6 dB.
Figure 14.6–7 Trellis diagram for the encoder of Figure 14.5–3b.

As we already stated, we achieve maximum coding gains by maximizing the free distance between alternate sequences. This is done by careful encoding and definition of allowable transitions in the trellis diagram. Ungerboeck (1982) has stated the following rules for optimal signal assignment:

1. All signals should occur with equal frequency.
2. All parallel transitions in the trellis diagram should be with signals that have the maximum euclidean distance. (This is why in the case of the TCM system of Figs. 14.6–3a and 14.6–5, transitions occur with signals such as $y_3y_2y_1 = 000$ and 100 that have a euclidean distance of $d_{000\rightarrow100} = 2$ instead of signals $y_3y_2y_1 = 000$ and 001 that only have a euclidean distance of $d_{000\rightarrow001} = 2 \sin \pi/8 = 1.414$.)

*Decimal equivalent encoder output
3. All other signals entering or leaving a given state should have the next maximum possible euclidean distance.

Tables 14.6–1 and 14.6–2 show the potential coding gains versus number of states. Again, as stated, this assumes optimal encoding and partitioning of the signal set.

Tables 14.6–1 Coding gains for PSK-TCM systems

<table>
<thead>
<tr>
<th>States</th>
<th>m</th>
<th>$R_{b-PSK/QPSK}$, dB</th>
<th>$N_{min}(m \to \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>3.01</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3.60</td>
<td>2.0</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>4.13</td>
<td>≈ 2.3</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>4.59</td>
<td>4.0</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>5.01</td>
<td>≈ 5.3</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
<td>5.10</td>
<td>≈ 0.5</td>
</tr>
<tr>
<td>256</td>
<td>2</td>
<td>5.75</td>
<td>≈ 1.5</td>
</tr>
</tbody>
</table>

Trellis-Coded Modulation

Table 14.6–2 Coding gains for QAM TCM systems

<table>
<thead>
<tr>
<th>States</th>
<th>(m)</th>
<th>16-QAM/8-PSK, dB</th>
<th>32-QAM/16-QAM, dB</th>
<th>(N_{\text{min}}(m \to \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>4.36</td>
<td>3.01</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5.33</td>
<td>3.98</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>6.12</td>
<td>4.77</td>
<td>56</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>6.12</td>
<td>4.77</td>
<td>16</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>6.79</td>
<td>5.44</td>
<td>56</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
<td>7.37</td>
<td>6.02</td>
<td>344</td>
</tr>
<tr>
<td>256</td>
<td>2</td>
<td>7.37</td>
<td>6.02</td>
<td>44</td>
</tr>
<tr>
<td>512</td>
<td>2</td>
<td>7.37</td>
<td>6.02</td>
<td>4</td>
</tr>
</tbody>
</table>

The 32-QAM has a “cross’’-shaped constellation pattern and is referred to by Ungerbroeck as 32CR.

TCM can also be implemented with \(M \)-ary QAM. The potential coding gains of coded 16-QAM and 32-QAM, as compared to uncoded 8-PSK and 16-QAM respectively, are shown in Table 14.6–2.

Error Probability for Uncoded QPSK Versus 8-PSK TCM

For high signal-to-noise ratios and unity signal energy, an approximate expression for the lower bound for the error probability per \(M \)-ary symbol is given by (Ungerbroeck, 1982)

\[
P_e = N_{\text{min}} Q\left(\sqrt{\frac{d_{\text{min}}^2}{2N_0}}\right)
\]

where \(N_{\text{min}} \) is the average number of sequences whose distance is \(d_{\text{min}} \) from the correct sequence. Note the factor of \(N_{\text{min}} \) in Eq. (6) assumes only the likely error paths will significantly affect \(P_e \). It does not take into account other longer sequences. For uncoded QPSK, we observed from Fig. 14.6–1a that each signal point has two adjacent points that are spaced at \(d_{\text{min}} = \sqrt{2} \) and thus \(N_{\text{min}} = 2 \). For \(E_b/N_0 = 9 \) dB = 7.94, the error probability is

\[
P_e = 2Q\left(\sqrt{\frac{2}{2/7.94}}\right) = 5 \times 10^{-3}
\]

Previously, it was determined for TCM with 4-states and 8-PSK that \(d_{\text{min}} = 2 \). The corresponding trellis diagram of Fig. 14.6–6 shows that, at any given state, for a set of \(y_3 y_2 y_1 = 000 \) sequences, there is only one path, whose distance is \(d_{\text{min}} \), that deviates from the correct sequence and therefore \(N_{\text{min}} = 1 \). Thus, we get

\[
P_e = Q\left(\sqrt{\frac{4}{2/7.94}}\right) = 3 \times 10^{-5}
\]

EXAMPLE 14.6–1
We said that N_{min} is an average. This is because with some signal constellations the number of nearest neighbors to a given point depends on its location. For example, in square signal constellations, interior points will have more neighbors than the exterior points.

Hard Versus Soft Decisions

As stated earlier, the coding gains we obtained with TCM come at a cost of increased decoder complexity. In conventional binary systems such as the one in Fig. 14.2–1, the demodulator outputs either $\hat{m} = 0$ or $\hat{m} = 1$ so that the decoder makes a **hard decision** based on two possible values of \hat{m}. Thus, a significant amount of information may be lost prior to decoding. On the other hand, TCM uses a demodulator that outputs a value of \hat{m} that is typically 3 bits in length; thus the TCM decoder makes a **soft decision** based on $2^3 = 8$ levels of \hat{m}. These additional levels give the decoder more information about the signal than possible with only 2 levels of \hat{m}. Soft decision systems, TCM or otherwise, where the demodulator outputs 8 quantization levels will have gains of 2 dB over hard decision systems. Extending this to an analog system with an infinite number of quantization levels, the gain would be only 2.2 dB. Therefore,

There is little advantage in soft decisions based on more than 3 bits.

For more information on TCM, see Ungerbroeck (1982), Biglieri, Divsalar, McLane and Simon (1991), and Schlegal (1997).

Modems

A common application of bandpass digital modulation is the voice telephone **modem** (modulator/demodulator). This device modulates baseband digital signal from computer or fax to be put on a voice telephone line and then vice versa with the demodulator. As we discussed in Sect. 12.2, modems are an alternative to DSLs. Table 14.6–3 displays a selected list of Bell and the ITU (International Telecommunications Union) modem standards along with their respective rates and modulation methods. As we stated earlier, the Shannon limit for standard voice grade telephone lines is close to 37 kbps. Improvements in modulation and coding have enabled modems so they can get relatively close to this limit. Most commercial modems also have a fallback option, so that at the initial connection and even during the session the modem will test the telephone line’s SNR to set or adjust the modem’s data rate. Thus in the case of a V.34 modem, if the line’s SNR is severely degraded, the 28.8 kbps data rate drops to 14.4 or 9.6 kbps.
Table 14.6–3 Selected telephone-line data modems

<table>
<thead>
<tr>
<th>Model</th>
<th>Bit Rate</th>
<th>Modulation</th>
<th>Transmitting Frequencies (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell 103A²</td>
<td>300 bps</td>
<td>FSK</td>
<td>(1.070–1.270)/(2.025–2.225)⁰¹</td>
</tr>
<tr>
<td>Bell 212A³</td>
<td>300/1200 bps</td>
<td>DPSK</td>
<td>1200/2400⁰¹</td>
</tr>
<tr>
<td>V.32</td>
<td>9600 bps</td>
<td>16-QAM or 32-QAM with TCM</td>
<td>1800</td>
</tr>
<tr>
<td>V.32bis</td>
<td>14.4 kbps</td>
<td></td>
<td>128-QAM with TCM</td>
</tr>
<tr>
<td>V.34</td>
<td>28.8 kbps</td>
<td></td>
<td>960-QAM with TCM</td>
</tr>
<tr>
<td>V.34.bis⁴</td>
<td>33.6 kbps</td>
<td></td>
<td>1664-QAM with TCM</td>
</tr>
<tr>
<td>V.90</td>
<td>56/33.6 kbps⁵</td>
<td>PCM</td>
<td>—</td>
</tr>
</tbody>
</table>

SOURCE: Lewart (1998); Forney et al. (1996).

⁰¹ Originating/answering. ²Similar to V.21. ³Similar to V.22. ⁴Similar to V.34-1996 or V.34+. ⁵56 kbps downstream (server to user), 33.6 kbps upstream; requires conditioned line.

Other types of modems for computer communication include cable modems for communication via the cable-TV network, LAN modems, wireless modems, and cellular telephone modems. Cable-TV systems with their bandwidths of 300 MHz promise potential data rates in the Gbps range.

14.7 QUESTIONS AND PROBLEMS

Questions

1. What is the advantage of CPFSK over ordinary FSK?
2. In return for a narrower spectrum for GMSK, what is the adverse consequence?
3. Describe the reasons why GMSK is used for GSM phones.
4. Why does GMSK occupy less spectrum than ordinary MSK?
5. When does the correlation detector give the same output as the matched filter?
6. By using the basic assumptions of signals and noise, and the definitions of probability and statistics, why would you expect the correlation detector to enable good signal recovery in the presence of noise?
7. What is the advantage of noncoherent FSK over other noncoherent digital modulation methods?
8. Using the concepts of Chap. 10, explain why, all else being equal, the probability of error for coherent systems is lower than for noncoherent systems.
9. What is the advantage of 8-ary PSK versus BPSK?
10. Why is \(E_b/N_0 \) the figure of merit for digital transmissions communication versus SNR for analog?
11. Why is the word-error increase for 8-ary PSK from BPSK?
12. How can multicarrier modulation reduce the P_e? In other words, what is the advantage of dividing up your message and sending it over separate frequencies?

13. Given that M-ary orthogonal FSK is more wideband than comparable M-ary PSK, what is its advantage over other M-ary systems?

14. Why is the M-ary FSK bandwidth efficiency based on the null-to-null bandwidth?

15. How can OFDM eliminate the need for channel equalization?

16. What advantage is there to using the IDFT to implement OFDM?

17. What are the advantages of using more than the minimum number of subchannels in an OFDM system?

18. What is the difference between Euclidian and Hamming distances?

19. How does the description of Euclidean distances in M-ary modulation schemes in Chap. 14 differ from the initial definition of Euclidean distance in Chap. 13?

20. What are the two primary differences between TCM coding and convolutional coding?

21. Is the coding for TCM systematic or nonsystematic?

22. For the same level of transmitter power, why does M-ary QAM have a lower P_{be} than M-ary PSK?

23. For the same level of transmitter power, why does M-ary FSK have a lower P_{be} than M-ary QAM?

Problems

14.1–1’ Find from Eq. (7) the average power \bar{x}^2_c and the carrier-frequency power P_c of an M-ary ASK signal. Then form the ratio P_c/\bar{x}^2_c and simplify for $M = 2$ and $M \gg 1$.

14.1–2 Suppose a binary ASK signal consists of RZ rectangular pulses with duration $T_b/2$, where $r_b = 1/T_b \ll f_c$. (a) Find the equivalent lowpass spectrum, and sketch and label $G_c(f)$ for $f > 0$. (b) Sketch the signal representing the sequence 010110. Then find the ratio of the carrier-frequency power P_c to the average power \bar{x}^2_c.

14.1–3 Consider a binary ASK signal with raised-cosine pulse shaping so, from Example 2.5–2,

$$p(t) = \frac{1}{2} \left[1 + \cos \left(\frac{\pi t}{\tau} \right) \right] \Pi \left(\frac{t}{2\tau} \right)$$

$$P(f) = \frac{\tau \sinc 2 f \tau}{1 - (2 f \tau)^2}$$

(a) Sketch the signal representing the sequence 010110 when $\tau = T_b/2$. Then find the equivalent lowpass spectrum, and sketch and label $G_c(f)$ for $f > 0$.

(b) Redo part a with $\tau = T_b$.

14.1–4 The envelope and phase variations of a QAM signal are
\[A(t) = A_c [x_q^2(t) + x_p^2(t)]^{1/2} \quad \phi(t) = \arctan \left[\frac{x_q(t)}{x_p(t)} \right] \]

(a) By considering the time interval \(kD < t < (k + 1)D \), obtain expressions for \(A(t) \) and \(\phi(t) \) with a rectangular pulse shape \(p_D(t) \).

(b) Redo part a with an arbitrary pulse shape \(p(t) \) whose duration does not exceed \(D \).

14.1–5 Let a polar \(M \)-ary VSB signal have Nyquist pulse shaping per Eq. (6), Sect. 11.3. Find the equivalent lowpass spectrum before VSB filtering. Then sketch and label \(G_c(f) \) for \(f > 0 \) when the filter has \(\beta_v \ll r \).

14.1–6 Before bandpass filtering, the \(i \) and \(q \) components of the OQPSK signal generated in Fig. 14.1–6 can be written as
\[x_i(t) = \sum_k a_{2k} p(t - 2kT_b) \quad x_q(t) = \sum_k a_{2k+1} p(t - 2kT_b - T_b) \]

where \(a_k = (2A_k - 1) \) is the polar sequence corresponding to the message bit sequence \(A_k \), and \(p(t) = \Pi(t/2T_b) \) for NRZ rectangular pulse shaping.

(a) Sketch \(x_i(t) \) and \(x_q(t) \) for the bit sequence 10011100. Use your sketch to draw the signal constellation and to confirm that the phase \(\phi(t) = \arctan \left[\frac{x_q(t)}{x_p(t)} \right] \) never changes by more than \(\pm \pi/2 \) rad.

(b) Find the equivalent lowpass spectrum.

14.1–7‡ Let \(A_k B_k C_k \) denote the Gray-code binary words for the eight-phase PSK constellation in Fig. 14.1–5b. Construct a table listing \(A_k B_k C_k \) and the corresponding values of \(I_k \) and \(Q_k \) expressed in terms of \(\alpha = \cos \pi/8 \) and \(\beta = \sin \pi/8 \). Then write algebraic expressions for \(I_k \) and \(Q_k \) as functions of \(A_k, B_k, C_k, \alpha, \beta \). Devise from these expressions the diagram of a quadrature-carrier transmitter to generate the PSK signal, given a serial-to-parallel converter that supplies the binary words in the inverted polar form \(a_k = 1 - 2A_k \), etc.

14.1–8 Suppose a binary FSK signal with discontinuous phase is generated by switching between two oscillators with outputs \(A_c \cos (2\pi f_0 t + \theta_0) \) and \(A_c \cos (2\pi f_1 t + \theta_1) \). Since the oscillators are unsynchronized, the FSK signal may be viewed as the interleaved sum of two independent binary ASK signals. Use this approach to find, sketch, and label \(G_c(f) \) for \(f > 0 \) when \(f_0 = f_c - r_b/2 \) and \(f_1 = f_c + r_b/2 \) with \(f_c >> r_b \). Estimate \(B_\tau \) by comparing your sketch with Figs. 14.1–2 and 14.1–8.

14.1–9 Starting with \(p(t) \) in Eq. (17c), obtain both forms of \(|P(f)|^2 \) as given in Eq. (18b).

14.1–10‡ Consider a binary FSK signal defined by Eq. (15) with \(M = 2, D = T_b \), and \(\omega_d = N/T_b \), where \(N \) is an integer. Modify the procedure used in the text and the hint given in Exercise 14.1–3 to obtain \(x_i(t) \) and \(x_q(t) \). Then show that...
CHAPTER 14 • Bandpass Digital Transmission

\[G_f(f) = \frac{1}{4} \left[\delta \left(f - \frac{N r_b}{2} \right) + \delta \left(f + \frac{N r_b}{2} \right) \right] \]

\[G_q(f) = \frac{1}{4r_b} \left[j \frac{N - 1}{2} \frac{f - N r_b}{r_b} + (-j)^{N-1} \frac{f + N r_b}{r_b} \right]^2 \]

which reduce to Sunde’s FSK when \(N = 1 \).

14.1–11 Verify that \(B \) in Eq. (26) is the half-power frequency.

14.1–12 Use the FSK spectral expressions given in Prob. 14.1–10 to sketch and label \(G_f(f) \) for \(f > 0 \) when \(N = 2 \) and \(N = 3 \). Compare with Fig. 14.1–8.

14.1–13 An OQPSK signal with cosine pulse shaping has many similarities to MSK. In particular, let the \(i \) and \(q \) components be as given in Prob. 14.1–6, but take \(p(t) = \cos \left(\pi r_b t / 2 \right) \Pi(t / 2T_b) \). (a) Sketch \(x_i(t) \) and \(x_q(t) \) for the bit sequence 10010111. Use your sketch to draw the signal constellation and to find the phase \(\phi(t) = \arctan \left[x_q(t)/x_i(t) \right] \) at \(t = kT_b, 0 \leq k \leq 7 \). Compare these with Fig. 14.1–11. (b) By considering an arbitrary interval \(2kT_b < t < (2k + 1)T_b \), confirm that the envelope \(A(t) = A_c \left[x_q^2(t) + x_i^2(t) \right]^{1/2} \) is constant for all \(t \). (c) Justify the assertion that \(G_{\phi(f)} \) is identical to an MSK spectrum.

14.1–14 Derive the \(q \) component of an MSK signal as given in Eq. (25).

14.1–15 Consider a BPSK system for a bandlimited channel with \(B_T = 3000 \text{ Hz} \) where the spectral envelope must be at least 30 dB below the maximum outside the channel. What is the maximum data rate \(r_b \) to achieve this objective?

14.1–16 Repeat Prob. 14.1–15 for (a) FSK, (b) MSK.

14.1–17 A 5 MHz frequency allotment is to be shared with multiple GMSK users. Each one will have \(BT_b = 0.25 \) and \(r_b = 270 \text{ kbps} \). (a) How many users can share this 5 MHz allotment if 90 percent of each one’s power has to be confined to their subchannel, and (b) what is the half-power bandwidth of the gaussian filter? Compare your results to the GSM cellular phone standards in Table 15.5–1.

14.1–18 Given the system in Prob. 14.1–13, what is the 3 dB bandwidth of the (a) GMSK and (b) BPSK systems?

14.2–1 Draw and label the block diagram of an optimum coherent BPSK receiver with matched filtering.

14.2–2 Suppose an OOK signal has raised-cosine pulse shaping so that

\[s_i(t) = A_c \sin^2 \left(\pi t / T_b \right) p_{\tau}(t) \cos \omega_c t \]
14.7 Questions and Problems

Draw and label the diagram of an optimum coherent receiver using: (a) matched filtering; (b) correlation detection.

14.2–3 Obtain an exact expression for E_b when a binary FSK signal has $f_c = N_r r_b$, but f_d is arbitrary. Simplify your result when $N_r - f_d T_b \gg 1$.

14.2–4 Use Table T.4 in Appendix to show that taking $f_d = 0.35 r_b$ yields the lowest possible error probability for binary FSK with AWGN. Write the corresponding expression for P_e in terms of y_b.

14.2–5 Show and briefly describe the block diagram for a system that uses a PLL to detect binary FSK or PSK.

14.2–6‡ Draw the complete block diagram of an optimum receiver for Sunde’s FSK. Use correlation detection and just one local oscillator whose frequency equals r_b. Assume that a bit-sync signal has been extracted from $x_c(t)$ and that N_r is known.

14.2–7 With perfect synchronization, a certain BPSK system would have $P_e = 10^{-5}$. Use Eq. (19) to find the condition on θ_s so that $P_e < 10^{-4}$.

14.2–8 Consider a BPSK receiver in the form of Fig. 14.2–4 with local-oscillator output $K A_c \cos (\omega t + \theta_s)$, where θ_s is a synchronization error. Show that the signal component of $y(T_0)$ is reduced in magnitude by the factor $\cos \theta_s$.

14.2–9 Find the exact expression for $z(t)$ in Eq. (18). Then take $N_r \gg 1$ to obtain the given approximation.

14.2–10 Consider a BPSK signal with pilot carrier added for synchronization purposes, resulting in

$$s_1(t) = [A_c \cos \omega t + \alpha A_c \cos (\omega t + \theta)] p_f(t)$$

$$s_d(t) = [-A_c \cos \omega t + \alpha A_c \cos (\omega t + \theta)] p_f(t)$$

Take $\theta = 0$ and show that an optimum coherent receiver with AWGN yields $P_e = Q \left(\sqrt{2y_b/(1 + \alpha^2)} \right)$.

14.2–11 Do Prob. 14.2–10 with $\theta = -\pi/2$.

14.2–12‡ When the noise in a coherent binary system is gaussian but has a nonwhite power spectrum $G_n(f)$, the noise can be “whitened” by inserting at the front end of the receiver a filter with transfer function $H_w(f)$ such that $|H_w(f)|^2 G_n(f) = N_o/2$. The rest of the receiver must then be matched to the distorted signaling waveforms $\tilde{s}_1(t)$ and $\tilde{s}_d(t)$ at the output of the whitening filter. Furthermore, the duration of the unfiltered waveforms $s_1(t)$ and $s_d(t)$ must be reduced to ensure that the whitening filter does not introduce appreciable ISI. Apply these conditions to show from Eq. (9a) that

$$\left(\frac{z_1 - z_0}{2\sigma} \right)^2_{\text{max}} = \int_{-\infty}^{\infty} \left| \frac{S_1(f) - S_d(f)}{4G_n(f)} \right|^2 df$$
where \(S_i(f) = \mathcal{F}[s_i(t)] \), etc. \(\text{Hint:} \) Recall that if \(v(t) \) and \(w(t) \) are real, then
\[
\int_{-\infty}^{\infty} v(t)w(t) \, dt = \int_{-\infty}^{\infty} V(f)W^*(f) \, df = \int_{-\infty}^{\infty} V^*(f)W(f) \, df
\]

14.2–13 For coherent binary FSK, show that \(\rho = \text{sinc}(4f_c/r_b) \).

14.2–14 Determine \(\rho \) that minimizes \(P_e \) for a coherent binary FSK system.

14.2–15 Determine \(A_e \) required to achieve a \(P_e = 10^{-5} \) for a channel with \(N_0 = 10^{-11} \) W/Hz, and BPSK with \((a) \) \(r_b = 9.6 \) kbps, \((b) \) for \(r_b = 28.8 \) kbps.

14.2–16 Repeat Prob. 14.2–15 using coherent FSK.

14.3–1 A noncoherent OOK system is to have \(P_e < 10^{-3} \). Obtain the corresponding bounds on \(\gamma_b \) and \(P_{c_e} \).

14.3–2 Do Prob. 14.3–1 with \(P_e < 10^{-5} \).

14.3–3 Repeat Prob. 14.2–16 using noncoherent FSK.

14.3–4 Determine \(P_e \) for a channel using Sunde’s FSK with \(S/N = 12 \) dB, \(r_b = 14.4 \) kbps, and \((a) \) coherent detection, \((b) \) noncoherent detection.

14.3–5 Obtain Eq. (9) from Eq. (8) with \(K = A_c/E_1 \).

14.3–6 Suppose the OOK receiver in Fig. 14.3–2 has a simple BPF with \(H(f) = [1 + j2(f - f_c)/B]^{-1} \) for \(f > 0 \), where \(2r_b \ll B \ll f_c \). Assuming that \(f_c \gg r_b \) and \(\gamma_b \gg 1 \), show that the signal energy must be increased by at least 5 dB get the same error probability as an incoherent receiver with a matched filter.

14.3–7 Show that the scheme of Fig. 14.3–5 works if a square-law envelope detector is used.

14.3–8 Consider a noncoherent system with a ternary ASK signal defined by Eq. (7) with \(a_k = 0, 1, 2 \). Let \(E \) be the average energy per symbol. Develop an expression similar to Eq. (11) for the error probability.

14.3–9 A binary transmission system with \(S_f = 200 \) mW, \(L = 90 \) dB, and \(N_0 = 10^{-15} \) W/Hz is to have \(P_e \leq 10^{-4} \). Find the maximum allowable bit rate using \((a) \) noncoherent FSK; \((b) \) DPSK; \((c) \) coherent BPSK.

14.3–10 Do Prob. 14.3–9 with \(P_e \leq 10^{-5} \).

14.3–11 A binary transmission system with phase modulation is to have \(P_e \leq 10^{-4} \). Use Eq. (19), Sect. 14.2, to find the condition on the synchronization error \(\theta_e \) such that BPSK will require less signal energy than DPSK.

14.3–12 Do Prob. 14.3–11 with \(P_e \leq 10^{-6} \).

14.3–13 How much more power is required to get \(P_{be} \leq 10^{-6} \) for noncoherent OOK versus coherent OOK?
14.3–14 Derive the joint PDF in Eq. (3) by rectangular-to-polar conversion, starting with $x = A_c + n$, and $y = n_d$.

14.4–1' Binary data is to be transmitted at the rate $r_b = 500$ kbps on a radio channel having 400-kHz bandwidth.

(a) Specify the modulation method that minimizes signal energy, and calculate γ_b in dB needed to get $P_{be} \leq 10^{-6}$.

(b) Repeat part a with the additional constraint that coherent detection is not practical for the channel in question.

14.4–2 Do Prob. 14.4–1 with $r_b = 1$ Mbps.

14.4–3' Binary data is to be transmitted at the rate $r_b = 800$ kbps on a radio channel having 250 kHz bandwidth.

(a) Specify the modulation method that minimizes signal energy, and calculate γ_b in dB needed to get $P_{be} \leq 10^{-6}$.

(b) Repeat part a with the additional constraint that channel nonlinearities call for a constant envelope signal.

14.4–4 Do Prob. 14.4–3 with $r_b = 1.2$ Mbps.

14.4–5 Let the VCO output in Fig. 14.4–6 be $2 \cos (\omega t + \theta_s)$. In absence of noise, show that the control voltage $v(t)$ will be proportional to $\sin \theta_c$.

14.4–6' Suppose an M-ary QAM system with $M = 16$ is converted to DPSK to allow phase-comparison detection. By what factor must the symbol energy be increased to keep the error probability essentially unchanged?

14.4–7 Suppose a PSK system with $M \gg 1$ is converted to M-ary QAM. By what factor can the symbol energy be reduced, while keeping the error probability essentially unchanged?

14.4–8' Obtain the phase PDF given in Eq. (9) from the joint PDF in Eq. (3), Sect. 14.3. Hint: Use the change of variable $\lambda = (A - A_c \cos \phi) / \sigma$.

14.4–9 Using the technique given in Fig. 14.4–2, design a system that will create the carrier reference needed for a M-ary PSK receiver.

14.4–10 Generalize the design of Fig. 14.4–2 to enable the creation of M-reference signals for an M-ary PSK receiver.

14.4–11' For $\gamma_b = 13$ dB, calculate P_e for (a) FSK (noncoherent), (b) BPSK, (c) 64-PSK, (d) 64-QAM.

14.4–12 For $\gamma_b = 10$ dB calculate P_e for (a) noncoherent FSK ($f_d = r_d/2$), (b) coherent FSK ($f_d = r_d/2$), (c) 16 PSK, (d) 16 QAM, and (e) 16 FSK (coherent).

14.5–1 What is the expression for the bandwidth and lowpass spectrum of an OFDM signal?

14.5–2' A signal with a symbol rate of 3 Mbps is to be transmitted over a channel with bandwidth of 3 MHz and a delay spread of 1 μ sec using BPSK and OFDM with IDFT hardware. What are the minimum values of K,
and T such that the delay spread is no more than 10 percent of the symbol interval?

14.5–3 What is the maximum data rate and bandwidth of a BPSK transmission for a channel whose impulse response function has a duration of 3 μsec?

14.5–4 Repeat Prob. 14.5–3 with an OFDM system with 1024 subchannels. What is the symbol overhead with your system?

14.5–5 Design a system that will enable 16 voice signals to be transmitted over a channel using OFDM implemented via a K-point IFFT and BPSK. Testing has shown that the channel's impulse response duration is 5 μsec, and each user has a symbol rate of 8 kHz.

14.5–6 Show how the system of Fig. 14.5–3 will ensure $x_c(t) = \Re[w(t)]$ and $w_o(t) = 0$.

14.6–1* A QPSK system has a $P_e = 10^{-3}$. What is the new P_e if we employed TCM with $m = \bar{m} = 2$ and 8 states? With TCM, does the output symbol rate change?

14.6–2 Given an uncoded 8-PSK system with $P_e = 10^{-3}$, what is the new P_e if we change to a 16-QAM system with 128 states?

14.6–3 Partition a 16-QAM signal constellation in a similar way that was done for the 8-PSK constellation of Fig. 14.6–4 to maximize the distance between signal points. If the original minimum distances between adjacent points are unity, show the new minimum distances for each successive partition.

14.6–4* Given the system of Figs. 14.6–3b and 14.6–7, with initial state of a, determine the output sequence $y_3y_2y_1$ for an input sequence of $x_2x_1 = 00\ 01\ 10\ 01\ 11\ 00$.

14.6–5 Do Prob. 14.6–4 with an input sequence of $x_2x_1 = 00\ 10\ 10\ 01\ 11\ 01\ 00$.

14.6–6 Do Prob. 14.6–4 for the system of Fig. 14.6–3b and Fig. 14.6–7b.

14.6–7 For the system of Fig. 14.6–7, what is the distance between paths (0, 2, 4, 2) and (6, 1, 3, 0)?

14.6–8 Ungerboeck (1982) increases the coding gain of the $m = \bar{m} = 2$, 8-PSK TCM system of Fig. 14.6–7 by adding the following new states and corresponding output symbols: (i: 4062, j: 5173, k: 0426, l: 1537, m: 6240, n: 7351, o: 2604, p: 3715). Following the pattern of Fig. 14.6–7, construct the new trellis diagram and show that $g_{8-PSK/QPSK} = 4.13$ dB.

14.6–9 Derive the circuit for the TCM system of Fig. 14.6–5b. Note this may require some knowledge of sequential logic synthesis.
CHAPTER OUTLINE

15.1 Direct-Sequence Spread-Spectrum
 DSSS Signals DSSS Performance in the Presence of Interference Multiple Access Multipath and the Rake Receiver

15.2 Frequency-Hopping Spread-Spectrum
 FHSS Signals FHSS Performance in the Presence of Interference Other SS Systems

15.3 Coding

15.4 Synchronization
 Acquisition Tracking

15.5 Wireless Systems
 Telephone Systems Wireless Networks

15.6 Ultra-Wideband Systems
 UWB Signals Coding Techniques Transmit-Reference System Multiple Access Comparison With Direct-Sequence Spread-Spectrum
Just prior to World War II, Hedy Lamarr, a well-known actress and political refugee from Austria, struck up a conversation with music composer George Antheil that led to a scheme to control armed torpedoes over long distances. The technique was immune to enemy jamming and detection. Instead of a conventional guidance system consisting of a single frequency signal that could easily be detected or jammed, their signal would hop from one frequency to another in a pseudorandom fashion known only to an authorized receiver (i.e., the torpedo). This would cause the transmitted spectrum to be spread over a range much greater than the message bandwidth. Thus, frequency-hopping spread spectrum (FHSS) was born and eventually patented by Lamarr and Antheil.

Spread-spectrum (SS) is similar to angle modulation in that special techniques spread the transmitted signal over a frequency range much greater than the message bandwidth. The spreading combats strong interference and prevents casual eavesdropping by unauthorized receivers. In addition to FHSS, there is also direct-sequence spread-spectrum (DSSS) based on a direct spreading technique in which the message spectrum is spread by multiplying the signal by a wideband pseudonoise (PN) sequence.

We begin our study of spread-spectrum systems by defining direct sequence and frequency hopping systems and then examining their properties in the presence of broadband noise, single- and multiple-tone jammers as well as other SS signals. We’ll then consider the generation of PN codes that have high values of autocorrelation between identical codes (so authorized users can easily communicate) and low values of crosscorrelation between different codes (to minimize interference by outsiders). Next we examine the method of code division-multiple-access (CDMA) in which several users have different PN codes but share a single RF channel. We then discuss synchronization and wireless systems. Finally, we conclude with a discussion of ultra-wide band systems.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Describe the operation of DSSS and FHSS systems (Sects. 15.1 and 15.2).
2. Calculate probability of error for DSSS systems under single-tone jamming, broadband noise, and multiple-user conditions (Sect. 15.1).
3. Calculate probability of error for FHSS for single- and multiple-tone jamming, narrowband and wideband noise conditions, and multiple-user conditions (Sect. 15.2).
4. Design and analyze code generators that produce spreading codes with high autocorrelation and low crosscorrelation values (Sect. 15.3).
5. Describe how a SS can be used for distance measurement (Sect. 15.3).
6. Describe SS receiver synchronization and calculate the average time it takes to achieve synchronization (Sect. 15.4).
7. Describe how the cellular phone system works and the differences between the various multiple access technologies including their advantages and disadvantages (Sect. 15.5).
8. Explain the concepts of Wi-Fi and WiMAX wireless network systems (Sect. 15.5).
9. Describe the operation of ultra-wide band (UWB) systems including the TR system and what differentiates UWB from spread-spectrum (Sect. 15.6).
15.1 DIRECT-SEQUENCE SPREAD-SPECTRUM

DSSS is similar to FM in that the modulation scheme causes the transmitted message’s frequency content to be greatly spread out over the spectrum. The basic difference is that with FM, the message causes the spectrum spreading, whereas with DSSS, a pseudorandom number generator causes the spreading.

DSSS Signals

A DSSS system and its associated spectra are illustrated in Fig. 15.1–1, where the message $x(t)$ is multiplied by a wideband PN waveform $c(t)$ prior to modulation resulting in

$$\tilde{x}(t) = x(t)c(t)$$ \hfill (1)

Multiplying by $c(t)$ effectively masks the message and spreads the spectrum of the modulated signal. The spread signal $\tilde{x}(t)$ can then be modulated by a balanced modulator (or a multiplier) to produce a DSB signal. If $x(t)$ had values of ± 1 that represented a digital message, the output from the DSB modulator would be a BPSK (PRK) signal.

Let’s look at this more closely. The PN generator produces a pseudorandom binary wave $c(t)$, illustrated in more detail in Fig. 15.1–2, consisting of rectangular pulses called chips. Each chip has a duration of T_c and an amplitude of ± 1 so that $c^2(t) = 1$ — an essential condition for message recovery. To facilitate analysis, we’ll assume that $c(t)$ has the same properties as the random digital wave in Example 9.1–3 when $D = T_c$, $a_k = \pm 1$ and $\sigma^2 = c^2 = 1$. Thus, from our previous studies,

$$R_c(\tau) = N(\tau/T_c) \quad \text{and} \quad G_c(f) = T_c \text{sinc}^2 \frac{f}{W_c}$$ \hfill (2)

Figure 15.1–1 DSSS transmitter system and spectra.
which are sketched in Fig. 15.1–2. The parameter

\[W_c = \frac{1}{T_c} \]

serves as a measure of the PN bandwidth. Next consider the “chipped message” \(\bar{x}(t) = x(t) c(t) \). Treating \(x(t) \) as the output of an ergodic information process independent of \(c(t) \) we have

\[\overline{x^2} = \mathbb{E}[x^2(t)c^2(t)] = \overline{x^2} = S_x \]

Recall further that multiplying independent random signals corresponds to multiplying their autocorrelation functions and convolving their power spectra. For clarity we denote the message bandwidth by \(W_x \), such that \(G_x(f) = 0 \) for \(|f| > W_x \) and

\[G_x(f) = G_x(f) \ast G_c(f) = \int_{-W_x}^{W_x} G_x(\lambda)G_c(f - \lambda) \, d\lambda \]

But effective spectral spreading calls for \(W_c \gg W_x \) in which case \(G_c(f - \lambda) \approx G_c(f) \) over \(|\lambda| \ll W_x \). Therefore

\[G_x(f) \approx \int_{-W_x}^{W_x} G_x(\lambda) \, d\lambda G_c(f) = S_x G_c(f) \quad \text{(3)} \]

and we conclude from Eq. (3) and Fig. 15.1–1 that \(x(t) \) has a spread spectrum whose bandwidth essentially equals the PN bandwidth \(W_c \). With practical systems, the bandwidth expansion factor \(W_c/W_x \) can range from 10 to 10,000 (10 to 40 dB). As will be shown later, the higher this ratio the better the system’s immunity to interference.

DSB or BPSK modulation produces a transmitted signal proportional to \(\bar{x}(t) \cos \omega_c t \) requiring a bandwidth \(B_T \gg W_x \).
This wideband, noise-like signal would be hard to distinguish from background noise at an unauthorized receiver; accordingly, we say that spread-spectrum transmission has a low probability of intercept. However, an authorized receiver configured as in Fig. 15.1–3 will recover the message without increased output noise, despite the increased bandwidth. Moreover, the receiver structure suppresses stray interference or hostile jamming.

We'll analyze the system’s performance taking unit-amplitude carrier at the receiver so \(S_R = \frac{1}{2} S_x = \frac{1}{2} S_s \) and we'll let \(z(t) \) stand for additive noise or interference with in-phase component \(z_i(t) \). Synchronous detection after bandpass filtering yields \(y(t) = \tilde{x}(t) + z_i(t) \), which is multiplied by a locally generated PN wave to get

\[
\tilde{y}(t) = [\tilde{x}(t) + z_i(t)] c(t) = x(t) c(t) + z_i(t) c(t) = x(t) + \tilde{z}_i(t)
\]

Notice that this multiplication spreads the spectrum of \(z_i(t) \) but de-spreads \(\tilde{x}(t) \) and recovers \(x(t) \), assuming near perfect synchronization of the local PN generator. Final lowpass filtering removes the out-of-band portion of the \(\tilde{z}_i(t) \), leaving \(y_D(t) = x(t) + z_D(t) \) with output signal power \(S_D = S_s = 2S_R \). Our next step is to find the contaminating power \(z_D(t) \) at the output.

When \(z(t) \) stands for white noise \(n(t) \), the in-phase component \(n_i(t) \) has the lowpass power spectrum back in Fig. 10.1–3 and

\[
R_{n_i}(\tau) = \mathcal{F} \{ G_{n_i}(f) \} = N_0 B_T \text{sinc}(B_T \tau)
\]
The autocorrelation of the chipped lowpass noise $\hat{n}(t)$ equals the product $R_{\hat{n}}(\tau)R_c(\tau)$. Since $R_{\hat{n}}(\tau)$ becomes quite small for $|\tau| \geq 1/B_T \ll 1/W_c$, whereas $R_c(\tau) \approx 1$ for $|\tau| \ll T_c = 1/W_c$, we conclude that $R_{\hat{n}}(\tau) \approx R_c(\tau)$ and hence

$$G_{\hat{n}}(f) = G_n(f) = N_0\Pi(f/B_T)$$

The output noise power from the lowpass filter is then $N_D = 2N_0W_x$, so

$$(S/N)_D = 2S_n/2N_0W_x = S_n/N_0W_x \quad \text{(5)}$$

Comparing this result with Eq. (4b), Sect. 10.2, confirms that spread spectrum with synchronous detection theoretically has the same noise performance as a conventional DSB system.

Similarly, if our message is digital and sent via BPSK we can use the correlation detector of Fig. 15.1–4. Thus, in the presence of white noise, the probability of error would be

$$P_e = Q\left(\sqrt{2E_b/N_0}\right) \quad \text{(6)}$$

DSSS Performance in Presence of Interference

Fig. 15.1–3 also illustrates the effects of a single-tone jammer on a DSSS system. Let $z(t)$ stand for an interfering sinusoid or CW jamming signal, say

$$z(t) = \sqrt{2J} \cos [(\omega_c + \omega_z)t + \theta]$$

with average power $\overline{z^2} = J$ at frequency $f_c + f_z$. Then the in-phase component is $z_i(t) = \sqrt{2J} \cos (\omega_z t + \theta)$ so that

$$G_{z_i}(f) = \frac{1}{2} [\delta(f - f_z) + \delta(f + f_z)] \quad \text{(7)}$$

Multiplication by $c(t)$ spreads this spectrum so that $G_{z_i}(f) = G_z(f) * G_c(f)$, a routine convolution with impulses. Because $c(t)$ is relatively broadband, $\mathcal{Z}(t)$, representing the chipped noise/interference and approximates another broadband noise source with power spectral density J/W_c. If $|f_z| \ll W_c$, then the corresponding upper bound on the output jamming power is

$$\overline{z^2} = \int_{-W_c}^{W_c} G_z(f) df \leq 2W_x J/W_c \quad \text{(8a)}$$
and the signal-to-jamming ratio becomes
\[
\frac{S}{J} \geq \frac{W_c}{W_s} \frac{S_R}{J} \tag{8b}
\]

The single-tone jammers spectrum has been spread and thus, relative to the output signal power, has been reduced by a factor \(W_c/W_s \ll 1\). This reduction is illustrated in the output spectra of Fig. 15.1–3. The bandwidth expansion ratio \(W_d/W_s\) is also called the \textbf{process gain} (\(P_g\)) or

\[
P_g = \frac{W_d}{W_s} \tag{9}
\]

which is a measure of a system’s immunity to interference. It should be observed that the larger the \(P_g\), the better the system’s immunity to interference.

We can then treat the jammer as just another source of noise, and in the case of digital information sent via BPSK the probability of error would then be

\[
P_e = Q\left(\sqrt{\frac{2E_b}{N_j}}\right) \tag{10}
\]

where \(N_j = J/W_c\). If the channel is corrupted by both broadband white noise and a CW jammer then

\[
P_e = Q\left(\sqrt{\frac{2E_b}{(N_0 + N_j)}}\right) \tag{11}
\]

If we substitute the received power and jammer power terms of \(S_R = E_b r_b\) and \(N_j = J/W_c\) respectively into Eq. (10) we have

\[
P_e = Q\left(\sqrt{\frac{2W_c}{J S_R}}\right) \tag{12}
\]

Substituting \(r_b = W_c\), into Eq. (9), Eq. (12) becomes

\[
P_e = Q\left(\sqrt{\frac{2 P_g}{J S_R}}\right) \tag{13}
\]

Now let’s say we specify a minimum \(P_e\) value for Eq. (10). Combining with Eq. (13) and converting to dB, we have

\[
10 \log \left(\frac{J}{S_R}\right) = 10 \log (P_g) - 10 \log \left(\frac{E_b}{N_j}\right) \tag{14}
\]

The term \(10 \log \left(\frac{J}{S_R}\right)\) is called the \textbf{jamming margin} and is used as a measure of a system’s ability to operate in the presence of interference. If, in a given system, we specify a minimum \(P_e\) or minimum \(E_b/N_j\) ratio and a relatively large \(P_g\), then the system will exhibit rejection of interference.

DSSS Performance in Presence of Jammer

A DSSS-BPSK system has \(r_b = 3\) kbps, \(N_0 = 10^{-12}\), and is received with \(P_e = 10^{-9}\). Let’s calculate the \(P_g\) needed for the system to achieve \(P_e = 10^{-8}\) in the presence of a single-tone jammer whose received power is 10 times larger than the correct signal.
Using Table T.6 in the Appendix and Eq. (6) we get $2E_b/N_0 = 36$ or $E_b = 1.8 \times 10^{-11}$. With $S_R = E_b r_b = 5.4 \times 10^{-8}$, then $J = 10S_R = 5.4 \times 10^{-7}$ W. If with a jammer, $P_{\text{jam}} = 10^{-8}$ then, using Eq. (11) and Table T.6 in the Appendix, $N_J = 1.48 \times 10^{-13}$ and $N_J = J/W_c$, $W_c = 3.6 \times 10^6$. If $W_x = r_b$ then $P_g = W_c/W_x = 1200$.

EXERCISE 15.1–1

Given the above problem specifications, what is the jamming margin if $P_g = 10,000$?

Multiple Access

Finally, if we are sharing the channel with $M - 1$ other spread-spectrum users—as is the case with code division multiple access (CDMA)—each one would have their own unique spreading code and arrival times at the receiver and thus the interference term becomes

$$z(t) = \sum_{m=1}^{M-1} A_m x_m(t - t_m) c_m(t - t_m) \cos \theta_m$$

(15)

where A_m, $c_m(t)$, t_m, and θ_m denote the signal amplitude, spreading code, time delay, and phase, respectively, of the mth user. Thus

$$y(t) = \bar{x}(t) + \sum_{m=1}^{M-1} A_m x_m(t - t_m) c_m(t - t_m) \cos \theta_m$$

(16)

If for simplicity we assume each of the other users has identical signal strengths of unit value, then after despreading, Eq. (16) becomes

$$\tilde{y}(t) = x(t) + \left[\sum_{m=1}^{M-1} x_m(t - t_m) c_m(t - t_m) \cos \theta_m \right] c(t)$$

(17)

In the case of BPSK, the output of the correlation receiver would be

$$x(t_k) + \sum_{m=1}^{M-1} \left[\cos \theta_m \int_{kT_b}^{(k+1)T_b} x_m(t - t_m)c_m(t - t_m)c(t) \, dt \right]$$

(18a)

$$= x(t_k) + z(t_k)$$

(18b)

where $z(t_k)$ is the cumulative interference of the additional $M - 1$ CDMA users. Notice also that, if T_c is less than the delay between the direct component and the multipath component, then the multipath component is treated as the other receiver inputs. Notice that since $x_m(t) = \pm 1$, the integration term in Eq. (18a) becomes the cross-correlation between the desired and the interferer’s PN codes. Therefore, minimizing the cross-correlation between spreading codes minimizes the interference between CDMA users. Ideally, each PN code would be chosen to be orthogonal to the other, thereby making $z(t_k) = 0$. Unfortunately, as will be shown later, with practical systems this is not completely possible.
Pursley (1977) and Lathi (1998) derive an analytical expression for the bit-error probability for M users of a CDMA channel corrupted by white noise. These show that if each of the M users have identical signal strengths, then

$$P_e = Q\left(\frac{1}{\sqrt{M-1}}/(3g) + N_0/2E_b\right)$$ \hspace{1cm} (19)$$

Note that if the channel has only one user (i.e., $M = 1$), Eq. (19) reduces to Eq. (6). Conversely, if the channel is noiseless but contains other users, the error probability would be

$$P_e = Q\left(\sqrt{3g}/(M-1)\right)$$ \hspace{1cm} (20)$$

Thus, even if the channel is noiseless, the error probability is still nonzero if it contains other users.

As Eqs. (6), (10), and (19) show, all interfering signals appear to the system as broadband noise. Therefore, unlike TDMA and FDMA, in which additional users manifest themselves as crosstalk, each CDMA user merely adds to the ambient noise floor.

This has regulatory implications. In the past, FCC regulations regarding maximum power levels were dictated by conventional crosstalk considerations. In today’s SS-CDMA world, additional users merely decrease the other’s signal-to-noise ratio.

A single-user DSSS-BPSK system has $P_e = 10^{-7}$ and $Pg = 30$ dB. How many additional users can this system support if we allow $P_e = 10^{-5}$? \hspace{1cm} EXERCISE 15.1–2

Multipath and the Rake Receiver

Eq. (16) accounts for the $M - 1$ users sharing the channel. However, some of these terms may be the delayed or multipath versions of our desired signal. Let’s restate Eq. (16) to explicitly account for the $M - 1$ multipath terms and then come up with a method for these signals to add constructively.

$$y(t) = \sum_{i=1}^{M-1} A_i x(t - t_i)c(t - t_i) + \sum_{m=1}^{M-1} A_m x_m(t - t_m)c_m(t - t_m) + n(t)$$ \hspace{1cm} (21)$$

If noise and other interferences are neglected, Eq. (21) simplifies to
Fig. 15.1–5 shows a channel model where a transmitted signal propagates over \(l = 3 \) different paths. Each path introduces a delay, \(t_i \), and attenuation factor, \(A_i \). To simplify our analysis, we initially assume these variables are constants with respect to time, but in general they are not time-invariant, especially with mobile systems where the receiver is moving. It is also assumed that the multipath delays are greater than the chip time, or \(t_i > T_c \).

To overcome the effects of multiple versions of the signal interfering with each other, and to take advantage of path diversity for improved SNR and SIR, we propose a scheme of separate receivers for each signal path and then incorporate delay and gain adjustments to each one to enable constructive addition of the multiple signal versions. Therefore, in Fig. 15.1–6 we show a three-finger Rake receiver, so named from the resemblance to the tines of a garden rake. This can be generalized for \(l \) fingers corresponding to \(l \) signal paths. Input \(y(t) \) is fed to the disspreading multipliers, each one having a PN source that is in phase with one of the multipath components. The output of each \(i \)th disspreading multiplier is thus

\[
v_i(t) = A_i c^2(t - t_i) x(t - t_i) + \sum_{j \neq i} A_j x(t - t_j) c(t - t_j + c(t - t_i)) i = 0, 1, 2 \tag{23a}
\]

With \(c^2(t - t_i) = 1 \), the first term of Eq. (23a) becomes \(A_i x(t - t_i) \). If we assume a low value of cross-correlation between the PN code and a different phase of itself, then the second term of Eq. (23a) becomes pseudonoise, and thus

\[
v_i(t) = A_i x(t - t_i) + \xi_i \quad i = 0, 1, 2 \tag{23b}
\]
with $\tilde{z}_i = \sum_{j \neq i} A_j x(t - t_j)c(t - t_{j\mu})c(t - t_i) \ i = 0, 1, 2$

The output of each of the i multipliers is then fed to a *diversity combiner* that consists of a set of adjustable delay and gain elements so that the outputs add constructively, since the signal from each finger will have identical delays. The signal from each path is scaled so as to increase the level of signals from the fingers with high signal-to-noise ratios and reduce the level of those with low signal-to-noise ratios. This naturally scales the paths according to the received-signal quantities. Both the gain and scaling adjustments can be done dynamically according to the path conditions. The diversity combiner output is

$$u(t) = \sum_{i=0}^{2} \alpha_i [A_i x(t - \Delta) + \tilde{z}_i] \quad i = 0, 1, 2 \tag{24}$$

Let’s assume for a moment in this example that we have only two strong signal paths, one weak path, and three fingers, the ith finger outputting mostly noise, so that its gain factor α_i would be set to a relatively small value as compared to the other values of α_i. Finally, the output goes to the correlator, whose reference signal, $s(t - T_b)$, is matched to the signal conditions. Note, for optimal recovery, $s(t - T_b)$
should be a function of both the original signal shape and channel distortion and could be adaptively varied based on the incoming signal characteristics.

There are some items we need to note. First, unless both the source and destination are in fixed locations, the channel parameters will generally change with time, and thus the receiver’s PN code generator phases will also have to change in order to maintain synchronization. PN code synchronization is further discussed in Sect. 15.3. The gain and delay adjustment sections in the diversity combiner will also have to adapt to time-varying channel conditions, particularly in mobile operation. This is a separate topic altogether, and is covered extensively in the signal processing literature. Second, the use of a single correlator after the diversity combiner assumes that the three signals traveled over paths with identical distortions. This may not be the case, and therefore, we could modify the design so that each finger has its own correlator; thus, the signal reference would be based on that particular path’s response conditions. This is shown in Fig. 15.1–7. Finally, the Rake concept can also be employed for other systems. The Rake receiver uses adaptive signal processing to increase the SNR and SIR. Adaptive signal processing can also be employed for cancellation of echoes, 60 Hz hum, and other types of interferences. See Widrow and Stearns (1985) for more information on adaptive signal processing.

![Figure 15.1–7 Three-finger Rake receiver that incorporates separate correlation stages for each signal path.](image)
15.2 FREQUENCY-HOPPING SPREAD-SPECTRUM

As previously noted, the wider the spread-spectrum bandwidth, the more the jammer has to increase its power to be effective. However, the practical limitations of PN sequence generation hardware imposes a constraint on bandwidth spreading and therefore the processing gain. To enable even larger processing gains, the PN generator can drive a frequency synthesizer that produces a wideband sequence of frequencies that can cause the data-modulated carrier to hop from one frequency to another. This process is called frequency-hopping spread-spectrum (FHSS). Because the message is spread out over numerous carrier frequencies, the jammer has a reduced probability of hitting any one in particular. Otherwise the jammer has to spread its power over a wider frequency range in order to be effective.

FHSS Signals

Frequency-hopping SS is shown in Fig. 15.2–1 and works as follows. The message is usually M-ary FSK modulated to some carrier frequency f_c, although some systems use BPSK. The modulated message is then mixed with the output of a frequency synthesizer. The frequency synthesizer's output is one of $Y = 2^k$ values, where k equals the number of outputs from the PN generator. The BPF selects the sum term from the mixer for transmission on the channel. The receiver in part (b) of the figure is the reverse of this process. Because of practical difficulties in maintaining phase coherence, most systems use noncoherent detection such as an envelope detector.

There are two types of FH-SS systems. In slow-hopping SS one or more message symbols are transmitted per hop: in fast-hopping SS there are two or more frequency hops per message symbol. With slow-hopping SS, the receiver demodulates the signal like any other M-ary FSK signal. However, with fast hop SS there are several hops per symbol, so the detector determines the value based on either a majority vote or some decision rule such as maximum likelihood.

Slow-hopping SS With Binary FSK

Consider a slow-hopping SS system with binary FSK that transmits two symbols per frequency hop and has a PN generator with $k = 3$ outputs. For a given binary message sequence, the spectral output is illustrated in Fig. 15.2–2. With $k = 3$ the system can hop to $Y = 2^k = 8$ different carrier frequencies. For each hop the output fre-
Consider a fast-hopping SS system with binary FSK, two hops per symbol, and a PN generator with outputs with the same binary message of Example 15.2–1. The message is transmitted using the following PN sequence: \{010, 110, 101, 100, 000, 101, 011, 001, 001, 111, 011, 001, 110, 101, 101, 001, 110, 001, 011, 111, 100, 000, 110, 110\}. In a format similar to that done in Example 15.2–1, plot the output frequencies for the input message.

\[P_g = 2^k \]
FHSS Performance in the Presence of Interference

We now want to consider the performance of a FHSS system with respect to bit errors. There are several types of interference or noise to deal with: white noise of barrage jamming, single-tone jamming, partial-band jamming, or interference due to multiple FHSS users on the same band as occurs with CDMA systems. Several of these are illustrated in Fig. 15.2–3.

Slow-hopping SS is the most susceptible to jamming because one or more symbols are being transmitted at a particular frequency. However, if the hop period is shorter than the transit time between the jammer and user’s transmitter/receiver, then by the time the jammer has decided which frequency to jam, the transmitter has already hopped to another frequency. With binary FSK and noncoherent detection, the bit error probability in the presence of white noise is

$$P_e = \frac{1}{2} e^{-E_b/2N_0}$$ \hspace{1cm} (2)$$

If a jammer has the power spectral density of Fig. 15.2–3(a) with N_j the power level over the entire bandpass of the system, the jammer appears as white noise and Eq. (2) becomes

$$P_e = \frac{1}{2} e^{-E_b/[2(N_0+N_j)]}$$ \hspace{1cm} (3)$$

where $N_j = J/W_c$.

Figure 15.2–3(b) illustrates partial-band jamming with Δ the fraction of the band being jammed. The quantity N_j/Δ is equal to the jammer’s PSD and has a
bandwidth of ΔW_c. With Δ also equal to the probability of being jammed and $1 - \Delta$ equal to the probability of not being jammed then, using the chain rule, we have

$$P_e = P(e \mid jammed^*) P(jammed^*) + P(e \mid jammed) P(jammed)$$

The probability of error for partial-band jamming of FHSS would then be

$$P_e = \frac{1 - \Delta}{2} e^{-E_b/2N_0} + \frac{\Delta}{2} e^{-E_b/[2(N_0 + N_j/\Delta)]}$$

In systems in which there are a relatively large number of frequency slots to hop to and the jammer’s distance is large compared to the transmitter-receiver distance, the probability of a single tone causing an error is quite small.
Finally, let’s consider a CDMA system with \(M \) users and \(M-1 \) potential interferers, as is shown in Fig. 15.2–3(d). Let the probability of one user causing an error to another, given that they are using the same frequency slot (thus causing a collision \(c \)), be \(\frac{1}{2} \), or \(P(error|c) = \frac{1}{2} \). Then the probability of an error given that there is no collision is the same as what occurs when there is only noise, given by \(P(error|c^c) = \frac{1}{2} e^{-E_b/2N_0} \). If there are \(Y = 2^k \) frequencies in the CDMA channel, then the probability of an interferer being in a given slot is \(\frac{1}{Y} \) (or the probability of not being in that slot is \(1 - \frac{1}{Y} \)). Therefore, the probability that \(M - 1 \) users will not interfere is \((1 - \frac{1}{Y})^{M-1} \). Consequently, the probability that \(M - 1 \) users could collide with the \(M \)th user is \(P_e = 1 - (1 - \frac{1}{Y})^{M-1} \approx \frac{M - 1}{Y} \) if \(M \ll Y \). Again using the chain rule, we have \(P_e = P(e|c)P(c) + P(e|c^c)P(c^c) \) so

\[
P_e \approx \frac{1}{2} \left(\frac{M - 1}{Y} \right) + \frac{1}{2} e^{-E_b/2N_0} \left(1 - \frac{M - 1}{Y} \right)
\]

(5)

Slow-hopping SS With Jamming

Let’s calculate \(B_T \) and the error probabilities for a slow-hopping SS system with a message rate of 3 kbps, \(S_R = 5.4 \times 10^{-8} \) W, given that the PN generator has \(k = 10 \) outputs and the system has partial band jamming with \(\Delta = 100\%, 10\%, \text{ and } 0.1\% \). The jammer power at the receiver is 10 times the signal power and the PSD of the random noise is \(N_0 = 10^{-12} \) W/Hz. If \(k = 10 \), then \(P_g = 2^{10} = 1024 = W_s/W_x \). If \(r_b = W_s = 3000 \) then \(W_c = 3.07 \times 10^6 \). With \(E_b = S_p r_p \), then \(E_b = 5.4 \times 10^{-8}/3000 = 1.80 \times 10^{-11} \) and \(N_f = J/W_c = 5.4 \times 10^{-7}/3.07 \times 10^6 = 1.76 \times 10^{-13} \). Substituting these values into Eq. (4) for \(\Delta = 1, 0.1, 0.001 \), we get \(P_e \) values of \(2.37 \times 10^{-4}, 0.0020, \text{ and } 5.36 \times 10^{-4} \) respectively. We will note from these that there will be an optimum value of \(\Delta \) that minimizes \(P_e \).

EXAMPLE 15.2–2

A single-user FHSS system has \(P_e = 10^{-7} \). For the same number of users as the system of Exercise 15.1–2, what is the minimum value of \(P_g \) for \(P_e \leq 10^{-5} \)?

EXERCISE 15.2–2

Fast-hopping spread-spectrum also enables us to take advantage of frequency diversity for more reliable communications, particularly when we have frequency selective fading caused by multipath. For example, we might employ a FHSS system whereby there are seven hops per symbol and the detector determines the value based on majority vote. Thus, if the message is received correctly on at least four of the frequencies, it will be correctly decoded. Furthermore, if the processing gain is sufficiently large, we can overcome wideband as well as narrowband fading.

Other SS Systems

While DSSS and FHSS are the most commonly used SS systems, we briefly consider other methods to spread out the data across the channel. The first is time-hopping (TH) systems. It’s analogous to frequency-hopping except that, instead of the information...
being spread out over several carrier frequencies, it is pseudo-randomly spread out over several time slots, thereby creating time diversity. This effectively causes *interleaving* of the data in a similar manner as described in Sect. 13.1, and as illustrated in Fig. 13.1–3. This dispersion of the data can improve immunity to burst errors.

A hybrid of FHSS and DSSS is such that the DSSS signal’s carrier frequency will hop to various values according to some pseudo-random sequence. It is thus possible for a FHSS-DSSS hybrid to have the combined advantages of both techniques with respect to large processing gains, immunity to multipath interference afforded by both types of systems, and greater immunity from frequency selective fading due to the frequency diversity of FHSS. The cost of a hybrid system is the great increase in the system’s complexity, particularly in the timing synchronization.

15.3 CODING

The PN generator used to generate \(c(t) \) and thereby spread the signal is of the same type and properties as described in Sect. 11.4. If necessary, reader should refer back to Sect. 11.4 for the discussion of PN generators.

In order for a receiver to properly recognize a transmitter’s signal and, in particular, prevent false synchronization, it is important that the PN code’s autocorrelation function have the largest peak possible at \(\tau = 0 \) and \(\tau = \pm kT_c \) and as be low as possible everywhere else.

This objective is met if the PN generator produces a maximal-length (ML) sequence.

To minimize jamming and/or casual eavesdropping, the PN sequence should be as long as possible; the longer the sequence, the more effort it takes for an unauthorized listener to determine the PN sequence. However, with linear codes, an eavesdropper only requires the knowledge of \(2^n \) chips to determine the shift register connections. Therefore vulnerability to unauthorized listening can be reduced by either making frequent changes in the PN sequence during transmission or by using some nonlinear scheme for the feedback connections. PN codes that are both secure and have desirable correlation characteristics are generally difficult to find, and thus if the goal is secure communications, then the message should be encrypted separately.

With CDMA systems, in which each user has a unique PN code, the receiver should be able to reject other interfering SS signals and/or prevent false correlations. As stated by Eqs. (17) and (18), Sect. 15.1,

Minimizing interference requires the upper bound on the crosscorrelation between different PN sequences to be as small as possible.
Let’s consider the cross-correlation between two different ML sequences. From Example 11.4–1, the [3, 1] shift register configuration produces the autocorrelation function plotted in Fig. 15.3–1. Note the single periodic correlation peak at $\tau = 0, 7T_c$. It is easily shown that a [3, 2] register configuration produces an ML sequence of 1110010 and has the same autocorrelation function as the [3,1] register configuration. Now if we calculate the cross-correlation of these two sequences using a shortcut similar to that we used in Example 11.4–1, and we compare the output from the [3, 1] configuration with shifted versions of the [3, 2] configuration, we get the results shown in Table 15.3–1 and Fig. 15.3–1. Remember that, just as with Example 11.4–1, these calculations are based on the PN sequence being a polar NRZ signal (i.e., values of ± 1). Note that there is relatively little difference between the autocorrelation and cross-correlation values, and therefore these particular shift-register configurations would be unsuitable for CDMA systems because we cannot easily discriminate between signals that use these PN codes.

A PN sequence for CDMA applications should have the following characteristics: (a) $R_s(0)_{\text{max}}$ relative to $R_s(\tau \neq 0)$ should be as large as possible; (b) if s and t represent different PN sequences, then $|R_s(\tau)|_{\text{max}}$ should be as small as possible for all values of τ; and therefore (c) we want to minimize the ratio $|R_s(\tau)|_{\text{max}}/R_s(0)$. Table 15.3–2 shows the most optimum ratios of $|R_s(\tau)|_{\text{max}}/R_s(0)$ for various register lengths. This table also gives a partial listing of the possible feedback connections that enable the generation of ML sequences.

Unfortunately, as we observe in the plot of Fig. 15.3–1 and the values in Table 15.3–2, ML sequences generated from a single shift register do not have good cross-correlation properties, making them unsuitable for CDMA systems. Also, for a single shift register to generate a different output sequence requires changing the
feedback connections; therefore, a given shift register length will give us relatively few unique output sequences. To overcome both of these limitations, Gold codes are generated by the mod-2 combination of the output of two or more registers as illustrated in Fig. 15.3–2. For certain combinations of \(n\)-bit registers and feedback connections which we call **preferred pairs**, Gold (1967, 1968) states that the maximum value of crosscorrelation between \(N = 2^n - 1\) length sequences is bounded by

\[
R_{st} = \frac{|\phi|}{N}
\]

(1a)

where

\[
\phi = \begin{cases}
\left(\frac{2^{(n+1)/2} + 1}{2}\right) & n \text{ odd} \\
\left(\frac{2^{(n+2)/2} + 1}{2}\right) & n \text{ even}
\end{cases}
\]

(1b)

or in some cases

\[
R_{st} = -1/N
\]

(1c)

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>([3, 1]/[3, 2])</th>
<th>(R_{st}(\tau))</th>
<th>(R_{st}^{[3,1][3,2]}(\tau) = v(\tau)/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1110100</td>
<td>5 - 2 = 3</td>
<td>3/7 = 0.43</td>
</tr>
<tr>
<td>1</td>
<td>1110100</td>
<td>1110100</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>1110100</td>
<td>1011100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1110100</td>
<td>0101110</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>1110100</td>
<td>0010111</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>1110100</td>
<td>1001011</td>
<td>-5</td>
</tr>
<tr>
<td>6</td>
<td>1110100</td>
<td>1100101</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1110100</td>
<td>1110010</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 15.3–2 Cross-correlation ratios for various ML sequence lengths and feedback connections (produced from a single shift register).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(N = 2^n - 1)</th>
<th>(R_{st}(\tau)) (R_{st}^{[3,1]}(\tau) \text{ } / R_{st}^{[3,2]}(0))</th>
<th>Feedback Taps</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>0.71</td>
<td>[3, 1], [3, 2]</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
<td>0.35</td>
<td>[5, 2], [5, 4, 3, 2], [5, 4, 2, 1]</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
<td>0.37</td>
<td>[8, 5, 3, 1], [8, 6, 5, 1], [8, 7, 6, 1]</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
<td>0.22</td>
<td>[9, 4], [9, 6, 4, 3], [9, 8, 6, 5], [9, 8, 7, 6, 5]</td>
</tr>
<tr>
<td>12</td>
<td>4095</td>
<td>0.34</td>
<td>[12, 6, 4, 1], [12, 10, 9, 8, 6, 2], [12, 11, 10, 5, 2, 1]</td>
</tr>
</tbody>
</table>

Source: Dixon (1994).
Table 15.3–3 lists some preferred pairs of registers that will generate Gold codes and their respective cross-correlation upper bounds. To see the superior cross-correlation properties of Gold codes versus single register ML sequences, we note from Table 15.3–3 that the sequences produced from a 12-bit Gold code will have \(R_{\text{max}} = 0.031 \), whereas from Table 15.3–2 the best of the sequences produced from a single 12-shift register will have \(R_{\text{max}} = 0.34 \).

The autocorrelation function for the Gold code sequence has an off-peak autocorrelation value that is also bounded by Eq. (1) (Proakis, 2001). Therefore, unlike the ML sequence produced by a single shift register that has an off-peak autocorrelation value bounded by \(-1/N\), the off-peak autocorrelation value from a Gold code sequence could be as high as \(|\phi|/N\). Thus with Gold codes, we obtain a greatly reduced set of cross-correlation values at a cost of a slight increase in the off-peak autocorrelation values.

For each set of initial conditions in the registers (or register offsets), we get a different periodic output sequence. Therefore, two \(n \)-bit preferred register pairs will give us \(N = 2^n - 1 \) unique output sequences. If we also include the two original sequences, our register pair can then produce a total of \(N + 2 \) sequences. This is in contrast to what was stated earlier, where a given single register configuration can only give us one unique periodic output sequence.

Table 15.3–3 Some preferred pairs for Gold Code generation and their auto/cross-correlation ratios.

<table>
<thead>
<tr>
<th>(n)</th>
<th>Preferred Pair</th>
<th>(R_{\phi}(\tau){\text{max}}/R{\phi}(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>[5, 2]</td>
<td>0.290</td>
</tr>
<tr>
<td>7</td>
<td>[7, 3]</td>
<td>0.134</td>
</tr>
<tr>
<td>8</td>
<td>[8, 7, 6, 5, 2, 1]</td>
<td>0.129</td>
</tr>
<tr>
<td>10</td>
<td>[10, 8, 5, 1]</td>
<td>0.064</td>
</tr>
<tr>
<td>12</td>
<td>[12, 9, 8, 5, 4, 3]</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Source: Dixon (1994).
Dixon (1994) has a more extensive list of preferred pairs for Gold code generation and also describes an algorithm for the proper selection of preferred pairs used to generate Gold codes.

We conclude that Gold codes are attractive for CDMA applications because for a given shift register configuration we can create numerous unique code sequences with desirable cross-correlation properties.

EXAMPLE 15.3–1 Ranging using DSSS

A common application of DSSS is for distance measurement, and is based on measuring the phase difference or time delay in chips between transmitter and receiver correlation functions. Let’s say we have a transmitter that produces a signal \(v(t) \) with a PN sequence whose autocorrelation is \(R_{vv}(\tau) \) with its maximum value at \(\tau = 0 \). The transmitted signal is reflected off a target at some distance \(d \) back to the transmitter. Let the reflected signal received back at the transmitter location be \(w(t) = v(t - t_d) \) where \(t_d = 2d/c \), with \(c \) being the speed of light. If we correlate the received signal with the transmitter PN sequence we get \(R_{vw}(\tau) = R_{vw}(\tau - t_d) \) where \(t_d \) is \(kT_c \) chips. The relative phase difference between the two peaks \((k \text{ chips or } t_d = kT_c \text{ seconds}) \) is the transit time between the transmitted and received signals, and is a measure of the distance. Let’s say we have a DSSS transmitter that sends to a target a PN ML sequence of length \(N \) and clock period 10 ns. The sequence is received back such that the difference in correlation peak locations is 20 chips. The distance between the transmitter and target would then be

\[
 d = kT_c c/2
\]

\[
 = 20 \text{ chips} \times (10 \times 10^{-9} \text{ seconds/chip}) \times (2.99 \times 10^8 \text{ m/s}) \times 1/2
\]

\[
 = 29.90 \text{ meters}
\]

Thus if DSSS is used for distance measurement the resolution in meters would be

\[
 \Delta d = cT_c
\]

An important application of DSSS signals that uses this property of distance measurement and triangulation is the global positioning system (GPS). GPS can be used to determine the time and a person’s precise latitude, longitude, and altitude on the earth. It consists of 24 satellites such that at any one time at least four are visible from anywhere on earth. Each one is 22,200 km above the earth and circles it approximately every 12 hours.

EXERCISE 15.3–1 Show that for any nonzero initial condition, a 5-bit shift register with a \([5, 2]\) configuration will produce only one unique PN sequence. Generalize your result for any single \(n\)-bit shift register PN generator.
15.4 SYNCHRONIZATION

Up to now, we have assumed that we know the transmitted carrier frequency and phase and that there is perfect alignment between the transmitted and receiver PN codes. Unfortunately, achieving these objectives is not easy and, in fact, is one of the most difficult problems to solve in spread-spectrum systems. The initial objective is to achieve carrier frequency and phase synchronization. This is made somewhat simpler if we use noncoherent detection. We then have to align the transmitter and receiver's PN codes and to maintain synchronization by overcoming frequency drift in the transmitted carrier or PN clock. With mobile or satellite SS systems, the carrier-frequency and code-clock phases can change noticeably because of Doppler frequency shift\(^\ddagger\) caused by the relative motion between the transmitter and receiver.

Tracking the incoming carrier frequency and phase is done in the same way as with any other digital or analog modulation systems. Specific techniques are discussed in Sects. 7.3 and 14.4. Synchronizing or aligning the receiver PN code to the incoming PN code is done in two steps. The first step is called **acquisition**, where there is initial acquisition and a coarse alignment to within a half a chip between the two codes. The second step is the ongoing and fine alignment called **tracking**. Both acquisition and tracking involve a feedback loop, with tracking done using PLL techniques.

Acquisition

Figure 15.4–1 is a block diagram showing a serial search acquisition system for a DSSS system, and Fig. 15.4–2 shows one for a FHSS system. Both work in a similar manner. The transmitted PN code is contained in \(y(t) \), and the receiver generates a replica code, but likely is offset by some phase difference of \(N_c \) which is an integer.

\[^\ddagger\]Doppler frequency shift is a change in the perceived received frequency caused by the relative motion between transmitter and receiver. Doppler frequency shift equals

\[
\Delta f = \frac{\pm v f_0}{c}
\]

where \(v \) is the relative velocity between transmitter and receiver, \(f_0 \) is the nominal frequency, and \(c \) is the speed of light.
number of chips. \(N_c \) is also a random variable whose maximum value is the PN period in chips minus one. The goal is that these two PN codes be aligned to within a half chip. Then the tracking phase takes over. For initial acquisition, some systems use an abbreviated version of the PN code called a **preamble**.

Acquisition works as follows. The received signal \(y(t) \), which contains \(l \) PN chips, is multiplied by its replica that contains the same number of chips. The product is then integrated from 0 to \(lT_c \) seconds where \(T_c \) is the PN clock period. If there is alignment, the signal will have been de-spread and the integrator’s output will be relatively high compared to the threshold \(V \), and therefore the PN code phase is not changed. If there isn’t alignment, the threshold circuitry causes the PN code generator to increment its phase by half a chip, and the entire process is repeated until alignment is achieved. Assuming the system properly recognizes the correct PN sequence, the maximum time for acquisition would be

\[
T_{acq} = 2N_c lT_c
\]

where the factor 2 occurs because we are correlating in increments of half chips. In systems that contain noise, there is a possibility of an incorrect synchronization. Eq. (1) is modified to obtain the average acquisition time of

\[
\overline{T}_{acq} = \frac{2 - P_D}{P_D} (1 + \alpha P_{FA}) N_c lT_c
\]

where \(P_D \) is the probability of a correct detection, \(P_{FA} \) is the probability of a false synchronization, and \(\alpha \) is a factor that reflects a penalty due to a false alarm with \(\alpha \gg 1 \). The variance in acquisition time is

\[
\sigma^2_{acq} = (2N_c lT_c)^2 \left(1 + \alpha P_{FA}\right)^2 \left(\frac{1}{12} + \frac{1}{P_{FA}^2} - \frac{1}{P_D^2}\right)
\]

Eqs. (2) and (3) are derived by Simon et al. (1994).

To decrease the acquisition time for DSSS, we could modify the system of Fig. 15.4–1 to become a **sliding-correlator** where instead of waiting for the integration
of the entire LT_c sequence, we do a continual integration and feed the result to the comparator such that when the output is above threshold, we stop the process because alignment has been achieved. Alternatively, we can speed up the process by a factor of $2N_c$ by going to a parallel structure and adding $2(N_c - 1)$ correlators to the structure of Fig. 15.4–1.

Tracking

Once we have achieved coarse synchronization, tracking or fine synchronization begins. For a DSSS signal, we can use a *delay-locked loop* (DLL) as shown in Fig. 15.4–3. The received signal $y(t)$ is fed to two multipliers. Each version of $y(t)$ is multiplied by a retarded or advanced version of the PN code generator output, that is $c(t \pm \delta)$ where δ is a small fraction of the clock period T_c. The output of each multiplier is then bandpass filtered and envelope detected. The two outputs are summed and fed to a loop filter that controls the VCO (voltage controlled oscillator). If there is synchronization error, one of the envelope detectors will have a larger value than the other, causing a jump in the summer output, which in turn will force the VCO to advance or retard its output and thereby causes $c(t)$ to straddle between the values of $c(t + \delta)$ and $c(t - \delta)$.

A simpler alternative to the DLL is the Tau-Dither loop of Fig. 15.4–4. Here only one loop is required, so we don’t have to worry about two loops having identical gains. It works in a similar manner to the DLL except that one loop is shared by the advance and retard signal. When signal $q(t)$ is $+1$, the input signal $y(t)$ is multiplied by $c(t + \delta)$. This product is then detected, multiplied by $q = 1$ and fed to the loop filter. At the next cycle $q(t) = -1$, the input signal $y(t)$ is multiplied by $c(t - \delta)$.

![Figure 15.4–3](image-url)
Figure 15.4–3 Delay-locked loop (DLL).
It too is envelope-detected, scaled by -1 and fed to the loop filter. If both signals are the same, the VCO output remains unchanged. But, like the DLL, if one signal is larger than the other, then the VCO output changes causing, the PN code generator to shift accordingly.

15.5 WIRELESS SYSTEMS

In the past several years, with telecom deregulation, advances in wireless technology, particularly at the microwave frequencies, and the U.S. government’s, that is, the Federal Communications Commission’s (FCC), opening up frequencies at and above the UHF bands for private use, there has been a proliferation of wireless telephone and computer networks. Furthermore, the changeover from analog to digital television will create additional bands, or *white spots*, for additional wireless services. These wireless broadband channels have become serious competitors to traditional copper-wire telephone systems, DSLs, and even cable-modem systems for both voice and data. Furthermore, wireless computer networks are or will be competing against wireless phone systems for voice and other data transmission. We now briefly consider two wireless systems: cellular telephones and cellular computer networks.

Telephone Systems

In the last 20 years, wireless telephone systems have been transformed from a luxury to almost a necessity. One has to merely visit a college campus or grocery store or drive on the highway to observe the ubiquity of cell phones. In addition to voice service, wireless phones now incorporate text messaging, Internet access, video service, etc., and by U.S. law, location by GPS so that, if the cellular user calls Emergency 911, the responder can automatically determine the mobile caller’s location. In this section, we will briefly describe the basic operation of the principal U.S. wireless telephone systems and the various technologies used in the cell-phone network.

The first generation (1G) cellular or wireless phone service was introduced in approximately 1983. It was also called the **advanced mobile phone service**
Wireless Systems

(AMPS) and was originally an FM-FDMA system. In the United States it operated in the 800 MHz band with \(W = 3 \) kHz and \(B_T = 30 \) kHz. Later, the narrowband AMPS (N-AMPS) was developed to permit the tripling of the capacity of the existing AMPS system. Some of the technical specifics of these systems are given in Table 15.5–1. The FCC made AMPS service possible by reallocating the 806–890 MHz band previously used by terrestrial television channels 70–83. In the mid-1990s, the U.S. government has also made available the 1.8 GHz (1.9 MHz in Europe) frequency band to accommodate additional phone and other data services called personal communications services (PCS). PCS technology has expanded the number of functions of a cell phone including Internet for e-mail, World Wide Web access, navigation aides, text messaging, and so on, in addition to voice service. The overall concept of a cellular phone system, pioneered by AT&T Bell Labs, is extremely clever and works in the following manner.

A given service area is divided up into cells as the shown in Fig. 15.5–1. Each cell has a base station with a mobile telephone switching office (MTSO) consisting of a transmitter, receiver, and a tower for the antenna. The MTSO in turn is connected to the telephone network. The connection between the MTSO and the telephone network is called backhaul.† When a call is placed, the MTSO authenticates the cell-phone user based on the cell phone’s serial number and its assigned phone number. It then assigns a set of available transmit and receiver frequencies to the cell

<table>
<thead>
<tr>
<th>Specification</th>
<th>AMPS</th>
<th>N-AMPS</th>
<th>GSM(^a)</th>
<th>IS-95</th>
<th>IS-136(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where used</td>
<td>N. America</td>
<td>N. America</td>
<td>Worldwide</td>
<td>USA, Asia</td>
<td>N. America</td>
</tr>
<tr>
<td>Access method</td>
<td>FDMA</td>
<td>FDMA</td>
<td>TDMA</td>
<td>CDMA</td>
<td>TDMA</td>
</tr>
<tr>
<td>Modulation</td>
<td>FM</td>
<td>FM</td>
<td>GMSK</td>
<td>QPSK</td>
<td>π/4 DQPSK</td>
</tr>
<tr>
<td>(f_\Delta = 12) kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Users per channel</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td># of duplex channels</td>
<td>416</td>
<td>2496</td>
<td>125</td>
<td>20</td>
<td>832(^c)</td>
</tr>
<tr>
<td>Maximum power (watts)</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>Base to cell frequencies (downlink)</td>
<td>869–894</td>
<td>869–894</td>
<td>935–960(^a)</td>
<td>869–894</td>
<td>869–894</td>
</tr>
<tr>
<td>Duplex method</td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
<td>FDD</td>
</tr>
<tr>
<td>Cell to base frequencies (uplink)</td>
<td>824–849</td>
<td>824–849</td>
<td>890–915(^a)</td>
<td>824–849</td>
<td>824–849</td>
</tr>
</tbody>
</table>

\(^a\)GSM is used in Europe and Asia, and on 1.8 GHz PCS band in N. America.
\(^b\)IS-136 superseded IS-54.
\(^c\)Only 811 available for voice.

†Backhaul refers to a link that connects two geographically separated network nodes, for example, cable that connects a rural telephone network to the central office in a nearby city.
Figure 15.5–1 Simple AMPS frequency allocations.

If we examine Table 15.5–1, we see the user could be assigned a transmit frequency in the range of 824–849 MHz and an incoming frequency in the range of 869–894 MHz; thus, like land-line service, we have full duplex, meaning we can talk and listen at the same time. Systems where the talk and listen functions are at different frequencies are called frequency-division duplex (FDD). Other systems employ time-division duplex (TDD), whereby transmission and reception appear to be simultaneous but are at slightly different times. In any case, during the call, the MTSO monitors the cell phone’s signal strength so that, if the user moves to another cell, the MTSO switches the user to a different cell location and another set of transmit and receive frequencies. Thus, the signal strength and continuity of the call are maintained. The process is seamless. This assumes, of course, that the new cell location has a set of available frequencies for the entering user. If not, the call is dropped.

Increasing the density of the cell towers/stations in a given area, although not aesthetically pleasing, enables the cell phones and MTSO transmitters to work properly at lower transmitter powers. This in turn means the tower-to-phone and phone-to-tower signals will not propagate much beyond a given cell area, thus enabling much greater reuse of available frequencies in other nearby cell areas without interference. Lower power also means cell phones can have a smaller physical size and reduced battery requirements. For the most part, AMPS and N-AMPS have been made obsolete by the digital technology. However, the basic concept of dividing an area into cells is still used, and depending on the multiple access technology employed, there still may be an assignment of frequency and also of a set of time slots for TDMA, or a set of codes for CDMA.

EXAMPLE 15.5–1

Cellular Phone System

Fig. 15.5–1 is a hypothetical diagram of a cellular system in some metropolitan area. In this case, we have a total of 24 distinct frequencies, and therefore, we would
expect this system could support 12 users. Our system has a *hard* limit of two users/cell. The hard limit is based on the maximum level of interference between cells or, more specifically, the crosstalk that can be tolerated. In this scenario, we have a frequency reuse radius of at least two cells. Suppose a customer makes a call in cell X1 and is assigned frequencies \(f_1/f_2 \). At some point the caller travels and enters cell X5. The MTSO will drop the caller from frequencies \(f_1/f_2 \) and reassign the caller to either frequencies \(f_{17}/f_{18} \) or \(f_{19}/f_{20} \). If these are already being used by an existing caller, then the original call will be dropped altogether. But note how frequencies \(f_1 \) and \(f_2 \) are reused in cell X9 since it is assumed that X9 is sufficiently far enough away from cell X1 so that the calls in X1 will not interfere with those in X9. In observing this figure, even though there are a total of 24 frequencies, with reuse, the system of Fig. 15.5–1 will support 24 users. Again, while in this example access to the network was done via an assigned frequency (FDMA); in other systems access to the network is accomplished via an assigned time (TDMA) or code sequence (CDMA).

Digital or *second-generation* (2G) systems have been developed that enable better quality of service than analog (AMPS) and have features such as text messaging, video, paging, and caller ID. As presented in Sect. 11.2 and Chap. 14, noise in digital systems manifests itself via symbol errors. These errors can be minimized by error correction, and because of regenerative repeaters, the errors do not occur at the same rate as with analog repeaters. This means that, if the coding is above some minimum error threshold, then voice conversations will be noise-free. The inherent redundancy of voice messages also allows us to economically employ digital data-compression techniques and thus enable more users per channel bandwidth. This would not be possible with analog systems. There are numerous 2G systems; however, we will consider the popular *Group Special Mobile* (GSM) and *Interim Standard-95 (IS-95)* systems. Table 15.5–1 lists some of their specifications.

Like AMPS, GSM and IS-95 users are assigned a specific frequency channel. In addition to frequencies, these systems also assign times and codes respectively. GSM has 125 duplex channels that accommodates about eight users per channel using TDMA; IS-95 has 20 duplex channels that accommodates about 35 users per channel using CDMA. To avoid crosstalk and other forms of interference, GSM as well as other TDMA and FDMA systems have a hard limit on the number of users per cell. The inherent nature of CDMA is that crosstalk is virtually nonexistent if the spread codes are mutually orthogonal. More users only raise the noise floor, and thus we have a soft limit on the number of users in a given area. However, if the CDMA channel fills up with too many users such that the noise floor/error rate becomes objectionable or that the raised level occurs beyond a certain length of time, caller(s) will be dropped. Nevertheless, a CDMA system can take advantage of the inherent statistical and transient properties of phone conversations. For example, when a person on the phone moves to a new cell area, he or she may not have to be immediately dropped: All in the cell area can tolerate a temporary increase in the noise/errors, since someone sharing the channel will probably hang up shortly. To further make the point: With GSM the safe distance for frequency reuse is seven cells away, whereas with IS-95 even an adjacent cell can reuse the frequency. GSM, however,
has become the standard in Europe and has become widely used in the United States by AT&T. Its hardware can be reprogrammed to accommodate various technical standards. IS-95 was developed in the United States by Qualcomm and is principally used by Verizon and other carriers. Since most new cell phones have three bands/modes, the once-distinct boundaries between the technologies are becoming increasingly blurred.

Like the original 1G systems (i.e., AMPS), 2G systems use circuit switching for voice communication. You will recall from Sect. 1.4, Fig. 1.4–1a that with circuit switching there is a direct connection between the source and destination. To enable data services like text messaging, etc., enhanced 2G, also known as 2.5G, has incorporated the general packet radio system (GPRS) as an interface to the existing-circuit switched GSM network. Figure 1.4–1b illustrates the concept of packet switching to carry data.

In 1999, the International Telecommunications Union (ITU) established five mobile cellular standards to enable the migration from 2G to 3G. These are also known as International Mobile Telecommunications–2000 (IMT-2000). By ITU’s definition, 3G is primarily a packet-based system but also supports circuit-switching, uses CDMA, and is intended to allow for global roaming. Data rates for 3G are evolving and range from a few hundred kilobits per second to several megabits per second. The five standards are as follows: (a) IMT-DS (direct sequence): wideband CDMA (WCDMA), the successor to GSM that will be used in Europe and the United States of America. (b) IMT-MC (multi-carrier): CDMA 2000, or IS-2000, the successor to IS-95 that will be used in the United States of America and much of the rest of the world. (c) IMT-TC: CDMA Time Division Duplex (TDD) or WCDMA-TDD, a micro- or pico-cell system that is used primarily indoors. (d) IMT-SC (single carrier): TDMA Single Carrier, UWC-135 (Universal Wireless Communications), or EDGE (Enhanced Data Rates for GSM Evolution). (e) IMT-FT: TDMA Multi-Carrier or DECT (Direct Enhanced Cordless Telecommunication).

Let’s just consider the successors to GSM and IS-95, which are WCDMA and CDMA 2000 respectively. WCDMA is not simply a wideband version of CDMA, but is a technical term that refers to the successor standard to GSM. WCDMA is also known as Universal Mobile Telecommunications Systems (UMTS). WCDMA uses 5 MHz channels and has a chip rate of 3.6864 Mcps. The transmitter and receiver use two different 5 MHz channels. Frequency reuse is on a one-cell basis. CDMA 2000 has a chip rate of 1.2288 Mcps and transmits voice and data on 1.25, 3.75, 7.5, 11.25, 15 MHz channels. Typically it is a narrower-band CDMA system than WCDMA, since a call is spread over 1.25 MHz versus the 5 MHz of WCDMA. CDMA, 2000 has two configurations. One is traditional DSSS where by the data is spread out over a 1.25 MHz channel, and the second is multi-carrier (MC), whereby the data is spread out over integer multiples of 1.25 MHz. Note that the corresponding chip rate would also increase by the same integer multiple. Within the CDMA 2000 family, there are numerous evolving standards referred to as EV-DV (evolution, data, and voice), and 1 × and 3 × EV-DO (1 × and 3 × evolution data optimized). Table 15.5–2 is a brief summary of both standards. See Karim and Sarraf (2002) for more information on 3G systems.
Table 15.5–2 3G wireless parameters for North America.

<table>
<thead>
<tr>
<th>Specification</th>
<th>CDMA 2000</th>
<th>WCDMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>1.25/3.75/7.5 MHz*</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
<td>QPSK</td>
</tr>
<tr>
<td>Chip rate**</td>
<td>1.2288/3.6864/6.1440 M cps</td>
<td>3.84 M cps</td>
</tr>
<tr>
<td>Data rate+</td>
<td>144/384/2048 kbps</td>
<td>144/384/2048 kbps</td>
</tr>
<tr>
<td>Duplex method</td>
<td>FDD</td>
<td>FDD or TDD</td>
</tr>
<tr>
<td>Cell to base frequencies++</td>
<td>1850–1910 MHz</td>
<td>1920–1980 MHz (FDD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1900–1920 MHz (TDD)</td>
</tr>
<tr>
<td>Base to cell frequencies++</td>
<td>1930–1990 MHz</td>
<td>2110–2170 MHz (FDD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2020–2025 MHz (TDD)</td>
</tr>
</tbody>
</table>

*Bandwidths above 1.25 MHz are via multicarrier and in multiples of 1.25 MHz.
**Chip rate is in integer multiples of 1.2288 M cps corresponding to the bandwidth used.
+Systems are expected to evolve to higher rates.
++These are in addition to the existing 800 MHz telephone bands.

More than other terrestrial radio systems, wireless phone systems suffer from the near-far problem. This is where you have unequal signal powers arriving at the receiver, and the stronger one drowns out the weaker one. Overcoming this problem requires receiver amplifiers that have wide dynamic range so that the stronger signals will not overload the front-end amplifiers. Other remedies include adaptive gain control techniques and adaptive control of the transmitter’s power. For more information on wireless systems, see Rappaport (2002).

Wireless Networks

The U.S. government’s allowing unlicensed operation on the ISM bands as well as auctioning off various UHF and microwave bands has led to an explosive growth in wireless broadband services. In this section, we will briefly consider two systems: Wi-Fi (wireless-fidelity), or IEEE-802.11, and WiMAX (Worldwide Interoperability for Microwave Access), or IEEE-802.16. Both of these systems provide broadband wireless access to the Internet and are an alternative to wired networks including DSL, ethernet, cable modem technologies, and even mobile cell phones. Wi-Fi and WiMAX are often referred to as the “last foot” and “last mile” respectively, referring to their connection to the network. Table 15.5–3 gives a brief listing of some of the Wi-Fi and WiMAX standards. Because the standards continue to evolve, consult the IEEE literature and standards for more exact information. Note that wireless computer networks primarily use OFDMA and 3G phones use CDMA.

Wi-Fi has enabled the proliferation of laptop computers to have broadband access in coffee shops, hotels, homes, classrooms, etc., and eliminates the need for a wired local area network such as ethernet. Wi-Fi uses unlicensed portions of the microwave bands (2.45–5.7 GHz), and the distances are generally limited to a few hundred feet. One common example of a Wi-Fi system used in a home or café as
Table 15.5–3 Summary of Wi-Fi and WiMAX standards

<table>
<thead>
<tr>
<th>Specification</th>
<th>Wi-Fi</th>
<th>WiMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>System</td>
<td>System</td>
</tr>
<tr>
<td>Frequency</td>
<td>5 GHz</td>
<td>2GHz-11 GHz, 2-6 GHz (mobile)</td>
</tr>
<tr>
<td>Application</td>
<td>wireless LAN</td>
<td>fixed and mobile</td>
</tr>
<tr>
<td>Modulation</td>
<td>BPSK/QPSK</td>
<td>QPSK/16-QAM/64-QAM</td>
</tr>
<tr>
<td>Transmission</td>
<td>256 or 2,048 OFDM</td>
<td>256 or 2,048 OFDM</td>
</tr>
<tr>
<td>Multiplexing</td>
<td>CSMA/OFDM</td>
<td>TDMA/OFDMA/OFDM</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>20 MHz</td>
<td>1.75–15 MHz</td>
</tr>
<tr>
<td>Data rate</td>
<td>20–25 Mbps</td>
<td>1–75 Mbps</td>
</tr>
<tr>
<td>Duplexing</td>
<td>TDD</td>
<td>TDD/FDD</td>
</tr>
</tbody>
</table>

Source: Andrews et al. (2007).

shown in Fig. 15.5–2. Here a wireless router is connected to the network via a cable modem. The various members of the household or customers gain access to the network via the wireless router using their computer’s Wi-Fi wireless network card. Unless access is limited, nearby neighbors with wireless cards might also access the network. While in this example the router is hardwired to the network, it could also be connected to the network using WiMAX as shown in Fig. 15.5–3.

In contrast to most multiple-access systems wherein users are assigned specific portions of the channel (TDMA, FDMA, etc.), Wi-Fi uses **carrier-sense-multiple access** (CSMA). CSMA is an enhancement to Aloha (see Example 9.4–1) whereby the user (a) first listens to the channel and, if it is unoccupied, transmits the packet; (b) if the channel is in use, waits according to some random time function, then listens again to see if the channel is clear; and (c) if clear, the packet is transmitted; otherwise, step (b) is repeated.

WiMAX is an alternative to fiber, cable, and even the cellular phone system for broadband access. One major application is **backhaul**. WiMAX often uses the existing cellular phone tower infrastructure. It has line-of-sight and therefore has the potential to work at distances of up to 30 miles. In rural areas, individuals or business could receive WiMAX signals via rooftop antennas, similar to the way terrestrial television is received, or even directly on their computers via WiMAX cards. In fact, some computer systems are being equipped with both Wi-Fi and WiMAX cards. Figure 15.5–3 shows an example of a WiMAX cell system. Here the WiMAX supplies signals to computers directly through their WiMAX cards or to a Wi-Fi network in a public café or business. See Andrews et al. (2007) for more information on WiMAX.

It is expected that WiMAX could become a serious competitor to cable and wired telephone systems for Internet access. For example, a community or household may
15.5 Wireless Systems

Figure 15.5–2 Wi-Fi system used in a home or café.

Figure 15.5–3 WiMAX cell concept.
set up a WiMAX system to provide access to the Internet and telephone network and thus bypass the existing telephone and cable system. This will put pressure to change the existing regulatory and franchise structure in favor of more competition and deregulation. In fact, one reason WiMAX is being developed is to “get around” these existing regulatory hurdles.

While WiMAX is implemented differently than 3G cell phones, nevertheless mobile WiMAX with VOIP could become a serious competitor to the cellular phone system. This is particularly noteworthy since the several cell-phone operators are divisions or subsidiaries of the existing phone companies, whereas many WiMAX providers are startup companies and independent of the phone companies.

15.6 ULTRA-WIDEBAND SYSTEMS

Conventional modulated communication systems are such that the message alters a periodic carrier sinusoidal or pulse-train waveform. Here we will present an alternate system called ultra-wideband (UWB) or impulse radio systems. First we will describe UWB signals, a practical implementation of UWB, and then discuss multiple access. Since UWB is often confused with DSSS, we will also make a comparison with DSSS.

UWB is not a modulated system in the sense that the message alters a fixed frequency carrier wave, although its RF spectrum has a center frequency. Instead the transmitter’s output consists of pulses whose position, duration, amplitude, or phase, etc., is altered by the message. UWB pulses have the following properties: (a) short duration (i.e., pulse width is $<0.5\%$ duty cycle); (b) broadband such that its fractional bandwidth is at least 20 percent (versus the 10% or less of conventional modulation systems), bandwidth being defined as the range of frequencies where the PSD is within 10 percent of its peak value; and (c) has a PSD often below the ambient levels of existing RF interference (RFI) coming from unintentional radiators such as computer monitors, radio receivers, etc. We note that the FCC mandates that emissions from these sources be below 75 nW/MHz (Nekoogar, 2006). Practical UWB systems have bandwidths that exceed 0.5 to 1 GHz. Therefore, unlike other radio services, UWB transmitters could theoretically operate without a specific license or frequency allocation, since they generally operate below the interference floor. UWB signals can also overlay onto existing narrowband communications channels. It is important to note that many so-called UWB systems are not true impulse radios but are in fact wideband bandpass systems with bandwidths greater than 500 MHz (per FCC rules).

UWB Signals

There are a wide variety of signal types used for UWB pulses, including gaussian, nth derivative of the gaussian, chirp, Rayleigh, or orthogonal wavelets. The choice of pulse shape affects both the system’s bandwidth and error performance. The literature presents various performance comparisons between pulse shapes. Let’s consider the gaussian pulse delayed by time t_d.
to simplify we replace $2\sigma^2$ with τ^2/π to get,

$$p^0(t - t_d) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(t-t_d)^2}{2\sigma^2}} \quad (1a)$$

Taking the derivative with respect to time we get the 1st order **gaussian monocycle**

$$p^1(t - t_d) = \frac{1}{\tau} e^{-\frac{(t-t_d)^2}{\tau^2}} \quad (2)$$

and is shown in Fig. 15.6–1a. Its corresponding Fourier transform is shown in Fig. 15.6–1b. Note the 1-nanosecond gaussian monocycle occupies several GHz of bandwidth. The time slot allotted to each data bit will be referred to as a frame.

Fig.15.6–2a shows the UWB transmitter. The receiver can be implemented as a correlation detector suitable for antipodal or OOK signals shown in Fig. 15.6–2b.

Figure 15.6–1 First-order UWB gaussian monocycle: (a) time domain, (b) spectra.
Note the simplicity of this system as compared to the transmitters and receivers for modulated systems discussed in Sect. 7.1. In particular note the UWB receiver’s primary component is a correlation detector, whereas the more complex superhet of Fig. 7.1–1 also requires a mixer, oscillator, and IF-BPF. Obviously, the gain of the UWB receiver is generally much lower than conventional superhet units.

Coding Techniques

If the message is in binary form, we can code the UWB pulse using one of the commonly used techniques of PPM, OOK, and PAM, as illustrated in Fig. 15.6–3. The expression for a PPM UWB signal is

\[
x_{ppm}(t) = A_c \sum_{k=0}^{N} p(t - kT - d_k \Delta)
\]

(3)
where \(p(t) \) is the UWB pulse shape, \(T \) is the frame duration, \(d_k \) represents the \(k \)th message bit so that, in a binary system, \(d_k = 0,1 \), and \(\Delta \) is the PPM time shift. For OOK and PAM we have

\[
x_{\text{OOK or PAM}}(t) = A_k \sum_{k=0}^{N} a_k p(t - kT)
\]

(4)

with \(a_k \) representing the \(k \)th message amplitude. In antipodal systems, \(a_k = \pm 1 \) and is often referred to as BPSK. OOK, a special case of PAM, is rarely used because the 0 pulses are easily confused with noise or interference.

In order to minimize the interference to other wireless services or to reduce the probability of interception, it is important that the transmitted UWB signal not be periodic, since, as you will recall from Sect. 2.1, periodic signals generate spectral lines. As in DSSS, the pulse shapes should be designed with a high degree of auto-correlation. To minimize interference with other users, though, it is desirable that the pulses have a low degree of cross-correlation with other signals and therefore enable rejection by the correlation detector.
Transmit-Reference System

Data synchronization and, thus, receiver complexity can be greatly reduced if we employ a self-synchronizing method called the transmit-reference (TR) system. To illustrate the concept, we start with an antipodal system where each frame consists of a reference signal followed by the data bit as shown in Fig. 15.6–4a. The binary data is such that

\[
m(t) = a_k = \begin{cases}
 +1 & \rightarrow \text{logic 1} \\
 -1 & \rightarrow \text{logic 0}
\end{cases}
\]

The transmitter output of Eq. (4) becomes

\[
x_c(t) = A_x \sum_{k=0}^{N} p(t - kT) + a_k p(t - kT - D)
\]

where there is an additional delay of \(D\) between the reference and data signals. The signals of the TR receiver in Fig. 15.6–4b are shown in Fig. 15.6–5.

![Diagram of TR system](image)

Figure 15.6–4 Antipodal TR system: (a) transmitter, (b) receiver
TR is asynchronous, and thus no special synchronous methods have to be employed. It also has greater immunity to channel distortion, since these affect both the reference and data signals. However, the price paid for the TR simplicity is greater data overhead and reduced data rates. See Zhou and Haimovich (2001), Dowla, Nekoogar, and Spiridan (2004), and Dang and van der Veen (2007) for alternate schemes to minimize the effects of interference, multipath, etc., in UWB systems.

It is important to note that, in cases when UWB signals are below the noise/interference floor, successful communication requires that the transmitted signals be synchronized to some reference that is available to the receiver. Otherwise, the receiver has no way of telling when a signal is being transmitted.

Multiple Access
Consider a UWB system and neglect channel distortion, signal loss, and random noise. The respective N number of PPM or PAM pulses described by Eqs. (3) and (4) in the presence of M interfering signals at the receiver’s detector input are either

\[
\nu_{\text{PPM}}(t) = \left[A_c \sum_{k=0}^{N} p(t - kT - d_k\Delta) \right] + \left[\sum_{j=1}^{M} \sum_{k=1}^{N} a_{j,k}p'(t - kT - d_j\Delta) \right]
\]

or
\[v_{\text{PAM}}(t) = \left[A_r \sum_{k=0}^{N} a_k p(t - kT) \right] + \left[\sum_{j=1}^{M} \sum_{k=1}^{N} a_j p^j(t - kT - d_j \Delta) \right] \]

(6b)

where the first bracketed terms in Eqs. (6a) and (6b) are the desired PPM or PAM signals respectively, and the second bracketed terms represent the summation of all \(M \)-interferences including multiple-access interference (MAI). Variables \(a_k \) and \(d_j \) are the amplitude and delay levels of the \(j \)th interfering signal, and \(p^j() \) is the \(j \)th interfering pulse. The interference terms of Eqs. (6a) and (6b) have been generalized to include any other unwanted PAM, PPM, multipath, or other signals. Note also that we have not included reference pulses as described in Eq. (5).

Consider the PAM case with the correlation receiver of Fig. 14.2–3. If the signal template \(s_i = 0,1(t - kT) \) matches to the shape of the transmitted pulse, the output of the correlation receiver’s \(i \)th integrator at time \(t_k \) is

\[
z_{m0,1}(t_k) = \int_{kT_b}^{(k+1)T_b} A_t a_k p(t - kT) s_i(t - kT_b) dt + \int_k^{(k+1)T} \sum_{j=1}^{M} a_j p^j(t - kT - d_j \Delta) s_i(t - kT_b) dt
\]

\[= E_1 \text{ or } 0 + E_{\text{interference}} \]

(7)

Therefore, the receiver output is

\[
z_{m1}(t_k) > z_{m0}(t_k) \Rightarrow \hat{m} = \text{"1"}
\]

\[
z_{m1}(t_k) \leq z_{m0}(t_k) \Rightarrow \hat{m} = \text{"0"}
\]

(8)

As shown in Eq. (7), having more users increases the magnitude of \(E_{\text{interference}} \), which in turn increases errors. Therefore, if we want to accommodate multiple UWB users, we have to ensure that each user has pulse shapes that are orthogonal to the other users. See Wu et al. (2006) and Sellathurai and Sablatash (2004) for more information on selecting pulse shapes to minimize interference. See Yoon and Kohno (2002) for evaluation of multiple access for PPM systems and Choi and Stark (2002) for UWB performance in the presence of multipath.

Another way to reduce errors is to avoid pulse collisions in the first place. This can be accomplished using time-hopping UWB (TH-UWB). TH-UWB is based on a similar principle as THSS, except that the pseudo-random generator outputs a sequence that controls when a user’s transmitter outputs are generated such that each user has his or her own sequence. Properly designed, this system minimizes the probability of a data collision. See Hu and Beaulieu (2004) and Nekoogar (2006) for more information. Another method of multiple assess is Aloha or CSMA.

Comparison With Direct-Sequence Spread Spectrum

It is relatively easy to confuse DSSS with UWB systems, since both have relatively large processing gains, are not easily intercepted or jammed, and are well suited to
multiple access. However, there are significant differences between them. First, as mentioned earlier, UWB is not a modulated system in the classic sense because the message alters pulse rather than a sinusoidal carrier signal as in conventional systems, including DSSS. Second, with DSSS, the processing gain (PG) is limited by the speed of the PN generator, and thus the transmission bandwidth is on the order of several MHz, whereas with UWB it is at least 0.5 GHz. Finally, as we previously said, DSSS has a nearly 100 percent duty cycle, whereas UWB’s is usually less than 0.5 percent.

15.7 QUESTIONS AND PROBLEMS

Questions

1. Why does DSSS usually have a low probability of interception?
2. Give a non-radio analogy to CDMA.
3. How does DSSS have some immunity to multipath?
4. Why is the spread code for DSSS not adequate for secure communication?
5. What is the advantage of larger processing gains?
6. Is there any advantage of barrage jamming of a DSSS signal versus using a single-tone jammer and, if so, under what conditions?
7. What is the advantage of the Rake receiver?
8. Why is FHSS capable of larger processing gains than DSSS?
9. How does FHSS have some immunity to multipath?
10. What advantage is there to fast-hopping FHSS over slow-hopping FHSS, or DSSS, and why?
11. Is there any loss of SNR or error performance when going to DSSS or FHSS?
12. What means could we use to make SS more secure without message encryption?
13. Describe a means to decode a SS signal (or PN sequence) that would not require the listener to have the synchronization hardware described in Sect. 15.3
14. If DSSS systems were used to locate or track objects in a building environment, what would be the cause of errors?
15. Describe a means to overcome ghost locations in DSSS ranging systems.
16. What are the disadvantages of a long spreading code?
17. Why was FM used in the original AMPS system? Why not SSB, DSB, or AM?
18. Why is it important that a cell-phone receiver’s RF amplifier have a wide dynamic range?
19. What advantage would there be in implementing wireless phones via software radio?
20. Why would a 1900 MHz phone be more compact than a 850 MHz one?
21. What are some of the reasons why the original AMPS system had a bandwidth of 30 kHz instead of the 10 kHz used in the later version?
22. List and describe at least three reasons why airline passengers are still not allowed to use cell phones during flight.
23. What design methodology can we use to enable a wireless phone to work in GSM and IS-95 environments?
24. Why would WCDMA be more advantageous over CDMA 2000 for densely populated areas?
25. Explain the differences between WiMAX and Wi-Fi.
26. Describe how CDMA and OFDM systems overcome multipath.
27. Describe the tradeoffs, etc. of why wireless phone use CDMA whereas wireless networks use OFDM.
28. Why are UWB signals not easily jammed?
29. In a classroom or seminar setting where the audience is interacting with the speaker via wireless computers, what is an adverse consequence if the number of users is excessive? Explain your answer.
30. Describe an alternative multiple access method(s) for UWB in addition to what has already been presented.

Problems
15.1–1* A DSSS-BPSK system has an information rate of 3 kbps, and is operating in an environment where, at the receiver, there is a single-tone interfering signal five times more powerful than the received signal and $N_0 = 10^{-21}$ W/Hz. Without the jammer, the $(S/N)_R = 60$ dB. If the required $P_e = 10^{-7}$, calculate (a) the chip rate, (b) B_T.
15.1–2 A DSSS-BPSK system has $P_g = 30$ dB, and in the presence of a jammer the $P_e = 10^{-7}$. What is the jamming margin?
15.1–3 A DSSS-CDMA system is used for telephone transmitting information at a rate of 6 kbps. The system uses a code rate of 10 MHz and $(S/N)_R = 20$ dB with just one signal transmitted. The required $P_e = 10^{-7}$, and each signal is received with equal power. (a) How many users can share the channel? (b) If each user reduces power by 6 dB, how many can share the channel?
15.1–4 What is the minimum chip rate required to overcome multipath interference if the multipath length signal is 500 meters longer than the direct signal?
15.1–5* Ten DSSS-BPSK users, with each one transmitting information at a rate of 6 kbps, want to share a channel via CDMA. Assuming additive noise
can be ignored, what is the minimum chip rate in order to achieve $P_e = 10^{-7}$?

15.1–6 Repeat Prob. 15.1–5 assuming the channel is corrupted by white gaussian noise such that with a single user, $P_e = 10^{-9}$.

15.1–7 A DSSS system transmits information at a rate of 9 kbps in the presence of a single-tone jammer whose power is 30 dB greater than the desired signal. What is the processing gain required in order to achieve $P_e < 10^{-7}$?

15.1–8 How many customers of equal power can share a CDMA system if each one is using DSSS-BPSK where the processing gain is 30 dB and with $P_e < 10^{-7}$?

15.1–9 A DSSS-BPSK user transmits information at a rate of 6 kbps, using a chip rate of 10^6 and the received signal has a $P_e = 10^{-10}$. How many users can share the channel if the P_e requirement was reduced to 10^{-5} and each user reduces their power by 3 dB?

15.1–10* What P_g and B_T is required for 3 kHz voice communication if the goal for the radiated energy from a 1-watt cell phone with $f_c = 850$ MHz, at a distance of 25 meters, to be below an ambient RF level of 75 nW/MHz?

15.1–11 What is the minimum P_g and B_T such that such that a 3 kHz voice signal that was originally 1 watt over a 3 kHz channel will be 75 nW/MHz? Assume no losses. Is this a feasible system?

15.1–12 If in a given cell area, a $P_e = 10^{-5}$ is tolerated with 20 users. How many more users can be added to the cell to increase the probability of error by an order of magnitude? You can assume that channel noise is negligible and all users have the same power.

15.1–13 Consider a single-user DSSS system with $P_g = 500$, $S_R = 1$ mW, and $r_b = 1000$ Hz. Without interference $P_e = 10^{-6}$. What is the new P_e if the user’s signal is barrage jammed such that it arrives at the receiver with a signal of 1μW/Hz over a bandwidth of 3000 Hz?

15.2–1* A binary FHSS system has an information rate of 3 kbps, and is operating in a barrage jamming environment where the entire channel is being jammed with a power level five times greater than the received signal. Without the jammer, the $(S/N)_R = 60$ dB and $N_0 = 10^{-21}$ W/Hz. If the required $P_e = 10^{-7}$, determine the minimum P_g and corresponding B_T.

15.2–2 Determine the minimum P_g and corresponding B_T for a binary FSK system that has an information rate of 3 kbps, 10 users, and $P_e \leq 10^{-5}$. It has been found for one user that for one user that $P_e = 10^{-10}$.

15.2–3 Given the system in Prob. 15.2–1, what would be P_g and B_T for a DSSS that enables the same P_e?

15.2–4* What is P_e for a FHSS system in the presence of partial band jamming with $\gamma = 10\%$, $J = 6$ mW, $E_b = 2 \times 10^{-11}$, $N_0 = 10^{-12}$, $r_b = 6$ kbps, and the PN generator has $k = 10$ outputs?
15.2–5 Calculate the minimum hopping rate for a FHSS system that will prevent a jammer from operating 5 miles away from the receiver.

15.2–6 Consider a FHSS system with Sunde's binary FSK, 3 hops/bit 8 carrier frequencies starting with \(f_c = 200 \text{ MHz} \), \(r_b = 2000 \text{ kbps} \), and with logic 0 \(\rightarrow f_c \) and logic 1 \(\rightarrow f_c + f_d \). What is the output frequency sequence if the message sequence is 1011 and the hop sequence dictated by the outputs of a [3,1] shift register with initial conditions of [111]? Hint: For this and the next problem, review Sects. 11.4 and 15.3.

15.2–7 What is the bandwidth of a FHSS system that employs a \(n = 16 \) stage-shift register with each stage inputted to a frequency synthesizer and with nonoverlapping frequencies, 1 bit/hop, and \(r_b = 6 \text{ kbps} \). State any assumptions.

15.3–1 Given a four-stage shift register with [4, 1] configuration, where the initial state is 0100, and is driven by a 10 MHz clock, what is (a) its output sequence, and (b) PN sequence period? Plot the autocorrelation function produced by this shift register.

15.3–2 Repeat Prob. 15.3–1 for a 4-stage shift register with [4, 2] configuration.

15.3–3 Show that the output sequence for the [4, 1] shift register has the properties of a ML sequence as described in Sect. 11.4.

15.3–4 What is the output sequence and its corresponding length from a 5-bit shift register PN generator with [5, 4] feedback connections with the initial state 11111? Is it a ML sequence?

15.3–5* Given a Gold code generator consisting of preferred pair [5, 2] and [5, 4, 3, 2], where both registers initially have all 1s, what is its (a) output sequence, (b) crosscorrelation bound?

15.3–6 What chip rate is required for a DSSS distance measuring system to achieve a resolution of 0.01 miles?

15.3–7 What is the distance resolution for a DSSS system with a 20-MHz code clock rate?

15.3–8 Given a required \(P_g \geq 30 \text{ dB} \) and a multiple access channel, what is the minimum value of \(T_c \), and the minimum channel bandwidth to avoid multipath interference for a DSSS wireless phone for an environment room that has obstacles approximately 25 meters apart? Given your answer, what is the \(P_g \)? Assume a message bandwidth of 3 kHz.

15.3–9 A room has a length of 50 meters and a width of 20 meters. The transmitter and receiver are centered at the 20-meter walls, 50 meters apart. What is the minimum chip rate needed to minimize multipath interference with DSSS?

15.4–1 A 10 MHz code generator drifts 5 Hz/hour. What is the chip uncertainty after one day?
15.4–2 A DSSS system operating at a carrier frequency of 900 MHz with a 10 MHz code clock is traveling toward us at 500 mph. What is the maximum shift in carrier frequency and chip uncertainty due to Doppler?

15.4–3* What is the average acquisition time and its standard deviation for a DSSS-BPSK, with chip rate of 10 MHz, that uses a serial search of a 2048-bit preamble and has a $P_D = 0.9$, $P_{FA} = 0.01$, and $\alpha = 100$? Assume the maximum initial phase difference between the input signal’s PN sequence and receiver’s PN generator.

15.4–4 A DSSS-BPSK system uses a code clock of 50 MHz and a 12-stage shift register set up for maximal length. Assuming the phase difference between the received signal’s PN sequence and the receiver PN generator is half a PN period, calculate the average acquisition time and its standard deviation if a serial search is done with $P_D = 0.9$, $P_{FA} = 0.01$, and $\alpha = 10$.

15.5–1 How many voice WDCDMA DSS signals could you overlay on a 5 MHz cable-TV channel if you could tolerate a $P_e = 10^{-5}$? Assume all signals have identical power.

15.5–2 Repeat Prob. 15.5–1 for CDMA 2000 and $W_c = 1.2288$ Mcps.

15.5–3 What are the approximate obstacle distance differences for multipath to be a problem with (a) WDCMA and (b) CDMA 2000?
CHAPTER OUTLINE

16.1 Information Measure and Source Coding
 Information Measure Entropy and Information Rate Coding for a Discrete Memoryless Channel
 Predictive Coding for Sources With Memory

16.2 Information Transmission on Discrete Channels
 Mutual Information Discrete Channel Capacity Coding for the Binary Symmetric Channel

16.3 Continuous Channels and System Comparisons
 Continuous Information Continuous Channel Capacity Ideal Communication Systems
 System Comparisons

16.4 Signal Space
 Signals as Vectors The Gram-Schmidt Procedure

16.5 Optimum Digital Detection
 Optimum Detection and MAP Receivers Error Probabilities Signal Selection and Orthogonal Signaling
Throughout this book we have studied electrical communication primarily in terms of signals—desired information-bearing signals corrupted by noise and interference signals. Although signal theory has proved to be a valuable tool, it does not come to grips with the fundamental communication process of information transfer. Recognizing the need for a broader viewpoint, Claude Shannon drew upon the earlier work of Nyquist and Hartley and the concurrent investigations of Wiener to develop and set forth in 1948 a radically new approach he called "A Mathematical Theory of Communication."

Shannon's paper isolated the central task of communication engineering in this question: Given a message-producing source, not of our choosing, how should the messages be represented for reliable transmission over a communication channel with its inherent physical limitations? To address that question, Shannon concentrated on the message information per se rather than on the signals. His approach was soon renamed information theory, and it has subsequently evolved into a hybrid mathematical and engineering discipline.

Information theory deals with three basic concepts: the measure of source information, the information capacity of a channel, and coding as a means of utilizing channel capacity for information transfer. The term coding is taken here in the broadest sense of message representation, including both discrete and continuous waveforms. The three concepts of information theory are tied together through a series of theorems that boil down to the following:

If the rate of information from a source does not exceed the capacity of a communication channel, then there exists a coding technique such that the information can be transmitted over the channel with an arbitrarily small frequency of errors, despite the presence of noise.

The surprising, almost incredible aspect of this statement is its promise of error-free transmission on a noisy channel, a condition achieved with the help of coding.

Optimum coding matches the source and channel for maximum reliable information transfer, roughly analogous to impedance matching for maximum power transfer. The coding process generally involves two distinct encoding/decoding operations, portrayed diagrammatically by Fig. 16.0–1. The channel encoder/decoder units perform the task of error-control coding as discussed in Sects. 13.1–13.3 where we saw how the effects of channel noise could be reduced. Information theory goes a step further, asserting that optimum channel coding yields an equivalent noiseless channel with a well-defined capacity for information transmission. The source encoder/decoder units then match the source to the equivalent noiseless channel, provided that the source information rate falls within the channel capacity.

This chapter starts with the case of digital or discrete information, including information measure, source coding, information transmission, and discrete channel capacity. Many concepts and conclusions gained from the study of discrete information carry over to the more realistic case of information transmission on a continuous channel, where messages take the form of time-varying signals. The Hartley-Shannon law defines continuous channel capacity in terms of
bandwidth and signal-to-noise ratio, and thereby serves as a benchmark for comparing the performance of communication systems in the light of information theory.

The chapter closes with an application of theory to optimum digital detection. We'll first introduce signal space as a means of representing and quantifying signals. Then the principles of optimum detection will be applied to digital communication.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Define Shannon’s measure of information (Sect. 16.1).
2. Calculate the information rate of a discrete memoryless source (Sect. 16.1).
3. Analyze a discrete memoryless channel, given the source and transition probabilities (Sect. 16.2).
4. State and apply Shannon’s fundamental theorem for information transmission on a noisy channel (Sects. 16.2 and 16.3).
5. State and apply the Hartley-Shannon law for a continuous channel (Sect. 16.3).
6. Draw the vector representation of two or more signals (Sect. 16.4).
7. Construct the decision regions for MAP detection in a two-dimensional space (Sect. 16.5).
8. Find the decision functions for a MAP receiver, and evaluate the symbol error probabilities when there are rectangular decision regions (Sect. 16.5).

16.1 INFORMATION MEASURE AND SOURCE ENCODING

Quite logically, we begin our study of information theory with the measure of information. Then we apply information measure to determine the information rate of discrete sources. Particular attention will be given to binary coding for discrete memoryless sources, followed by a brief look at predictive coding for sources with memory.

Information Measure

The crux of information theory is the measure of information. Here we use information as a technical term, not to be confused with “knowledge” or “meaning”—concepts that defy precise definition and quantitative measurement. In the context of communication, information is simply the commodity produced by the source for transfer to some user at the destination. This implies that the information was previously unavailable at the destination; otherwise, the transfer would be zero.

Suppose, for instance, that you’re planning a trip to a distant city. To determine what clothes to pack, you might hear one of the following forecasts:

- The sun will rise.
- There will be scattered rainstorms.
- There will be a tornado.
The first message conveys virtually no information, since you are quite sure in advance that the sun will rise. The forecast of rain, however, provides information not previously available to you. The third forecast gives you more information, tornadoes being rare and unexpected events; you might even decide to cancel the trip!

Notice that the messages have been listed in order of decreasing likelihood and increasing information. The less likely the message, the more information it conveys. We thus conclude that information measure must be related to uncertainty, the uncertainty of the user as to what the message will be. Alternatively, we can say that information measures the freedom of choice exercised by the source in selecting a message. When a source freely chooses from many different messages, the user is highly uncertain as to which message will be selected.

Whether you prefer the source or user viewpoint, it should be evident that information measure involves the probability of a message. If denotes an arbitrary message and \(P(x) = P_i \) is the probability of the event that \(x \) is selected for transmission, then the amount of information associated with \(x \) should be some function of \(P_i \). Specifically, Shannon defined information measure by the logarithmic function

\[
I_i = -\log_b P_i = \log_b \frac{1}{P_i}
\]

where \(b \) is the logarithmic base. The quantity \(I_i \) is called the **self-information** of message \(x_i \). The value of \(I_i \) depends only on \(P_i \), irrespective of the actual message content or possible interpretations. For suppose you received a weather forecast that said

- The sun will rain tornadoes.

It will convey lots of information—being very improbable—despite the lack of substance.

Although not immediately obvious, the definition in Eq. (1) has several important and meaningful consequences, including

\[
\begin{align*}
I_i &\geq 0 \quad \text{for} \quad 0 \leq P_i \leq 1 \\
I_i &\to 0 \quad \text{for} \quad P_i \to 1 \\
I_i &> I_j \quad \text{for} \quad P_i < P_j
\end{align*}
\]

Hence, \(I_i \) is a nonnegative quantity with the properties that \(I_i = 0 \) if \(P_i = 1 \) (no uncertainty) and \(I_i > I_j \) if \(P_i < P_j \) (information increases with uncertainty). Furthermore, suppose a source produces two successive and independent messages, \(x_i \) and \(x_j \), with joint probability \(P(x_i x_j) = P_i P_j \); then

\[
I_{ij} = \log_b \frac{1}{P_i P_j} = \log_b \frac{1}{P_i} + \log_b \frac{1}{P_j} = I_i + I_j
\]

so the total information equals the sum of the individual message contributions. Shannon’s information measure \(\log_b (1/P_i) \) is the only function that satisfies all of the properties in Eqs. (2) and (3).
Specifying the logarithmic base \(b \) determines the unit of information. The standard convention of information theory takes \(b = 2 \) and the corresponding unit is the **bit**, a name coined by J. W. Tukey as the contraction for “binary digit.” Equation (1) thus becomes \(l_i = \log_2 (1/P_i) \) bits. This convention normalizes information measure relative to the most elementary source, a source that selects from just two equiprobable messages. For if \(P(x_i) = P(x_2) = 1/2 \), then \(l_1 = l_2 = \log_2 2 = 1 \) bit. In other words, 1 bit is the amount of information needed to choose between two equally likely alternatives.

Binary digits enter the picture simply because any two things can be represented by the two binary digits. However, you must carefully distinguish information bits from binary digits per se—especially since a binary digit may convey more or less than one bit of information, depending upon its probability. To prevent possible misinterpretation, the abbreviation binits is sometimes used for binary digits as message or code elements.

When necessary, you can convert base-2 to natural or common logarithms via

\[
\log_2 v = \frac{\ln v}{\ln 2} = \frac{\log_{10} v}{\log_{10} 2} \tag{4}
\]

If \(P_i = 1/10 \), for instance, then \(l_i = (\log_{10} 10)/0.301 = 3.32 \) bits.

Entropy and Information Rate

Now consider an information source that emits a sequence of symbols selected from an alphabet of \(M \) different symbols, i.e., an \(M \)-ary alphabet. Let \(X \) denote the entire set of symbols \(x_1, x_2, \ldots, x_M \). We can treat each symbol \(x_i \) as a message that occurs with probability \(P_i \) and conveys the self-information \(l_i \). The set of symbol probabilities, of course, must satisfy

\[
\sum_{i=1}^{M} P_i = 1 \tag{5}
\]

We’ll assume that the source is stationary, so the probabilities remain constant over time. We’ll also assume that successive symbols are statistically independent and come from the source at an average rate of \(r \) symbols per second. These properties define the model of a **discrete memoryless source**.

The amount of information produced by the source during an arbitrary symbol interval is a discrete random variable having the possible values \(l_1, l_2, \ldots, l_M \). The expected information per symbol is then given by the statistical average

\[
H(X) \triangleq \sum_{i=1}^{M} P_i l_i = \sum_{i=1}^{M} P_i \log_2 \frac{1}{P_i} \text{ bits/symbol} \tag{6}
\]

which is called the source **entropy**. Shannon borrowed the name and notation \(H \) from a similar expression in statistical mechanics. Subsequently, various physical and philosophical arguments have been put forth relating thermodynamic entropy to communication entropy (or comentropy).

But we’ll interpret Eq. (6) from the more pragmatic observation that when the source emits a sequence of \(n \gg 1 \) symbols, the total information to be transferred is
about $nH(X)$ bits. Since the source produces r symbols per second on average, the
time duration of this sequence is about n/r. The information must therefore be trans-
ferred at the average rate $nH(X)/(n/r) = rH(X)$ bits per second. Formally, we define
the source information rate

$$R \triangleq rH(X) \text{ bits/sec}$$

a critical quantity relative to transmission. Shannon asserted that information from
any discrete memoryless source can be encoded as binary digits and transmitted over
a noiseless channel at the signaling rate $r_b \equiv R$ b/nits/sec. As preparation for the
study of source coding, we need to know more about entropy.

The value of $H(X)$ for a given source depends upon the symbol probabilities P_i
and the alphabet size M. Nonetheless, the source entropy always falls within the limits

$$0 \leq H(X) \leq \log_2 M$$

The lower bound here corresponds to no uncertainty or freedom of choice, which
occurs when one symbol has probability $P_i = 1$ while $P_j = 0$ for $i \neq j$—so the
source almost always emits the same symbol. The upper bound corresponds to max-
imum uncertainty or freedom of choice, which occurs when $P_i = 1/M$ for all i—so
the symbols are equally likely.

To illustrate the variation of $H(X)$ between these extremes, take the special but
important case of a binary source ($M = 2$) with

$$P_1 = p \quad P_2 = 1 - p$$

Substituting these probabilities into Eq. (6) yields the binary entropy

$$H(X) = \Omega(p) \triangleq p \log_2 \frac{1}{p} + (1 - p) \log_2 \frac{1}{1 - p}$$

in which we’ve introduced the “horseshoe” function $\Omega(p)$. The plot of $\Omega(p)$ in
Fig. 16.1–1 displays a rather broad maximum centered at $p = 1 - p = 1/2$ where
$H(X) = \log_2 2 = 1$ bit/symbol; $H(X)$ then decreases monotonically to zero as
$p \to 1$ or $1 - p \to 1$.

Proving the lower bound in Eq. (8) with arbitrary M is easily done once you note
that $v \log_2 (1/v) \to 0$ as $v \to 0$. The proof of the upper bound $H(X) \leq \log_2 M$
involves a few more steps but deserves the effort.

First, we introduce another set of probabilities Q_1, Q_2, \ldots, Q_M, and replace
$\log_2 (1/P_i)$ in Eq. (6) with $\log_2 (Q_i/P_i)$. Conversion from base-2 to natural loga-
Rithms gives the quantity

$$\sum_i P_i \log_2 \frac{Q_i}{P_i} = \frac{1}{\ln 2} \sum_i \ln \frac{Q_i}{P_i}$$

where it’s understood that all sums range from $i = 1$ to M. Second, we invoke the
inequality $\ln v \leq v - 1$, which becomes an equality only if $v = 1$, as seen in
Fig. 16.1–2. Thus, letting $v = P_i/Q_i$ and using Eq. (5),
EXAMPLE 16.1–1

Third, we impose the condition

$$\sum_{i=1}^{M} Q_i = 1$$

(10a)

so it follows that

$$\sum_{i=1}^{M} p_i \log_2 \frac{Q_i}{p_i} \leq 1 - 1 = 0$$

(10b)

Finally, taking $Q_i = 1/M$ we have

$$\sum_i p_i \log_2 \frac{1}{p_i/M} = \sum_i p_i \log_2 \frac{1}{p_i} - \sum_i p_i \log_2 M = H(X) - \log_2 M \leq 0$$

thereby confirming that $H(X) \leq \log_2 M$. The equality holds only in the equally likely case $p_i = 1/M$ so $v = Q_i/p_i = 1/M p_i = 1$ for all i.

Source Entropy and Signaling Rate

Suppose a source emits $r = 2000$ symbols/sec selected from an alphabet of size $M = 4$ with symbol probabilities and self information listed in Table 16.1–1. Equation (6) gives the source entropy

$$H(X) = \frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{8} \times 3 = 1.75 \text{ bits/symbol}$$

which falls somewhat below the maximum value $\log_2 M = 2$. The information rate is

$$R = 2000 \times 1.75 = 3500 \text{ bits/sec}$$

and appropriate coding should make it possible to transmit the source information at the binary signaling rate $r_b \approx 3500$ binit/s.
EXERCISE 16.1–1
Suppose a source has \(M = 3 \) symbols with probabilities \(P_1 = p \) and \(P_2 = P_3 \). Show that \(H(X) = \Omega(p) + 1 - p \). Then evaluate \(H(X) \big|_{\text{max}} \) and the corresponding value of \(p \).

Coding for a Discrete Memoryless Channel

When a discrete memoryless source produces \(M \) equally likely symbols, so \(R = r \log_2 M \), all symbols convey the same amount of information and efficient transmission can take the form of \(M \)-ary signaling with a signaling rate equal to the symbol rate \(r \). But when the symbols have different probabilities, so \(R = rH(X) < r \log_2 M \), efficient transmission requires an encoding process that takes account of the variable amount of information per symbol. Here, we’ll investigate source encoding with a binary encoder. Equivalent results for nonbinary encoding just require changing the logarithmic base.

The binary encoder in Fig. 16.1–3 converts incoming source symbols to codewords consisting of binary digits produced at some fixed rate \(r_b \). Viewed from its...
output, the encoder looks like a binary source with entropy \(\Omega(p) \) and information rate \(r_b \Omega(p) \leq r_b \log_2 2 = r_b \). Coding obviously does not generate additional information, nor does it destroy information providing that the code is **uniquely decipherable**. Thus, equating the encoder’s input and output information rates, we conclude that \(R = rH(X) = r_b \Omega(p) \leq r_b \) or \(r_b / r \geq H(X) \).

The quantity \(N = r_b / r \) is an important parameter called the **average code length**. Physically, \(N \) corresponds to the average number of binary digits per source symbol. Mathematically, we write the statistical average

\[
\bar{N} = \sum_{i=1}^{M} p_i N_i
\]

where \(N_i \) represents the length of the codeword for the \(i \)th symbol.

Shannon’s **source coding theorem** states that the minimum value of \(\bar{N} \) is bounded by

\[
H(X) \leq \bar{N} < H(X) + \epsilon
\]

with \(\epsilon \) being a positive quantity. The value of \(\epsilon \) can be made arbitrarily small, in theory, and optimum source encoding achieves the lower bound \(\bar{N} = H(X) \). In practice, we often settle for suboptimum coding with \(\bar{N} > H(X) \) if the code has reasonably good efficiency. The ratio \(R_r = H(X) / \bar{N} \leq 1 \) serves as the measure of efficiency for suboptimum codes.

The source coding theorem presumes a uniquely decipherable code to ensure that no information is lost. This requirement imposes an additional but indirect constraint on \(N \). Specifically, as a necessary and sufficient condition for a uniquely decipherable binary code, the word lengths \(N_i \) must be such that

\[
K = \sum_{i=1}^{M} 2^{-N_i} \leq 1
\]

which is the **Kraft inequality**. The simplest encoding process generates a fixed-length code, all codewords having the same length \(N_i = \bar{N} \). The Kraft inequality in Eq. (13) then becomes \(K = M 2^{-H(X)} \leq 1 \), so decipherability requires \(\bar{N} \geq \log_2 M \) and the resulting efficiency is \(H(X) / \bar{N} \leq H(X) / \log_2 M \). When \(H(X) < \log_2 M \), higher efficiency calls for variable-length coding to reduce the average code length \(\bar{N} \). An example should help clarify these concepts.
The efficiency is $H(X)/\bar{N} = 1.75/2 \approx 88\%$—not bad, but we can do better with a variable-length code.

Application of Eqs. (11) and (13) to Code II gives

$$\bar{N} = \frac{1}{2} \times 1 + \frac{1}{4} \times 1 + \frac{1}{8} \times 2 + \frac{1}{8} \times 2 = 1.25 < H(X)$$

$$K = 2^{-1} + 2^{-1} + 2^{-2} + 2^{-2} = 1.5 > 1$$

The result $\bar{N} < H(X)$ is meaningless because $K > 1$, which tells us that this code is not uniquely decipherable. For instance, the code sequence 10011 could be decoded as BAABB or CABB or CAD, and so on. Hence, Code II effectively destroys source information and cannot be used.

Code III, known as a comma code, has $K < 1$ and ensures decipherability by marking the start of each word with the binary digit 0. However, the extra comma digits result in \bar{N}.

Code IV is a tree code with the property that no codeword appears as the prefix in another codeword. Thus, for example, you can check that the code sequence 11001111 unambiguously represents the message CABD. This code is optimum for the source in question since it has $\bar{N} = 1.75 = H(X)$ as well as $K = 1$.

Having demonstrated optimum coding by example, we turn to a general proof of the source coding theorem. For this purpose we start with Eq. (10b), taking $Q_i = 2^{-N_i}/K$ where K is the same as in Eq. (13), which satisfies Eq. (10a). Then

$$\sum_i P_i \log_2 \frac{Q_i}{P_i} = \sum_i P_i \left(\log_2 \frac{1}{P_i} - N_i - \log_2 K \right) = H(X) - \bar{N} - \log_2 K \leq 0$$

or, since $\log_2 K \leq 0$, we have

$$\bar{N} \geq H(X)$$

which establishes the lower bound in Eq. (12). The equality holds when $K = 1$ and $P_i = Q_i$. Optimum source encoding with $\bar{N} = H(X)$ therefore requires $K = 1$ and symbol probabilities of the form

$$P_i = 2^{-N_i}, \quad i = 1, 2, \ldots, M$$

so that $N_i = -\log_2 P_i = I_i$.

<table>
<thead>
<tr>
<th>x_i</th>
<th>P_i</th>
<th>Code I</th>
<th>Code II</th>
<th>Code III</th>
<th>Code IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1/4</td>
<td>01</td>
<td>1</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>10</td>
<td>10</td>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>D</td>
<td>1/8</td>
<td>11</td>
<td>11</td>
<td>0111</td>
<td>111</td>
</tr>
<tr>
<td>\bar{N}</td>
<td>2.0</td>
<td>1.25</td>
<td>1.875</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>1.0</td>
<td>1.5</td>
<td>0.9375</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
An optimum code must also have equally likely 1s and 0s in order to maximize the binary entropy at $\Omega(p) = 1$. Code IV in Table 16.1–2 exemplifies these optimal properties.

Granted, we can’t expect every source to obey Eq. (14), and we certainly can’t control the statistics of an information source. Even so, Eq. (14) contains a significant implication for practical source coding, to wit:

Symbols that occur with high probability should be assigned shorter codewords than symbols that occur with low probability.

Long before Shannon, Samuel Morse applied this commonsense principle to his telegraph code for English letters. (Incidentally, Morse estimated letter probabilities by counting the distribution of type in a printer’s font.) We’ll invoke this principle to establish the upper bound in the source coding theorem.

Let the length of the ith codeword be an integer N_i that falls within $l_i \leq N_i < l_i + 1$ or

$$\log_2 \frac{1}{p_i} \leq N_i < \log_2 \frac{1}{p_i} + 1 \quad (15)$$

You can easily confirm that this relationship satisfies the Kraft inequality. Multiplying Eq. (15) by P_i and summing over i then yields

$$H(X) \leq \mathbb{N} < H(X) + 1 \quad (16)$$

Hence, a code constructed in agreement with Eq. (15) will be reasonably efficient if either $H(X) \gg 1$ or $N_i = \log_2 (1/P_i)$ for all i. If neither condition holds, then we must resort to the process called **extension coding**.

For an extension code, n successive source symbols are grouped into blocks and the encoder operates on the blocks rather than on individual symbols. Since each block consists of n statistically independent symbols, the block entropy is just $nH(X)$. Thus, when the coding rule in Eq. (15) is modified and applied to the extension code, Eq. (16) becomes $nH(X) \leq n\mathbb{N} < nH(X) + 1$, where $n\mathbb{N}$ is the average number of binary digits per block. Upon dividing by n we get

$$H(X) \leq \overline{N} < H(X) + \frac{1}{n} \quad (17)$$

which is our final result.

Equation (17) restates the source coding theorem with $\epsilon = 1/n$. It also shows that $\overline{N} \rightarrow H(X)$ as $n \rightarrow \infty$, regardless of the source statistics. We’ve thereby proved that an nth-extension code comes arbitrarily close to optimum source coding. What we haven’t addressed is the technique of actual code construction. Systematic algorithms for efficient and practical source coding are presented in various texts. The following example serves as an illustration of one technique.
Table 16.1–3 Shannon-Fano coding

<table>
<thead>
<tr>
<th>x_i</th>
<th>P_i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.50</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0.15</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>0.15</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>D</td>
<td>0.08</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>E</td>
<td>0.08</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>0.02</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>11110</td>
</tr>
<tr>
<td>G</td>
<td>0.01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>111110</td>
</tr>
<tr>
<td>H</td>
<td>0.01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>111111</td>
</tr>
</tbody>
</table>

EXAMPLE 16.1–3 Shannon-Fano coding

Shannon-Fano coding generates an efficient code in which the word lengths increase as the symbol probabilities decrease, but not necessarily in strict accordance with Eq. (15). The algorithm provides a tree-code structure to ensure unique decipherability. We’ll apply this algorithm to the source with $M = 8$ and $H(X) = 2.15$ whose statistics are listed in Table 16.1–3.

The Shannon-Fano algorithm involves a succession of divide-and-conquer steps. For the first step, you draw a line that divides the symbols into two groups such that the group probabilities are as nearly equal as possible; then you assign the digit 0 to each symbol in the group above the line and the digit 1 to each symbol in the group below the line. For all subsequent steps, you subdivide each group into subgroups and again assign digits by the previous rule. Whenever a group contains just one symbol, as happens in the first and third steps in the table, no further subdivision is possible and the codeword for that symbol is complete. When all groups have been reduced to one symbol, the codewords are given by the assigned digits reading from left to right. A careful examination of Table 16.1–3 should clarify this algorithm.

The resulting Shannon-Fano code in this case has $\bar{N} = 2.18$ so the efficiency is $2.15/2.18 \approx 99\%$. Thus, if the symbol rate is $r = 1000$, then $r_b = \bar{N}r = 2180$ binit/s—slightly greater than $R = rH(X) = 2150$ binit/s. As comparison, a fixed-length code would require $\bar{N} = \log_2 8 = 3$ and $r_b = 3000$ binit/s.

EXERCISE 16.1–2

Apply the Shannon-Fano algorithm to the source in Table 16.1–2. Your result should be identical to Code IV. Then confirm that this code has the optimum property that $N_i = l_i$ and that 0s and 1s are equally likely.

Predictive Coding for Sources With Memory

Up to this point we’ve assumed a memoryless source whose successive symbols are statistically independent. But many information sources have memory in the sense...
that the symbol probabilities depend on one or more previous symbols. Written language, being governed by rules of spelling and grammar, provides a good illustration of a source with memory. For instance, the letter \(U \) (capitalized or not) occurs in English text with probability on the basis of relative frequency; but if the previous letter is \(Q \), then the conditional probability becomes Clearly, memory effect reduces uncertainty and thereby results in a lower value of entropy than would be calculated using absolute rather than conditional source statistics.

Suppose that a source has a **first-order memory**, so it “remembers” just one previous symbol. To formulate the entropy, let be the conditional probability that symbol is chosen after symbol Substituting for in Eq. (6), we have the conditional entropy

\[
H(X | x_i) \triangleq \sum_i P_{ij} \log_2 \frac{1}{P_{ij}} \tag{18a}
\]

which represents the average information per symbol given that the previous symbol was \(x_i \). Averaging over all possible previous symbols then yields

\[
H(X) = \sum_i P_i H(X | x_i) \tag{18b}
\]

An equivalent expression applies to the general case of a \(q \)th-order memory. However, the notation gets cumbersome because \(x_i \) must be replaced by the state of the source defined in terms of the previous \(q \) symbols, and there are \(M^q \) possible states to consider.

A source with memory is said to be **redundant** when the conditional probabilities significantly reduce \(H(X) \) compared to the upper bound \(\log_2 M \). The redundancy of English text has been estimated at about 50 percent, meaning that roughly half the symbols in a long passage are not essential to convey the information. For example, “yu shd babl t read ths evntho sevrl ltrs r msng.” It likewise follows that if uncertainty is reduced by memory effect, then predictability is increased. Coding for efficient transmission can then be based on some prediction method. Here we’ll analyze the scheme known as **predictive run encoding** for a discrete source with memory.

Consider the encoding system in Fig. 16.1–4a, where source symbols are first converted to a binary sequence with digit rate \(r \). Let \(x(i) \) denote the \(i \)th digit in the binary sequence, and let \(\hat{x}(i) \) be the corresponding digit generated by a predictor. Mod-2 addition of \(x(i) \) and \(\hat{x}(i) \) yields the binary error sequence \(e(i) \) such that \(e(i) = 0 \) when \(\hat{x}(i) = x(i) \) and \(e(i) = 1 \) when \(\hat{x}(i) \neq x(i) \). The error sequence is fed back to the predictor in order to update the prediction process. The decoding system in Fig. 16.1–4b employs an identical predictor to reconstruct the source symbols from the mod-2 sum \(\hat{x}(i) = x(i) \oplus e(i) \). We’ll assume the source is sufficiently predictable that a predictor can be devised whose probability of a correct prediction is

\[
p = P[e(i) = 0] > 1/2
\]

We’ll also assume that prediction errors are statistically independent. Hence the error sequence entropy is \(\Omega(p) < 1 \) and appropriate encoding should allow information transmission at the rate \(r_b < r \).
Predictive run encoding exploits the fact that the error sequence consists of more 0s than 1s—the better the prediction, the higher the percentage of 0s. We define a run of \(n \) to be a string of \(n \) successive 0s followed by a 1. Instead of transmitting these strings of \(n + 1 \) digits, the encoder represents the successive values of \(n \) as \(k \)-digit binary codewords. A single codeword can represent any value of \(n \) in the range \(0 \leq n \leq m - 1 \), where

\[
m = 2^k - 1
\]

When a run has \(n \geq m \), the encoder sends a \(k \)-digit word consisting entirely of 1s, which tells the decoder to wait for the next codeword to determine \(n \). Table 16.1–4 summarizes the encoding and decoding algorithm.

Efficient transmission results if, on the average, the codewords have fewer digits than the runs they represent. In particular, let \(\bar{E} \) be the average number of error

Table 16.1–4 Run encoding algorithm

<table>
<thead>
<tr>
<th>(n)</th>
<th>Encoder Output ((k) digits/codeword)</th>
<th>Decoder Output ((\leq m) digits/word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00…000</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>00…001</td>
<td>01</td>
</tr>
<tr>
<td>2</td>
<td>00…010</td>
<td>001</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>(m - 1)</td>
<td>11…110</td>
<td>000…01</td>
</tr>
<tr>
<td>(\geq m)</td>
<td>11…111</td>
<td>000…00</td>
</tr>
</tbody>
</table>
digits per run and let \bar{N} be the average number of codeword digits per run, so the encoded digit rate is $r_{\bar{N}} = (\bar{N}/E)r$. If $\bar{N}/E < 1$ then $r_{\bar{N}} < r$ and we say that predictive run encoding achieves rate reduction or data compression. The compression ratio \bar{N}/E is found from the following calculations.

First, note that a run consists of $E = n + 1$ error digits, including the 1 at the end, so the probability of a run of n is

$$P(n) = p^n(1 - p)$$

Hence,

$$E = \sum_{n=0}^{\infty} (n+1)p(n) = (1 - p) \sum_{n=0}^{\infty} (n+1)p^n = \frac{1}{1 - p}$$

(19)

where we've evaluated the summation using the series expansion

$$(1 - v)^{-2} = 1 + 2v + 3v^2 + \cdots = \sum_{n=0}^{\infty} (n+1)v^n$$

(20)

which holds when $v^2 < 1$.

Next, since long runs must be represented by more than one k-digit codeword, we write

$$N = Lk$$

$L = 1, 2, 3, \ldots$

where L is related to n via $(L - 1)m \leq n \leq Lm - 1$. The average number of code digits per run is then given by

$$\bar{N} = k \sum_{n=0}^{m-1} P(n) + 2k \sum_{n=m}^{2m-1} P(n) + \cdots = k(1 - p) \left(\sum_{n=0}^{m-1} p^n \right) \sum_{i=0}^{\infty} (i + 1)(p^m)^i$$

The first summation is a standard form and the second can be evaluated using Eq. (20), with the final result that

$$\bar{N} = k(1 - p) \frac{p^m - 1}{p - 1}(1 - p^m)^{-2} = \frac{k}{1 - p^m} = \frac{k}{1 - p^{2k-1}}$$

(21)

Since \bar{N} depends on k and p, there is an optimum value of k that minimizes \bar{N} for a given predictor.

Table 16.1–5 lists a few values of p and the corresponding optimum values of k. Also listed are the resulting values of \bar{N}, E, and the compression ratio $\bar{N}/E = r_{\bar{N}}/r$.

<table>
<thead>
<tr>
<th>p</th>
<th>k_{opt}</th>
<th>\bar{N}</th>
<th>E</th>
<th>\bar{N}/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>1</td>
<td>2.50</td>
<td>2.5</td>
<td>1.00</td>
</tr>
<tr>
<td>0.8</td>
<td>3</td>
<td>3.80</td>
<td>5.0</td>
<td>0.76</td>
</tr>
<tr>
<td>0.9</td>
<td>4</td>
<td>5.04</td>
<td>10.0</td>
<td>0.50</td>
</tr>
<tr>
<td>0.95</td>
<td>6</td>
<td>6.25</td>
<td>20.0</td>
<td>0.31</td>
</tr>
</tbody>
</table>
This table shows that predictive run encoding achieves substantial compression when we know enough about the source to build a predictor with $p > 0.8$.

EXERCISE 16.1–3
In facsimile transmission a text is scanned and sample values are converted to 0s and 1s for white and black, respectively. Since there are usually many more 0s than 1s, the source clearly has memory. Suppose a predictor can be built with $p = 0.9$. Estimate an upper bound on the source entropy less than $\log_2 2 = 1$ bit/sample.

16.2 INFORMATION TRANSMISSION ON DISCRETE CHANNELS

This section applies information theory to the study of information transmission. We’ll assume that both the source and the transmission channel are discrete, so we can measure the amount of information transferred and define the channel capacity. Shannon asserted that, with appropriate coding, nearly errorless information transmission is possible on a noisy channel if the rate does not exceed the channel capacity. This fundamental theorem will be examined in conjunction with the binary symmetric channel, an important channel model for the analysis of digital communication systems.

Mutual Information

Consider the information transmission system represented by Fig. 16.2–1. A discrete source selects symbols from an alphabet X for transmission over the channel. Ideally, the transmission channel should reproduce at the destination the symbols emitted by the source. However, noise and other transmission impairments alter the source symbols, resulting in a different symbol alphabet Y at the destination. We want to measure the information transferred in this case.

Several types of symbol probabilities will be needed to deal with the two alphabets here, and we’ll use the notation defined as follows:

- $P(x_i)$ is the probability that the source selects symbol x_i for transmission.
- $P(y_j)$ is the probability that symbol y_j is received at the destination.
- $P(x_i, y_j)$ is the joint probability that x_i is transmitted and y_j is received.
- $P(x_i | y_j)$ is the conditional probability that x_i was transmitted given that y_j is received.
- $P(y_j | x_i)$ is the conditional probability that y_j is received given that x_i was transmitted.

![Figure 16.2–1](Discrete information transmission system.)
We’ll assume, for simplicity, that the channel is time-invariant and memoryless, so the conditional probabilities are independent of time and previous symbol transmissions. The conditional probabilities \(P(y_j | x_i) \) then have special significance as the channel’s forward transition probabilities.

For example, Fig. 16.2–2 depicts the forward transitions for a noisy channel with two source symbols and three destination symbols. If this system is intended to deliver when and when then the symbol error probabilities are given by for \(j \neq i \).

Our quantitative description of information transfer on a discrete memoryless channel begins with the mutual information

\[
I(x_i; y_j) \triangleq \log_2 \frac{P(x_i | y_j)}{P(x_i)} \text{ bits}
\]

which measures the amount of information transferred when \(x_i \) is transmitted and \(y_j \) is received. To lend support to this definition, we’ll look at two extreme cases. On the one hand, suppose we happen to have an ideal noiseless channel such that each \(y_j \) uniquely identifies a particular \(x_i \); then \(P(x_i | y_j) = 1 \) and \(I(x_i; y_j) = \log_2 \left[1 / P(x_i) \right] \) —so the transferred information equals the self-information of \(x_i \). On the other hand, suppose the channel noise has such a large effect that \(y_j \) is totally unrelated to \(x_i \); then \(P(x_i | y_j) = P(x_i) \) and \(I(x_i; y_j) = \log_2 1 = 0 \)—so no information is transferred. These extreme cases make sense intuitively.

Most transmission channels fall somewhere between the extremes of perfect transfer and zero transfer. To analyze the general case, we define the average mutual information

\[
I(X; Y) \triangleq \sum_{x,y} P(x,y) I(x_i; y_j) = \sum_{x,y} P(x,y) \log_2 \frac{P(x,y)}{P(x)} \text{ bits/symbol}
\]

where the summation subscripts indicate that the statistical average is taken over both alphabets. The quantity \(I(X; Y) \) represents the average amount of source information gained per received symbol, as distinguished from the average information per source symbol represented by the source entropy \(H(X) \).
Several different but equivalent expressions for the mutual information can be derived using the probability relationships

\[P(x | y) = P(x | y) P(y) = P(y | x) P(x) \] \hspace{1cm} (3a)

\[P(x) = \sum_y P(x | y) \quad P(y) = \sum_x P(x | y) \] \hspace{1cm} (3b)

In particular, let’s expand Eq. (2) as

\[I(X; Y) = \sum_{x,y} P(x, y) \log_2 \frac{1}{P(x | y)} - \sum_x P(x) \log_2 \frac{1}{P(x | y)} \]

so the first term simplifies to

\[\sum_x \left(\sum_y P(x | y) \log_2 \frac{1}{P(x)} \right) = \sum_x P(x) \log_2 \frac{1}{P(x)} = H(X) \]

Hence,

\[I(X; Y) = H(X) - H(X | Y) \] \hspace{1cm} (4)

where we’ve introduced the **equivocation**

\[H(X | Y) \overset{\Delta}{=} \sum_{x,y} P(x, y) \log_2 \frac{1}{P(x | y)} \] \hspace{1cm} (5)

Equation (4) says that the average information transfer per symbol equals the source entropy minus the equivocation. Correspondingly, the equivocation represents the information lost in the noisy channel.

For another perspective on information transfer, we return to Eq. (2) and note from Eq. (3a) that

\[P(x | y) / P(x) = P(y | x) / P(y) \]

so

\[I(X; Y) = I(Y; X) \]

Therefore, upon interchanging X and Y in Eq. (4), we have

\[I(X; Y) = H(Y) - H(Y | X) \] \hspace{1cm} (6)

with

\[H(Y) = \sum_y P(y) \log_2 \frac{1}{P(y)} \quad H(Y | X) = \sum_{x,y} P(x, y) \log_2 \frac{1}{P(y | x)} \] \hspace{1cm} (7)

Equation (6) says that the information transferred equals the destination entropy \(H(Y) \) minus the **noise entropy** \(H(Y | X) \) added by the channel. The interpretation of \(H(Y | X) \) as noise entropy follows from our previous observation that the set of forward transition probabilities \(P(y_i | x) \) includes the symbol error probabilities.

EXAMPLE 16.2–1 The binary symmetric channel

Figure 16.2–3 depicts the model of a **binary symmetric channel** (BSC). There are two source symbols with probabilities

\[P(x_1) = p \quad P(x_2) = 1 - p \]
Figure 16.2–3 Binary symmetric channel (BSC).

and two destination symbols with forward transition probabilities

\[P(y_1 \mid x_1) = P(y_2 \mid x_1) = \alpha \quad P(y_1 \mid x_2) = P(y_2 \mid x_2) = 1 - \alpha \]

This model could represent any binary transmission system in which errors are statistically independent and the error probabilities are the same for both symbols, so the average error probability is

\[P_e = P(x_1)P(y_2 \mid x_1) + P(x_2)P(y_1 \mid x_2) = p\alpha + (1 - p)\alpha = \alpha \]

Since we know the forward transition probabilities, we’ll use \(I(X; Y) = H(Y) - H(Y \mid X) \) to calculate the mutual information in terms of \(p \) and \(\alpha \).

The destination entropy \(H(Y) \) is easily found by treating the output of the channel as a binary source with symbol probabilities \(P(y_1) \) and \(P(y_2) = 1 - P(y_1) \). We therefore write \(H(Y) = \Omega(P(y_1)) \) where \(\Omega(\cdot) \) is the binary entropy function defined in Eq. (9), Sect. 16.1 (p. 703), and

\[P(y_1) = P(y_1 \mid x_1)P(x_1) + P(y_1 \mid x_2)P(x_2) = \alpha + p - 2\alpha p \]

obtained with the help of Eqs. (3a) and (3b). For the noise entropy \(H(Y \mid X) \), we substitute \(P(x_1 y_1) = P(y_1 \mid x_1)P(x_1) \) into Eq. (7) to get

\[H(Y \mid X) = \sum_x P(x_i) \left(\sum_y P(y_j \mid x_i) \right) \log_2 \left(\frac{1}{P(y_j \mid x_i)} \right) \]

which then reduces to \(H(Y \mid X) = \Omega(\alpha) \). The channel’s symmetry causes this result to be independent of \(p \).

Putting the foregoing expressions together, we finally have

\[I(X; Y) = \Omega(\alpha + p - 2\alpha p) \quad \Omega(\alpha) \] \hspace{1cm} (8)

so the information transfer over a BSC depends on both the error probability \(\alpha \) and the source probability \(p \). If the noise is small, then \(\alpha \ll 1 \) and \(I(X; Y) \approx \Omega(p) = H(X) \); if the noise is very large, then \(\alpha = 1/2 \) and \(I(X; Y) = 0 \).

Confirm that \(H(Y \mid X) = \Omega(\alpha) \) for a BSC.

EXERCISE 16.2–1
CHAPTER 16 • Information and Detection Theory

Consider a channel with the property that \(x_i \) and \(y_j \) are statistically independent for all \(i \) and \(j \). Show that \(H(X \mid Y) = H(X) \) and \(I(X; Y) = 0 \).

Discrete Channel Capacity

We’ve seen that discrete memoryless channels transfer a definite amount of information \(I(X; Y) \), despite corrupting noise. A given channel usually has fixed source and destination alphabets and fixed forward transition probabilities, so the only variable quantities in \(I(X; Y) \) are the source probabilities \(p(x_i) \). Consequently, maximum information transfer requires specific source statistics—obtained, perhaps, through source encoding. Let the resulting maximum value of \(I(X; Y) \) be denoted by

\[
C_s \triangleq \max_{p(x_i)} I(X; Y) \quad \text{bits/symbol} \quad (9)
\]

This quantity represents the maximum amount of information transferred per channel symbol (on the average) and is called the **channel capacity**. We also measure capacity in terms of information rate. Specifically, if \(s \) stands for the maximum symbol rate allowed by the channel, then the capacity per unit time is

\[
C = sC_s \quad \text{bits/sec} \quad (10)
\]

which represents the maximum rate of information transfer.

The significance of channel capacity becomes most evident in the light of Shannon’s **fundamental theorem for a noisy channel**, stated as follows:

> If a channel has capacity \(C \) and a source has information rate \(R < C \), then there exists a coding system such that the output of the source can be transmitted over the channel with an arbitrarily small frequency of errors. Conversely, if \(R > C \), then it is not possible to transmit the information without errors.

A general proof of this theorem goes well beyond our scope, but we’ll attempt to make it plausible by considering two particular cases.

First, suppose we have an ideal noiseless channel with \(\mu = 2^n \) symbols. Then \(I(X; Y) = H(X) \), which is maximized if \(p(x_i) = 1/\mu \) for all \(i \). Thus,

\[
C_s = \max_{p(X)} H(X) = \log_2 \mu = n \quad C = s \mu \quad (11)
\]

Errorless transmission rests in this case on the fact that the channel is noiseless. However, we still need a coding system like the one diagrammed in Fig. 16.2–4 to match the source and channel. The binary source encoder generates binary digits at the rate \(r_b \geq R \) for conversion to \(\mu \)-ary channel symbols at the rate \(s = r_b/\log_2 \mu = r_b/\nu \). Hence,
16.2 Information Transmission on Discrete Channels

Figure 16.2–4 Encoding system for a noiseless discrete channel.

\[
R \leq r_b = s \nu = C \quad \text{bits/sec}
\]

and optimum source encoding achieves maximum information transfer with \(R = r_b = C \). Transmission at \(R > C \) would require a coding system that violates the Kraft inequality; consequently, decoding errors would occur even though the channel is noiseless.

A more realistic case, including channel noise, is the binary symmetric channel from Example 16.2–1. We previously found that \(I(X; Y) = \Omega(\alpha + p - 2\alpha p) - \Omega(\alpha) \), with \(\Omega(\alpha) \) being constant for a fixed error probability \(\alpha \). But \(\Omega(\alpha + p - 2\alpha p) \) varies with the source probability \(p \) and reaches a maximum value of unity when \(\alpha + p - 2\alpha p = 1/2 \), which is satisfied for any \(\alpha \) if \(p = 1/2 \), that is, equally likely binary input symbols. Thus, the capacity of a BSC is

\[
C_s = 1 - \Omega(\alpha) \tag{12}
\]

The plot of \(C_s \) versus \(\alpha \) in Fig. 16.2–5 shows that \(C_s = 1 \) for \(\alpha \ll 1 \), but the capacity rapidly drops to zero as \(\alpha \to 0.5 \). The same curve applies for \(0.5 \leq \alpha \leq 1 \) if you replace \(\alpha \) with \(1 - \alpha \), equivalent to interchanging the two output symbols.

Reliable transmission on a BSC requires channel coding for error control in addition to source coding. Our study of error-control coding in Chap. 13 demonstrated that the error probability per binary message digit could, in fact, be made much smaller than the transmission error probability \(\alpha \). For instance, the (15, 11) Hamming code has code rate \(R_c = 11/15 \) and output error probability \(P_{be} = 14\alpha^2 \).
per message digit; if the BSC has \(\alpha = 10^{-3} \) and symbol rate \(s \), then the Hamming code yields \(P_{be} \approx 10^{-5} \) at the message digit rate \(r_b = R, s \approx 0.73s \). Shannon’s theorem asserts that a better coding system would yield virtually errorless transmission at the rate \(r_b = R \leq C = s[1 - \Omega(\alpha)] \approx s \). We’ll conclude this section with an outline of the argument Shannon used to prove the existence of such a coding system for the BSC.

Coding for the Binary Symmetric Channel

Consider the encoding system diagrammed in Fig. 16.2–6. The BSC has symbol rate \(s \) and capacity \(C_s = 1 - \Omega(\alpha) \), with \(\alpha < 1/2 \). The source produces information at rate \(R \). To maximize the mutual information, an optimum binary source encoder operates on the source symbols and emits equiprobable binary digits. Channel coding for error control is then carried out in two steps. First, a converter transforms blocks of binary digits into equiprobably \(M \)-ary symbols conveying \(\log_2 M \) bits/symbol. Second, the BSC encoder represents each \(M \)-ary symbol by a channel codeword consisting of \(N \) binary channel symbols, hereafter called binit. (Don’t confuse the channel wordlength \(N \) with the average code length \(\overline{N} \) at the output of the source encoder.)

The average information per binit is \((\log_2 M)/N \), and binit are generated at the channel symbol rate \(s \). Hence, we can express the source information rate as

\[
R = s(\log_2 M)/N
\]

where \(M \) and \(N \) are parameters of the channel encoder. Shannon’s theorem requires \(R \leq C = sC_s \), equivalent here to \((\log_2 M)/N \leq C \). The parameters \(M \) and \(N \) must therefore be related by

\[
M = 2^{N(C_s - \epsilon)} \quad (13)
\]

with \(0 \leq \epsilon < C_s \). We’ll show that \(\epsilon \) can be arbitrarily small, so \(R \to C_s \), and that appropriate channel coding makes it possible to recover the \(M \)-ary symbols at the destination with arbitrarily low probability of error—providing that the wordlength \(N \) is very large. In fact, we’ll eventually let \(N \to \infty \) to ensure errorless information transfer. Ideal channel coding for the BSC thus involves infinite time delay. Practical coding systems with finite time delay and finite wordlength will fall short of ideal performance.
The reasoning behind large wordlength for error control comes from the vector picture of binary codewords introduced in Sect. 13.1. Specifically, recall that all of 2^N possible words of length N can be visualized as vectors in an N-dimensional space where distance is measured in terms of Hamming distance. Let the vector V in Fig. 16.2–7 represent one of the M channel codewords, and let V' be the received codeword with n erroneous binits caused by transmission errors. The Hamming distance between V' and V equals n, a random variable ranging from 0 to N. However, when N is very large, V' almost always falls within a Hamming sphere of radius $d < N$ around the tip of V. The decoder correctly decides that V was transmitted if V' is received within the sphere and if none of the remaining $M - 1$ code vectors fall within this sphere.

But Shannon did not propose an explicit algorithm for codeword selection. Instead, he said that randomly selected codewords would satisfy the requirement when $N \to \infty$. Although the random coding approach met with considerable criticism at first, it has subsequently been recognized as a powerful method in coding and information theory. We’ll adopt random codeword selection and we’ll write the probability of a decoding error as

$$P_e = P_{ne} + P_{ce}$$

Here, P_{ne} is the probability of a noise error, so V' falls outside the Hamming sphere, and P_{ce} is the probability of a “code error” in the sense that two or more selected codewords fall within the same Hamming sphere.

A noise error corresponds to the event $n \geq d$. Since transmission errors are statistically independent and occur with probability $\alpha < 1/2$, n is governed by the binomial distribution (p. 371) with mean and variance

$$\bar{n} = N\alpha \quad \sigma^2 = N\alpha(1 - \alpha)$$

If we take the Hamming radius as

$$d = N\beta \quad \alpha < \beta < 1/2 \quad (14a)$$

then Chebyshev’s inequality yields the upper bound

$$P_{ne} = P(n \geq d) \leq \left(\frac{\sigma}{d - \bar{n}}\right)^2 = \frac{\alpha(1 - \alpha)}{N(\beta - \alpha)^2} \quad (14b)$$
Thus, for any $\beta > \alpha$, the probability of a noise error becomes vanishingly small as $N \to \infty$.

To formulate the probability of a "code error," let the vector V in Fig. 16.2–7 represent one of the selected codewords, and let m denote the number of vectors within the Hamming sphere. The remaining $M - 1$ codewords are chosen randomly from the entire set of 2^N vectors, and the probability of selecting one of the m vectors simply equals $m/2^N$. Hence,

$$P_{ce} = (M - 1)m2^{-N} < M m2^{-N} = m2^{-N(\Omega(\alpha) - \epsilon)} \quad (15)$$

where we’ve inserted Eq. (13) for M and written $C_s = 1 - \Omega(\alpha)$. Now we need an upper bound on m as $N \to \infty$.

All of the m vectors within a Hamming sphere of radius d represent binary words of length N that differ in no more than d places. The number of these words that differ in i places equals a binomial coefficient, so

$$m = \sum_{i=0}^{d} \binom{N}{i} = \binom{N}{0} + \binom{N}{1} + \cdots + \binom{N}{d}$$

There are $d + 1$ terms in this sum and the last term is the largest since $d = N/\beta < N/2$; hence,

$$m \leq (d + 1) \binom{N}{d} = (d + 1) \frac{N!}{d!(N - d)!}$$

Then, for the factorial of each of the large numbers N, $d = N/\beta$, and $N - d = N(1 - \beta)$, we apply Stirling’s approximation

$$k! \approx \sqrt{2\pi k} \; k^k \; e^{-k} \quad k \gg 1 \quad (16)$$

and a few manipulations lead to the upper-bound expression

$$m \leq \frac{N\beta + 1}{\sqrt{2\pi N\beta(1 - \beta)}} 2^{N\Omega(\beta)} \quad (17)$$

Combining Eqs. (15) and (17) then gives

$$P_{ce} < \frac{N\beta + 1}{\sqrt{2\pi N\beta(1 - \beta)}} 2^{-N(\epsilon + \Omega(\alpha) - \Omega(\beta))} \quad (18)$$

which is our final result.

Equation (18) shows that the probability of a decoding error caused by random codeword selection goes to zero as $N \to \infty$, providing that $\epsilon > \Omega(\beta) - \Omega(\alpha)$. For a given value of the channel parameter α, we can take $\beta > \alpha$ to satisfy Eq. (14) and still have an arbitrarily small value of $\epsilon > \Omega(\beta) - \Omega(\alpha)$. Under these conditions, we achieve errorless information transfer on the BSC with $R \to C$ as $N \to \infty$.
Having developed concepts of information transmission for the simplified discrete case, we’re now ready to tackle the more realistic case of a continuous source and channel.

We’ll begin with the measure of information from a source that emits a continuous signal. The material may seem heavy going at first, but we’ll then make some reasonable assumptions about the transmission of continuous signals to express channel capacity in terms of bandwidth and signal-to-noise ratio, a result known as the Hartley-Shannon law. This result leads us to the definition of an ideal communication system, which serves as a standard for system comparisons and a guide for the design of improved communication systems.

Continuous Information

A continuous information source produces a time-varying signal \(x(t) \). We’ll treat the set of possible signals as an ensemble of waveforms generated by some random process, assumed to be ergodic. We’ll further assume that the process has a finite bandwidth, meaning that \(x(t) \) is completely characterized in terms of periodic sample values. Thus, at any sampling instant, the collection of possible sample values constitutes a continuous random variable \(X \) described by its probability density function \(p(x) \).

The average amount of information per sample value of \(x(t) \) is measured by the entropy function

\[
H(X) = \Delta \int_{-\infty}^{\infty} p(x) \log_2 \frac{1}{p(x)} \, dx
\]

(1)

where, as before, the logarithmic base is \(b = 2 \). This expression has obvious similarities to the definition of entropy for a discrete source. However, Eq. (1) turns out to be a relative measure of information rather than an absolute measure. The absolute entropy of a continuous source can, in principle, be defined from the following limiting operation.

Let the continuous RV \(X \) be approximated by a discrete RV with values \(x_i = i \Delta x \) for \(i = 0, \pm 1, \pm 2, \ldots \), and probabilities \(P(x_i) \approx p(x_i) \Delta x \). Then, based on the formula for discrete entropy, let the absolute entropy be

\[
H_{\text{abs}}(X) = \lim_{\Delta x \to 0} \sum_i p(x_i) \Delta x \log_2 \frac{1}{p(x_i)} \Delta x
\]

\[
= \lim_{\Delta x \to 0} \sum_i \left[p(x_i) \log_2 \frac{1}{p(x_i)} - p(x_i) \log_2 \Delta x \right] \Delta x
\]

Passing from summation to integration yields

\[
H_{\text{abs}}(X) = H(X) + H_0(X)
\]

(2a)
where

\[H_d(X) = - \lim_{{\Delta x \to 0}} \log_2 \Delta x \int_{{-\infty}}^{\infty} p(x) \, dx = - \lim_{{\Delta x \to 0}} \log_2 \Delta x \] \tag{2b}

which is the reference for the relative entropy \(H(X) \). Since \(H_d(X) = -\log_2 0 = \infty \),
the absolute entropy of a continuous source is always infinite—a useless but reasonable result in view of the fact that \(X \) is a continuous RV with an uncountable number of possible values.

Relative entropy, being finite, serves as a useful measure of information from
continuous sources if you avoid misleading comparisons involving different references. In particular, consider two information signals \(x(t) \) and \(z(t) \). For a valid comparison of their entropy functions we write

\[H_{ab}(Z) - H_{ab}(X) = H(Z) - H(X) + [H_d(Z) - H_d(X)] \]

where

\[H_0(Z) - H_0(X) = - \lim_{{\Delta z \to 0}} \log_2 \Delta z + \lim_{{\Delta x \to 0}} \log_2 \Delta x \]

\[= - \lim_{{\Delta z, \Delta x \to 0}} \log_2 \left| \frac{\Delta z}{\Delta x} \right| = - \log_2 \left| \frac{dz}{dx} \right| \] \tag{3}

If the signals are related in some manner and if \(|dz/dx| = 1 \), then the reference values are equal and \(H(Z) \) and \(H(X) \) are directly comparable.

The inherent nature of relative entropy precludes absolute bounds on \(H(X) \). In fact, the value of \(H(X) \) can be positive, zero, or negative, depending upon the source PDF. Nonetheless, a reasonable question to ask is, What \(p(x) \) maximizes \(H(X) \) for a given source? This question is significant because a given source usually has specific signal constraints, such as fixed peak value or average power, that limit the possible PDFs.

Stating the problem in more general terms, we seek the function \(p = p(x) \) that maximizes an integral of the form

\[l = \int_a^b F(x, p) \, dx \]

whose integrand \(F(x, p) \) is a specified function of \(x \) and \(p \). The variable function \(p \) is subject to a set of \(k \) constraints given by

\[\int_a^b F_k(x, p) \, dx = c_k \]

with the \(c_k \) being constants. A theorem from the calculus of variations says that \(l \) is maximum (or minimum) when \(p \) satisfies the equation

\[\frac{\partial F}{\partial p} + \sum_k \lambda_k \frac{\partial F_k}{\partial p} = 0 \] \tag{4}

where the \(\lambda_k \) are **Lagrange's undetermined multipliers**. The values of \(\lambda_k \) are found by substituting the solution of Eq. (4) into the constraint equations.
In the problem at hand, we wish to maximize \(I = H(X) \) as defined by Eq. (1). Thus, we take

\[F(x, p) = p \log_2 (1/p) = -p (\ln p)/\ln 2 \]

Furthermore, \(p(x) \) must obey the essential PDF property

\[\int_{-\infty}^{\infty} p(x) \, dx = 1 \tag{5} \]

so we always have the constraint function and constant

\[F_s(x, p) = p \quad c_1 = 1 \]

Additional constraints come from the particular source limitations, as illustrated in the important example that follows.

Source entropy with fixed average power

Consider the case of a source with fixed average power defined in terms of \(p(x) \) by

\[S \triangleq \bar{x}^2 = \int_{-\infty}^{\infty} x^2 \, p(x) \, dx \tag{6} \]

which imposes the additional constraint function \(F_2 = x^2 p \) and \(c_2 = S \). Inverting \(F_2 \) and \(F_1 \) into Eq. (4) yields

\[-(\ln p + 1) + \lambda_1 + \lambda_2 x^2 = 0 \]

where \(\ln 2 \) has been absorbed in \(\lambda_1 \) and \(\lambda_2 \). Thus,

\[p(x) = e^{\lambda_1 - 1} e^{\lambda_2 x^2} \]

After using Eqs. (5) and (6) to evaluate the multipliers, we get

\[p(x) = \frac{1}{\sqrt{2\pi S}} e^{-x^2/2S} \tag{7} \]

a gaussian function with zero mean and variance \(\sigma^2 = S \).

The corresponding maximum entropy is calculated from Eq. (1) by writing

\[\log_2 1/p(x) = \log_2 \sqrt{2\pi S} + (x^2/2S) \log_2 e. \]

Therefore,

\[H(X) = \log_2 \sqrt{2\pi S} + \frac{1}{2} \log_2 e = \frac{1}{2} \log_2 2\pi eS \tag{8} \]

obtained with the help of Eqs. (5) and (6). Note that this relative entropy has a negative value when \(2\pi eS < 1 \). Even so, for any fixed average power \(S \), we've established the important result that

\[H(X) \leq \frac{1}{2} \log_2 2\pi eS \]

and that the entropy is maximum when \(p(x) \) is a zero-mean gaussian PDF. Other source constraints of course lead to different results.
CHAPTER 16 • Information and Detection Theory

Suppose a source has a peak-value limitation, such that \(-M \leq x(t) \leq M\). (a) By finding the PDF that maximizes \(H(X)\), show that \(H(X) = \log_2 2M\). (b) Let the source waveform be amplified to produce \(z(t) = Kx(t)\). Find \(H(Z)\) and confirm that the absolute entropy remains unchanged even though \(H(Z) \neq H(X)\).

Continuous Channel Capacity

Information transfer on a continuous channel takes the form of signal transmission. The source emits a signal \(x(t)\) which, after corruption by transmission noise, appears at the destination as another signal \(y(t)\). The average mutual information is defined by analogy with the discrete case to be

\[
I(X; Y) \triangleq \int \int_{-\infty}^{\infty} p_{XY}(x, y) \log_2 \frac{p_X(x | y)}{p_X(x)} \, dx \, dy
\]

where \(p_X(x)\) is the source PDF, \(p_{XY}(x, y)\) is the joint PDF, and so on. Averaging with respect to both \(X\) and \(Y\) removes the potential ambiguities of relative entropy. Thus, \(I(X; Y)\) measures the absolute information transfer per sample values of \(y(t)\) at the destination. It can be shown from Eq. (9) that \(I(X; Y) \geq 0\) and that \(I(X; Y) = 0\) when the noise is so great that \(y(t)\) is unrelated to \(x(t)\).

Usually, we know the forward transition PDF \(p_Y(y | x)\) rather than \(p_X(x | y)\). We then calculate \(I(X; Y)\) from the equivalent expression

\[
I(X; Y) = H(Y) - H(Y | X) \tag{10}
\]

in which \(H(Y)\) is the destination entropy and \(H(Y | X)\) is the noise entropy given by

\[
H(Y | X) = \int \int_{-\infty}^{\infty} p_X(x)p_Y(y | x) \log_2 \frac{1}{p_Y(y | x)} \, dx \, dy
\]

If the channel has independent additive noise such that \(y(t) = x(t) + n(t)\), then \(p_Y(y | x) = p_Y(x + n) = p_N(y - x)\), where \(p_N(n)\) is the noise PDF. Consequently, \(H(Y | X)\) reduces to

\[
H(Y | X) = \int_{-\infty}^{\infty} p_N(n) \log_2 \frac{1}{p_N(n)} \, dn \tag{11}
\]

independent of \(p_X(x)\).

Now consider a channel with fixed forward transition PDF, so the maximum information transfer per sample value of \(y(t)\) is

\[
C_s \triangleq \max_{p_Y(x)} I(X; Y) \quad \text{bits/sample} \tag{12}
\]

If the channel also has a fixed bandwidth \(B\), then \(y(t)\) is a bandlimited signal completely defined by sample values taken at the Nyquist rate \(f_s = 2B\) — identical to the maximum allowable signaling rate for a given bandwidth \(B\). (Samples taken at
greater than the Nyquist rate would not be independent and carry no additional information.) The maximum rate of information transfer then becomes

\[C \triangleq 2B C_s \text{ bits/sec} \quad (13) \]

which defines the capacity of a bandlimited continuous channel. Shannon’s fundamental theorem for a noisy channel applies here in the sense that errorless transmission is theoretically possible at any information rate \(R \leq C \).

The continuous channel model of greatest interest is known as the additive white gaussian noise (AWGN) channel, defined by the following properties:

1. The channel provides distortion-free transmission over some bandwidth \(B \), and any transmission loss is compensated by amplification.
2. The channel constrains the input from the source to be a bandlimited signal \(x(t) \) with fixed average power \(S = \bar{x}^2 \).
3. The signal received at the destination is contaminated by the addition of band-limited white gaussian noise \(n(t) \) with zero mean and average noise power \(N = \bar{n}^2 = N_0 B \).
4. The signal and noise are independent so that \(y(t) = x(t) + n(t) \) and

\[\bar{y}^2 = \bar{x}^2 + \bar{n}^2 = S + N \]

These properties agree with the assumptions made in earlier chapters to obtain upper bounds on the performance of analog systems. Here, we’ll determine the corresponding channel capacity.

First, we find the noise entropy \(H(Y \mid X) \) via Eq. (11). Since \(p_y(n) \) is a zero-mean gaussian function with variance \(\sigma^2 = N \), it follows from Eqs. (7) and (8) that

\[H(Y \mid X) = \frac{1}{2} \log_2 2\pi e N \]

Second, noting that \(H(Y \mid X) \) does not depend on the source PDF, we use Eqs. (10) and (12) to write

\[C_s = \max_{p(x)} \left\{ H(Y) - H(Y \mid X) \right\} = \left[\max_{p_y(n)} H(Y) \right] - \frac{1}{2} \log_2 2\pi e N \]

But the destination signal \(y(t) \) has fixed average power \(\bar{y}^2 = S + N \), so

\[H(Y) \leq \frac{1}{2} \log_2 2\pi e (S + N) \].

If \(p_x(x) \) is a zero-mean gaussian function, then \(y = x + n \) has a gaussian PDF and \(H(Y) \) is maximized. Hence,

\[C_s = \frac{1}{2} \log_2 2\pi e (S + N) - \frac{1}{2} \log_2 2\pi e N = \frac{1}{2} \log_2 \left(\frac{S + N}{N} \right) \]

Finally, substituting for \(C_s \) in Eq. (13) yields the simple result

\[C = B \log_2 \left(1 + \frac{S}{N} \right) \quad (14) \]

where we recognize \(S/N \) as the signal-to-noise ratio at the destination.
Equation (14) is the famous **Hartley-Shannon law**. When coupled with the fundamental theorem, it establishes an upper limit for reliable information transmission on a bandlimited AWGN channel, namely, \(R \leq B \log_2(1 + S/N) \) bits/sec. Additionally, since bandwidth and signal-to-noise ratio are basic transmission parameters, Eq. (14) establishes a general performance standard for the comparison of communication systems. We therefore devote the remainder of this section to implications of the Hartley-Shannon law.

Ideal Communication Systems

Virtually every realistic communication system is capable of transmitting continuous signals, subject to some power and bandwidth limitations. Furthermore, if we exclude radio transmission with fading, careful system design can largely eliminate all other contaminations except unavoidable thermal noise. The AWGN channel thus serves as a reasonable model under these conditions, and the Hartley-Shannon law gives the maximum rate for reliable communication. Therefore we define it thus:

An *ideal* communication system is one that achieves nearly error-free information transmission at a rate approaching \(R = B \log_2(1 + S/N) \).

Shannon described the operation of such an ideal system as follows.

The ideal system has the structure diagrammed in Fig. 16.3–1. Information from the source is observed for intervals of \(T \) seconds and encoded as equiprobable \(M \)-ary symbols, such that \((\log_2 M)/T = R\). For each symbol, the signal generator emits a unique waveform \(x(t) \) selected from a set of \(M = 2^{RT} \) signals. These signals are generated by a bandlimited white gaussian process, and stored copies are available at the destination. The signal detector compares the received signal \(y(t) = x(t) + n(t) \) with the stored copies and chooses the most probable one for decoding. The operations of encoding at the source and signal detection at the destination result in a total delay of \(2T \) seconds, called the *coding delay*.

![Figure 16.3–1](image)
Ideal communication system with AWGN channel.
The number of different signals required depends on the desired error probability \(P_e \), and Shannon showed that

\[
\lim_{P_e \to 0} \lim_{T \to \infty} \frac{\log_2 M}{T} = B \log_2 \left(1 + \frac{S}{N} \right)
\]

Hence, \(R \to C \) in the limit as \(T \to \infty \)—which means that the number of signals and the coding delay becomes infinitely large, so the ideal system is physically unrealizable. However, real systems having large but finite \(M \) and \(T \) can be designed to come as close as we wish to ideal performance. (One such system is described in Sect. 16.5.) With this thought in mind, let’s further consider the properties of a hypothetical ideal system.

The capacity relation \(C = B \log_2 \left(1 + \frac{S}{N} \right) \) underscores the fundamental role of bandwidth and signal-to-noise ratio in communication. It also shows that we can exchange increased bandwidth for decreased signal power, a feature previously observed in wideband noise-reduction systems such as FM and PCM. The Hartley-Shannon law specifies the optimum bandwidth-power exchange and, moreover, suggests the possibility of bandwidth compression.

Keeping in mind that noise power varies with bandwidth as \(N = N_0B \), we explore the trade-off between bandwidth and signal power by writing

\[
C = B \log_2 \left(1 + \frac{S}{N_0B} \right)
\]

Thus, if \(N_0 \) and \(R \) have fixed values, information transmission at the rate \(R \leq C \) requires

\[
\frac{S}{N_0R} \geq \frac{B}{R} \left(2^{R/B} - 1 \right)
\]

which becomes an equality when \(R = C \). Figure 16.3–2 shows the resulting plot of \(S/N_0R \) in dB versus \(B/R \). The region on the lower left corresponds to \(R > C \), a forbidden condition for reliable communication. This plot reveals that bandwidth compression \((8/R < 1) \) demands a dramatic increase of signal power, while bandwidth expansion \((8/R > 1) \) reduces \(S/N_0R \) asymptotically toward a distinct limiting value of about \(-1.6 \text{ dB} \) as \(B/R \to \infty \).

In fact, an ideal system with infinite bandwidth has finite channel capacity given by

\[
C_\infty \triangleq \lim_{8 \to \infty} B \log_2 \left(1 + \frac{S}{N_0B} \right) = \frac{S}{N_0 \ln 2} = 1.44 \frac{S}{N_0}
\]

Equation (17) is derived from Eq. (15) written in the form

\[
C = \frac{S}{N_0} \frac{\ln (1 + \lambda)}{\ln 2} \quad \lambda = \frac{S}{N_0B}
\]

The series expansion \(\ln (1 + \lambda) = \lambda - \frac{1}{2} \lambda^2 + \cdots \) then shows that \([\ln (1 + \lambda)]/\lambda \to 1 \) as \(\lambda \to 0 \), corresponding to \(B \to \infty \). Note that \(C_\infty \) is the maximum capacity for fixed \(S \) and \(N_0 \), so
Figure 16.3–2 Tradeoff between bandwidth and signal power with an ideal system.

\[
\frac{S}{N_0 R} \geq \frac{S}{N_0 C_\infty} = \ln 2 = \ln 2 = -1.6 \text{ dB}
\]

From the shape of the curve in Fig. 16.3–2, we conclude that \(C = C_\infty \) for \(B/R > 10 \).

It must be stressed that these results pertain to an ideal but unrealizable system. Consequently, they may be used to estimate upper limits on the performance of any real system whose transmission channel approximates the AWGN model. An example should help illustrate the value of such estimates.

EXAMPLE 16.3–2 TV pictures from Mars

A roving vehicle equipped with a monochrome TV camera is proposed to continue the exploration of the surface of Mars. The TV pictures will be digitized for transmission back to Earth. We want to estimate the time required to transmit one picture, given the following information.

A digitized picture will consist of \(n_p = 400 \times 300 \) pixels (picture elements), each pixel having one of 16 possible brightness levels. Hence, the information rate \(R \) and picture transmission time \(T \) are related by

\[
RT = n_p \log_2 16 = 480,000 \text{ bits}
\]

assuming equally likely brightness levels.

The Mars-to-Earth link is a microwave radio system with carrier frequency \(f_c = 2 \text{ GHz} \) and path length \(\ell = 3 \times 10^8 \text{ km} \). The transmitter on the vehicle delivers \(S_T = 20 \text{ W} \) signal power to a dish antenna one meter in diameter. The Earth station has a 30-m dish antenna and a low-noise receiver with noise temperature \(T_N = 58 \text{ K} \). The signal power \(S \) at the receiver is calculated using \(L = 268 \text{ dB} \), \(g_T = 26 \text{ dB} \), and \(g_R = 56 \text{ dB} \), so
The noise density at the receiver is

\[N_0 = kT/N = 8 \times 10^{-22} \text{ W/Hz} \]

obtained from Eq. (6), Sect. 9.4.

Since no transmission bandwidth was specified, let’s assume that \(B/R > 10 \). An ideal system would then have

\[R \leq C \approx C_\infty = 1.44S/N_0 \approx 9000 \text{ bits/sec} \]

and the corresponding bandwidth must be \(B > 10R \geq 90 \text{ kHz} \). Therefore, the transmission time per picture is

\[T \geq \frac{480,000 \text{ bits}}{9000 \text{ bits/sec}} \approx 53 \text{ sec} \]

A real system, of course, would require more time for picture transmission. The point here is that no system with the same assumed specifications can achieve a smaller transmission time—unless some predictive source encoding reduces \(R_T \).

A keyboard machine with 64 different symbols is connected to a voice telephone channel having \(B = 3 \text{ kHz} \) and \(S/N_0B = 30 \text{ dB} \). (a) Calculate the maximum possible symbol rate for errorless transmission. (b) Assuming \(B \) can be changed while other parameters are fixed, find the symbol rate with \(B = 1 \text{ kHz} \) and \(B \to \infty \).

System Comparisons

Having determined the properties of an ideal communication system, we’re ready to reexamine various systems from previous chapters and compare their performance in the light of information theory. Such comparisons provide important guidelines for the development of new or improved communication systems, both digital and analog. For all comparisons, we’ll assume an AWGN channel with transmission bandwidth \(B_T \) and signal-to-noise ratio \((S/N)_R = S/R_0B_T \) at the receiver.

Consider first the case of binary baseband transmission. Previously, we found the maximum signaling rate \(2B_T \) and minimum transmission error probability \(Q(\sqrt{(S/N)_R}) \), which requires the use of polar sinc-pulse signals and matched filtering. Now we’ll view this system as a binary symmetric channel with symbol rate \(s = 2B_T \) and transmission error probability \(\alpha = Q(\sqrt{(S/N)_R}) \). Hence, the BSC system capacity is

\[C = 2B_T[1 - \Omega(\alpha)] \quad \alpha = Q(\sqrt{(S/N)_R}) \quad (18) \]

where \(\Omega(\alpha) \) is the binary entropy function from Eq. (9), Sect. 16.1. With sufficiently elaborate error-control coding, we can obtain nearly error-free information transfer at \(R \leq C \).
Figure 16.3–3 shows C/B_T versus $(S/N)_R$ for a BSC and for an ideal continuous system with $C/B_T = \log_2 [1 + (S/N)_R]$. The BSC curve flattens off at $C/B_T = 2$ as $(S/N)_R \to \infty$ because the maximum entropy of a noise-free binary signal is one bit per symbol. Hence, we must use M-ary signaling to get closer to ideal performance when $(S/N)_R \gg 1$. At lower signal-to-noise ratios, where $C/B_T < 2$, the gap between the BSC and ideal curves suggests that there should be a way of extracting more information from a noisy binary signal. This observation has led to the sophisticated technique known as soft-decision decoding in which binary codewords are decoded from sample values of the continuous signal-plus-noise waveform, rather than from a regenerated (hard-decision) binary waveform.

Now let’s examine the performance of M-ary digital communication systems without error-control coding. We’ll assume a binary source that emits equiprobable symbols at rate r_b. If the error probability is small, say $P_{be} \leq 10^{-4}$, then the information rate is $R = r_b$ since almost all of the binary digits correctly convey information to the destination. For transmission purposes, let the binary data be converted to a Gray-code M-ary signal with $M = 2^K$. An M-ary baseband system with polar sinc pulses and matched filtering then has

$$\frac{r_b}{B_T} = 2K \quad P_{be} = \frac{2}{K} \left(1 - \frac{1}{M}\right) Q\left(\sqrt{\frac{6K}{M^2 - 1}} \gamma_b\right) \tag{19}$$

where $\gamma_b = E_b/N_0$ and $E_b = S_R/r_b$, which is the average energy per binary digit.

Upon solving Eq. (19) for the value of γ_b that gives $P_{be} = 10^{-4}$, we obtain the plot of r_b/B_T versus γ_b in Fig. 16.3–4. This same curve also applies for bandpass
transmission via APK modulation with M replaced by \sqrt{M}, while other modulation methods have poorer performance. The comparison curve for an ideal system is calculated from Eq. (16) taking $R = r_b$ and $S/N_0R = S_R/N_0r_b = \gamma_b$. We thus see that real digital systems with $r_b/B_T \approx 2$ and small but nonzero error probability require at least 6–7 dB more signal energy than an ideal system. Error-control coding would reduce the energy needed for a specified error probability, thereby shifting the system performance curve closer to the ideal.

Finally, we come to analog communication in which bandwidth and signal-to-noise ratio are the crucial performance factors, rather than information rate and error probability. Consider, therefore, the analog modulation system represented by Fig. 16.3–5, where the analog signal at the destination has bandwidth W and signal-to-noise ratio $(S/N)_D$. The maximum output information rate is $R = W \log_2 [1 + (S/N)_D]$, and it cannot exceed the transmission channel capacity $R = W \log_2 [1 + (S_R/N_0B_T)]$. Setting $R \leq C$ and solving for $(S/N)_D$ yields

$$\left(\frac{S}{N}\right)_D \leq \left(1 + \frac{S_R}{N_0B_T}\right)^{B_T/W} - 1 = \left(1 + \frac{\gamma}{b}\right)^{b} - 1$$ \hspace{1cm} (20)
where the normalized parameters b and γ are defined by

$$b = \frac{B_T}{W}, \quad \gamma = \frac{S_b}{N_0 W}$$

Equation (20) becomes an equality for an ideal system operating at full capacity, so we have a standard for the comparison of all other analog communication systems. In particular, we’ll compare the analog performance curves given by $(S/N)_0$ versus γ with fixed bandwidth ratio b, and the power-bandwidth exchange given by γ versus b with fixed $(S/N)_0$.

Figure 16.3–6 repeats some of our previous analog performance curves for $b = 6$, together with the curve for an ideal system. The heavy dots mark the threshold points, and we see that wideband noise-reduction systems (FM, PCM, and PPM) fall short of ideal performance primarily as a result of threshold limitations. Threshold extension techniques may improve performance by a few dB, but threshold effect must always occur in wideband analog modulation; otherwise, the curves would cross into the forbidden region to the left.

Figure 16.3–7 depicts the power-bandwidth exchange of analog modulation systems, taking $(S/N)_0 = 50 \text{ dB}$ and $S_x = \frac{1}{2}$. SSB and DSB appear here as single points since b is fixed, and SSB is equivalent to an ideal system with $b = 1$—meaning no wideband improvement. The FM and PPM curves are calculated from previous equations, and the PCM curve corresponds to operation just above threshold. Observe that PCM comes closest to the ideal when we want $b > 1$ for wideband improvement.

Based on these two comparison figures, we conclude that digital transmission via PCM makes better use of the capacity of a continuous channel than conventional analog modulation. This difference between digital and analog transmission of analog

![Figure 16.3–6](image-url)
information stems from the fundamental fact that transmission noise prevents exact reproduction of an analog waveform. The PCM quantization process takes advantage of this fact and provides a better match of signal to channel than does analog modulation.

Shannon went further in this direction by proposing that the information rate of a continuous source be measured in terms of some specified fidelity or distortion criterion. Appropriate digital source coding then allows efficient information transmission over a channel whose capacity equals the rate in question. Shannon’s proposal has subsequently been developed into the field known as rate distortion theory. An introduction to this theory is given by Proakis and Salehi (1994, Chap. 4).

16.4 SIGNAL SPACE

As we have seen, digital transmission is the most efficient form of communication in the light of information theory. Thus we should give some attention to the theory of optimum digital detection. First, however, we need a method of representing signals, which is the purpose of this section. In particular, we’ll introduce the important technique of representing signals as vectors, a technique originated by Kotel’nikov (1959) in his theory of optimum noise immunity.

Signals as Vectors

A signal space is a multidimensional space wherein vectors represent a specified set of signals. By describing signals as vectors, the familiar relations and insights of geometry can be brought to bear on signal analysis and communication system
design. Here we introduce those aspects of signal-space theory relevant to digital
detection, restricting our attention to the case of real energy signals.

Consider any two real energy signals \(v(t) \) and \(w(t) \). If \(\alpha \) and \(\beta \) are finite real
constants, then the linear combination \(z(t) = \alpha v(t) + \beta w(t) \) is also an energy sig-
nal. Formally, we say that the set of all real energy signals is **closed under linear
combination**, which is the essential condition for establishing a **linear space**. We
thus define the signal space \(\mathcal{V} \) to be a linear space wherein vectors such as \(v \) and \(w \)
represent energy signals \(v(t) \) and \(w(t) \), and any linear combination such as
\(z = \alpha v + \beta w \) is another vector in \(\mathcal{V} \).

Vector addition and scalar multiplication in \(\mathcal{V} \) obey the usual rules, and there
exists a zero element such that \(v + 0 = v \) and \(v - v = 0 \). However, to complete the
geometric structure of \(\mathcal{V} \), we need appropriate measures of vector length and angle
expressed in terms of signal properties. (We can’t use Hamming distance here
because we’re not necessarily working with binary sequences.) Since we’re dealing
with energy signals, we’ll define the length or **norm** of a signal vector \(v \) to be the
square root of the signal energy, written as

\[
\| v \| = \sqrt{\mathbb{E}_v} = \left[\int_{-\infty}^{\infty} v^2(t) \, dt \right]^{1/2}
\]

(1)

This vector norm is a nonnegative quantity, and \(\| v \| = 0 \) only if \(v(t) = 0 \). We use the
square root of the signal energy in Eq. (1) so that the norm of the sum
\(z(t) = v(t) + w(t) \) satisfies the **triangle inequality**

\[
\| v + w \| \leq \| v \| + \| w \|
\]

(2)

Figure 16.4–1 shows the corresponding picture as a triangle composed of the vectors
\(v, w, \) and \(z = v + w \).

To measure the angle of \(v \) relative to some other vector \(w \), we first recall that the
crosscorrelation function measures the similarity between the shifted signal \(v(t + \tau) \)
and \(w(t) \). Now, setting \(\tau = 0 \), we define the **scalar product**

\[
(v, w) \triangleq R_{vw}(0) = \int_{-\infty}^{\infty} v(t)w(t) \, dt
\]

(3)

which has the properties

\[
(v, v) = \| v \|^2
\]

(4)

\[
| (v, w) | \leq \| v \| \| w \|
\]

(5)
Equation (5) simply restates Schwarz’s inequality, and the equality holds when \(v(t) \) and \(w(t) \) are proportional signals.

Justification of the scalar product for angular measurement comes from the expansion

\[
\|v + w\|^2 = (v + w, v + w) = (v, v) + (v, w) + (w, v) + (w, w)
\]

\[
= \|v\|^2 + 2(v, w) + \|w\|^2
\]

(6)

On the one hand, if \(v(t) \) and \(w(t) \) are fully correlated in the sense that \(v(t) = \pm \alpha w(t) \), then \((v, w) = \pm \|v\| \|w\|\) and \(\|v + w\| = \|v\| \pm \|w\|\). Figure 16.4–1 thus reduces to colinear vectors, with \(v \) parallel to \(w \). On the other hand, if \(v(t) \) and \(w(t) \) are uncorrelated such that \((v, w) = 0\), then \(\|v + w\|^2 = \|v\|^2 + \|w\|^2\) and Fig. 16.4–1 becomes a right triangle with perpendicular vectors \(v \) and \(w \). Accordingly, we say that

\(v(t) \) and \(w(t) \) are **orthogonal signals** when \((v, w) = 0\)

Orthogonality in signal space implies superposition of energy, since \(\|v\|^2 + \|w\|^2 = E_v + E_w\).

For the intermediate case of \(0 < |(v, w)| < \|v\| \|w\|\), we can decompose \(v \) into the two orthogonal (perpendicular) components shown in Fig. 16.4–2. The **projection** of \(v \) on \(w \) is defined by the colinear and orthogonal conditions \(v_w = \alpha w \) and \((v - v_w, w) = 0\), and solving for \(\alpha \) yields

\[
v_w = \frac{(v, w)}{\|w\|^2} w
\]

(7)

You can confirm from Schwarz’s inequality that \(\|v_w\| \leq \|v\|\) as expected.

Next, as further preparation for the study of optimum detection, suppose we have a set of \(M \) energy signals denoted by \(\{s_i(t); i = 1, 2, \ldots, M\} \). Each of these signals can be represented by a vector written in the form

\[
s_i = \alpha_{i1} \phi_1 + \alpha_{i2} \phi_2 + \cdots + \alpha_{ik} \phi_k = \sum_{k=1}^{K} \alpha_{ik} \phi_k \quad K \leq M
\]

(8a)

where the \(\phi_k \) are vectors and the \(\alpha_{ik} \) are scalar coefficients calculated from

\[
\begin{align*}
&\text{Figure 16.4–2} \quad \text{Projection of } v \text{ on } w.
\end{align*}
\]
Two important aspects of this representation should be stressed. First, Eq. (8a) is an exact expression, rather than a series approximation. Second, each signal is completely specified by the scalars in Eq. (8b), so we can work with a set of K coefficients α_{ik} instead of the entire waveform $s_i(t)$. These points will become clearer from the signal-space interpretation.

The vectors ϕ_k in Eq. (8) represent a set of orthonormal basis functions $\phi_k(t)$ with the properties

\[\|\phi_k\|^2 = (\phi_k, \phi_k) = 1 \quad k = 1, 2, \ldots, K \]
\[(\phi_k, \phi_j) = 0 \quad j \neq k \]

These basis functions are mutually orthogonal and each one has unit norm—analogous to the unit vectors of ordinary two- and three-dimensional spaces. By extrapolation, we say that the ϕ_k span a K-dimensional subspace Γ_k of the signal space Γ. If Γ_k contains the signal vector s_i, its projection on the basis vector ϕ_k is

\[(s_i, \phi_k) \phi_k / \|\phi_k\|^2 = (s_i, \phi_k) \phi_k = \alpha_{ik} \phi_k \]

where we’ve used Eqs. (7), (9), and (8b). Therefore, the coefficients α_{ik} are the coordinates of the vector s_i with respect to the ϕ_k basis.

The subspace Γ_k and basis ϕ_k depend upon the specific set of signals we wish to represent. In fact, we usually generate the basis functions directly from the set of signals $\{s_i(t)\}$, thereby ensuring that Γ_k contains all of the signal vectors in question. Although a given set of signals defines a unique subspace, we have considerable flexibility in the choice of basis functions as long as they span Γ_k and satisfy Eq. (9).

Having generated an orthonormal basis for a set of signals, we can compute the vector coordinates and express the norms and scalar products in terms of the coordinates. The scalar product of any two signals is found using Eqs. (8) and (9), with the result that

\[(s_i, s_m) = \left(\sum_k \alpha_{ik} \phi_k, \sum_j \alpha_{mj} \phi_j \right) = \sum_{k=1}^{K} \alpha_{ik} \alpha_{mk} \]

Hence, letting $m = i$ we have

\[\|s_i\|^2 = (s_i, s_i) = \sum_{k=1}^{K} \alpha_{ik}^2 \]

which is a K-dimensional statement of the Pythagorean theorem.

The Gram-Schmidt Procedure

A sequential method for constructing an orthonormal basis is the **Gram-Schmidt procedure**, as follows:

1. Select from the signal set any $s_i(t)$ having nonzero norm, and take $\phi_1 = s_i / \|s_i\|$ so $\|\phi_1\| = 1$.
2. Select another signal $s_2(t)$, compute the coordinate $\alpha_{21} = (s_2, \phi_1)$, and define the auxiliary vector $g_2 = s_2 - \alpha_{21} \phi_1$ in Fig. 16.4–3a. Since g_2 is orthogonal to ϕ_1, we can take $\phi_2 = g_2 / \|g_2\|$.
3. Select another signal $s_3(t)$, compute the coordinates α_{31} and α_{32} to define
$g_3 = s_3 - [\alpha_{31}\phi_1 + \alpha_{32}\phi_2]$ in Fig. 16.4–3b. Then take $\phi_3 = g_3/\|g_3\|$ so ϕ_3 has
unit norm and is orthogonal to ϕ_1 and ϕ_2.

4. Continue in this manner until all M signals have been considered.

The basis resulting from this procedure can be expressed compactly by

$$\phi_k = g_k/\|g_k\| \quad (11a)$$

with $g_1 = s_1$ and

$$g_k = s_k - \sum_{j=1}^{k-1} \alpha_{kj}\phi_j \quad 2 \leq k \leq K \quad (11b)$$

Equation (11b) yields $g_k = 0$ whenever s_k has zero norm or equals a linear combination of previous signal vectors. Such cases are omitted from the basis, and the dimensionality will be $K < M$.

Example 16.4–1

Let’s apply the Gram-Schmidt procedure to obtain an orthonormal basis for the three signals in Fig. 16.4–4a. First, noting that $\|s_1\|^2 = E_1 = 6^2$, we take $\phi_1(t) = s_1(t)/6$ as plotted in Fig. 16.4–4b. Then

$$\alpha_{21} = \int_{\infty}^{\infty} s_2(t)\phi_1(t) \, dt = 3$$

so $g_2(t) = s_2(t) - 3\phi_1(t)$, and a sketch of $g_2(t)$ quickly yields $\|g_2\|^2 = 3^2$, and we take $\phi_2(t) = g_2(t)/3$ in Fig. 16.4–4c. A third basis function is not needed since we can write the linear combination $s_3(t) = s_1(t) - s_2(t)$.

By calculating the remaining coordinates, or by inspection of the waveforms, we obtain the vector representations

$$s_1 = 6\phi_1 \quad s_2 = 3\phi_1 + 3\phi_2 \quad s_3 = 3\phi_1 - 3\phi_2$$

which are diagrammed as vectors in Fig. 16.4–4d. This diagram brings out the fact that s_2 and s_3 are orthogonal and their sum equals s_1.

![Diagram](image-url)
Let another set of signals be defined from Fig. 16.4–4a by taking \(s_1(t) \), \(\sqrt{2} s_2(t) \), \(\sqrt{2} s_3(t) \), and \(s_3(t) = -\sqrt{2} s_3(t) \). (a) Apply the Gram-Schmidt procedure and draw the resulting vector diagram. (b) Calculate \(\|s_2\|^2 \) using Eq. (10b) and compare with the result from Eq. (1).

EXERCISE 16.4–1

Let another set of signals be defined from Fig. 16.4–4a by taking \(s_1(t) \), \(\sqrt{2} s_2(t) \), \(\sqrt{2} s_3(t) \), and \(s_3(t) = -\sqrt{2} s_3(t) \). (a) Apply the Gram-Schmidt procedure and draw the resulting vector diagram. (b) Calculate \(\|s_2\|^2 \) using Eq. (10b) and compare with the result from Eq. (1).

16.5 OPTIMUM DIGITAL DETECTION

The signal/vector concepts developed in the previous section are used here to design optimum receivers for digital signals with AWGN contamination. Vector concepts also facilitate the calculation of error probabilities and the selection of signals for efficient digital communication.
Optimum Detection and MAP Receivers

Consider the M-ary digital communication system in Fig. 16.5–1. The source selects a symbol m from the set $\{m_i; i = 1, 2, \ldots, M\}$. The transmitter generates a signal that appears at the destination as $s(t)$. This signal belongs to the set $\{s_i(t); i = 1, 2, \ldots, M\}$, in one-to-one correspondence with the symbol set. The received signal is corrupted by independent additive white gaussian noise $n_w(t)$ with zero mean and power spectral density $G(f) = N_0/2$. The receiver produces the estimated symbol \hat{m} by comparing $y(t) = s(t) + n_w(t)$ with stored copies of the uncorrupted signals. We seek an optimum detection strategy that minimizes the average error probability $P_e = P(\hat{m} \neq m)$.

To formulate the optimization criterion more precisely, let $P(m \mid y)$ be the conditional probability that m was selected by the source given that $y(t)$ has been observed at the destination. Clearly, if

$$P(m_i \mid y) > P(m_j \mid y) \quad \text{all } i \neq j$$

(1)

then the receiver should choose $\hat{m} = m_i$ to minimize $P(\hat{m} \neq m)$. The quantities in Eq. (1) are known as \textit{a posteriori} probabilities, meaning “after observation,” and Eq. (1) defines a \textbf{maximum a posteriori} (MAP) receiver. In the unlikely event of a tie, the receiver chooses any one of the m_i that maximizes $P(m_i \mid y)$. We’ll assume equiprobable symbols, in which case the MAP criterion reduces to \textbf{maximum likelihood} detection.

Our statement of the optimum detection problem contains only two critical assumptions: independent additive gaussian noise and stored copies at the receiver. The assumption of equiprobable symbols is not critical since this condition can be ensured by source encoding, as described in Sect. 16.1. Nor is the assumption of a white noise spectrum critical since a nonwhite noise spectrum can be equalized by a prewhitening filter at the front end of the receiver. The assumption that stored copies are available at the receiver essentially means that we’re working with a \textit{coherent} system, but we have no preconceptions about the structure of the receiver itself. Signal-space analysis eventually determines specific receiver implementations.

All of the M possible signal waveforms will be represented by vectors in a subspace Γ_K of dimensionality $K \leq M$ and spanned by some orthonormal basis ϕ_k. However, the received vector $y = s + n_w$ does not fall entirely within Γ_K. We therefore decompose n_w as $n_w = n + n'$ shown in Fig. 16.5–2 where, for convenience, Γ_K is drawn as a plane. The component n', called the \textbf{irrelevant noise}, is orthogonal to Γ_K in the sense that
The remaining noise vector \(\mathbf{n} \) is contained in \(\Gamma_K \), so we can write

\[
(n', \phi_k) = 0 \quad k = 1, 2, \ldots, K
\]

where the noise coordinates \(\beta_k \) are given by

\[
\beta_k = (n, \phi_k) = (n_w - n, \phi_k) = (n_w, \phi_k)
\]

Finally, we define the relevant data vector

\[
\mathbf{v} \triangleq \mathbf{y} - \mathbf{n}' = \mathbf{s} + \mathbf{n}
\]

which is the projection of \(\mathbf{y} \) on \(\Gamma_K \), since \(\mathbf{y} = \mathbf{v} + \mathbf{n}' \) and \(\mathbf{n}' \) is orthogonal to every vector in \(\Gamma_K \).

Figure 16.5–3 illustrates the vectors in \(\Gamma_K \) for the case of \(K = 2 \) and \(M = 3 \). The three dots mark the tips of the uncorrupted signal vectors, and \(\mathbf{v} \) is a typical relevant data vector when \(\mathbf{s} = \mathbf{s}_2 \). Intuitively, this diagram suggests that the receiver should choose the signal vector whose tip is closest to the tip of \(\mathbf{v} \). Subsequent analysis indeed confirms the maximum-likelihood detection rule:

Given an observed vector \(\mathbf{v} \), choose \(\hat{m} = m_i \) with \(i \) such that \(\| \mathbf{v} - \mathbf{s}_i \| < \| \mathbf{v} - \mathbf{s}_j \| \) for all \(i \neq j \).

This rule defines \(M \) decision regions in \(\Gamma_K \), one region for each signal point. In Fig. 16.5–3, for instance, the three decision regions are bounded by dashed lines formed by constructing perpendicular bisectors of lines connecting the signal points. These decision-region boundaries correspond to the decision thresholds introduced in Chap. 11.

The foregoing detection rule involves vector norms in \(\Gamma_K \). We know the signal norms \(\| \mathbf{s}_i \| = \sqrt{E_i} \), but the noise \(\mathbf{n} \) is a random vector whose properties require further study. From Eq. (2a) and Eq. (10b), Sect. 16.4, we have
where $\beta_k = (n_w, \phi_k)$, which is a linear operation on a gaussian RV. Hence, the β_k are also gaussian with mean value $\overline{\beta}_k = (\overline{n}_w, \phi_k) = 0$. We turn then to the variance and the question of statistical independence by considering the expectation

$$E[\beta_k]\beta_i] = E \left[\int_{-\infty}^{\infty} n_w(t)\phi_k(t) \, dt \int_{-\infty}^{\infty} n_w(\lambda)\phi(\lambda) \, d\lambda \right]$$

$$= \int \int_{-\infty}^{\infty} E[n_w(t)n_w(\lambda)]\phi_k(t)\phi(\lambda) \, dt \, d\lambda$$

But, from the autocorrelation function of white noise, $E[n_w(t)n_w(\lambda)] = \frac{N_0}{2} \delta(t - \lambda)$, so we get

$$E[\beta_k]\beta_i] = \begin{cases} N_0/2 & i = k \\ 0 & i \neq k \end{cases}$$

which means that the β_k are independent gaussian RVs with variance $\sigma^2 = \frac{N_0}{2}$.

Therefore, the PDF of any noise coordinate $\beta_k = \beta$ is the zero-mean gaussian function

$$p_{\beta}(\beta) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\beta^2/(2\sigma^2)} \quad \sigma^2 = \frac{N_0}{2} \quad (4a)$$
The joint PDF of all K coordinates is then $p_\alpha(\beta_1, \beta_2, \ldots, \beta_K) = p_\beta(\beta_1) p_\beta(\beta_2) \cdots p_\beta(\beta_K)$ since the coordinates are mutually independent. Accordingly, we express the vector PDF as

$$p_\alpha(n) = p_\alpha(\beta_1, \beta_2, \ldots, \beta_K) = (\pi N_0)^{-K/2} e^{-|n|^2/N_0}$$

which has spherical symmetry in Γ_K.

Now we’re prepared to analyze optimum detection from the criterion in Eq. (1), noting that $P(m\mid y) = P(m\mid v)$. Since $P(m\mid v)p_\alpha(v) \, dv = P(m)p_\alpha(v \mid m) \, dv$, we can write $P(m\mid v) = P(m)p_\alpha(v \mid m)/p_\alpha(v)$ where the unconditional PDF $p_\alpha(v)$ does not depend on m. Thus, $P(m_i\mid y) > P(m_i\mid m_i)$ is equivalent to the vector PDF condition

$$P(m_i)p_\alpha(v \mid m_i) > P(m_i)p_\alpha(v \mid m_i)$$

But when $m = m_i$, $s = s_i$ so $v = s_i + n$ and

$$p_\alpha(v \mid m_i) = p_\alpha(v - s_i) = (\pi N_0)^{-K/2} e^{-|v-s_i|^2/N_0}$$

Substituting this expression into Eq. (5) yields, after simplification the **MAP detection rule**

$$\|v - s_i\|^2 - \ln P(m_i) < \|v - s_i\|^2 - \ln P(m)$$

When the symbols are equiprobable, $P(m_i) = 1/M$ for all i and Eq. (6a) simplifies to the **maximum-likelihood detection rule**

$$\|v - s_i\|^2 < \|v - s_i\|^2$$

which is the same as the decision region condition $\|v - s_i\| < \|v - s_i\|$.

Our next task is to devise a receiver structure that implements the detection rule. Recognizing that the receiver must operate on the waveform $y(t)$ instead of the vector v, we first write $\|v - s_i\|^2 = \|v\|^2 - 2(v, s_i) + \|s_i\|^2$ where $\|s_i\|^2 = E_i$ and $(v, s_i) = (y - n', s_i) = (y, s_i)$ since n' is orthogonal to any vector in Γ_K. The term $\|v\|^2$ will appear on both sides of Eq. (6) and cancel out, so we define the observable **decision function**

$$z_i = (y, s_i) - c_i$$

in which

$$(y, s_i) = \int_{-\infty}^{\infty} y(t)s_i(t) \, dt$$

$$c_i = \begin{cases} \frac{1}{2} E_i & \text{equiprobable } m_i \\ \frac{1}{2} [E_i - N_0 \ln P(m_i)] & \text{otherwise} \end{cases}$$

The detection rule thus becomes:

Choose $\hat{m} = m_i$ with j such that $z_i < z_j$ for all $i \neq j$.

The scalar products \((y, s_i) \) needed for optimum detection can be calculated at the receiver using the stored signal copies and a bank of correlation detectors, each correlator having the form of Fig. 16.5–4a. If the signals are timelimited so that \(s_i(t) = 0 \) outside of \(0 \leq t \leq D \), then correlation detection reduces to matched filtering and sampling as diagrammed in Fig. 16.5–4b. In either case, the operation \((y, s_i) \) projects \(y \) along the direction of \(s_i \) and strips off the irrelevant noise \(n' \).

Figure 16.5–5 shows a complete MAP receiver with a bank of correlators or matched filters that operate in parallel on \(y(t) \) to produce \((y, s_i) \), \(i = 1, 2, \ldots, M \). Subtracting the bias terms \(c_i \) yields the set of decision functions \(\{z_i\} \). The receiver compares the decision functions to find the largest one, say \(z_i \), and chooses the optimum estimate \(m = m_i \).

Various simplifications of this structure are possible, depending upon the specific set of signals. When the symbols are equiprobable and all signals have the same energy, the bias terms are independent of \(i \) and may be omitted so that \(z_i = (y, s_i) \). When the signals are such that the dimensionality of \(\Gamma_K \) is \(K < M \), we can use Eq. (8a), Sect. 16.4, to write

\[
(y, s_i) = \sum_{k=1}^{K} a_{ik}(y, \phi_k)
\]

and the scalar products can be calculated from stored copies of the \(K \) basis functions \(\phi_k(t) \) rather than the \(M \) signals. Only for this implementation do we need to know the basis functions explicitly. Modifications such as these account for the simplified receivers shown in previous chapters.
EXAMPLE 16.5–1 Suppose a set if \(M = 8 \) signals are generated by combined amplitude and phase modulation (QAM) such that

\[
\begin{align*}
 s_1(t) &= -s_4(t) = A_c \cos \omega_c t \\
 s_2(t) &= -s_3(t) = \sqrt{2} A_c \cos (\omega_c t + \pi/4) = A_c (\cos \omega_c t - \sin \omega_c t) \\
 s_4(t) &= -s_7(t) = A_c \cos (\omega_c t + \pi/2) = -A_c \sin \omega_c t \\
 s_3(t) &= -s_6(t) = \sqrt{2} A_c \cos (\omega_c t + 3\pi/4) = -A_c (\cos \omega_c t + \sin \omega_c t)
\end{align*}
\]

All signals have duration \(D \), and the carrier frequency \(f_c \) is an integer multiple of \(1/D \). Observing that each signal can be expressed as a linear combination of \(\cos \omega_c t \) and \(\sin \omega_c t \), we take the basis functions to be

\[
\phi_1(t) = \sqrt{2/D} \cos \omega_c t \quad \phi_2(t) = -\sqrt{2/D} \sin \omega_c t
\]

We thus obtain the two-dimensional signal set in Fig. 16.5–6a, where \(E_1 = A_c^2 D/2 \) and \(E_2 = 2E_1 \). Figure 16.5–6b shows the corresponding decision boundaries for

\[\text{Figure 16.5–6} \quad \text{(a)} \text{ A two-dimensional signal set; (b) decision regions; (c) optimum receiver.}\]
maximum-likelihood detection. (These diagrams differ from the class of QAM signals discussed in Sect. 14.4 which have $M = \mu^2$ points in a square array.)

Since $K < M$ and the basis functions are known, Eq. (8) leads to the simplified optimum receiver portrayed in Fig. 16.5–6c. The computational unit uses the inputs (y, ϕ_1) and (y, ϕ_2) to calculate the decision functions

$$z_i = [\alpha_i(y, \phi_1) + \alpha_{i2}(y, \phi_2)] - E_i/2 \quad i = 1, 2, \ldots, 8$$

in accordance with Eqs. (7) and (8). When the source produces a sequence of symbols, the integration and decision process is repeated over each successive symbol interval $kD \leq t \leq (k + 1)D$.

Error Probabilities

But the structure of an optimum receiver is not much good without knowledge of the error probability. So here we formulate general and specific expressions for the average error probability in an M-ary system with equiprobable symbols and optimum detection.

As a starting point, take an arbitrary symbol m_i and let $P(e \mid m_i)$ stand for the probability of erroneous detection of the corresponding signal $s_i(t)$. Averaging over the M equiprobable symbols gives

$$P_e = \frac{1}{M} \sum_{i=1}^{M} P(m_i)P(e \mid m_i) = \frac{1}{M} \sum_{i=1}^{M} P(e \mid m_i) \quad (9a)$$

Alternatively, we can write

$$P_e = 1 - P_c \quad P_c = \frac{1}{M} \sum_{i=1}^{M} P(c \mid m_i) \quad (9b)$$

where $P(c \mid m_i)$ stands for the probability of correct detection. We’ll use geometric vector arguments to determine $P(e \mid m_i)$ or $P(c \mid m_i)$.

Figure 16.5–7a represents the situation in Γ_k when $s_i(t)$ has been corrupted by noise $n_k(t)$, resulting in the vector $v = s_i + n$. Also shown is another signal vector s_j whose tip-to-tip “distance” from s_i is $d_{ij} \triangleq \|s_i - s_j\|$. A detection error occurs if the projection of n along the direction of $s_i - s_j$ exceeds $d_{ij}/2$, so v falls on the wrong side of the decision boundary halfway between s_i and s_j. This error event will be denoted by e_{ij}. To find the probability $P(e_{ij})$, let the vectors be translated and/or rotated until $s_i - s_j$ becomes colinear with an arbitrary basis vector ϕ_k as shown in Fig. 16.5–7b. Any translation or rotation of signal points and decision boundaries does not effect error-probability calculations because $p_n(n)$ has spherical symmetry in Γ_k. But now we more readily see that $P(e_{ij})$ equals the probability that $\beta_k > d_{ij}/2$. Hence,

$$P(e_{ij}) = \int_{d_{ij}/2}^{\infty} p_{\beta}(\beta_k) d\beta_k = Q\left(\frac{d_{ij}/2}{\sqrt{N_0/2}}\right) = Q\left(\frac{d_{ij}}{\sqrt{2N_0}}\right) = Q\left(\frac{\|s_i - s_j\|}{\sqrt{2N_0}}\right) \quad (10)$$

which follows from Eq. (4a).
Equation (10) immediately applies to the binary case since there are only two signal vectors, which we label s_0 and s_1 to be consistent with previous notation. Clearly, $P(e|\ m_0) = P(e_{10})$ and $P(e|\ m_1) = P(e_{01}) = P(e_{10})$, so maximum-likelihood detection of a binary signal yields the average error probability

$$P_e = Q\left(\frac{||s_1 - s_0||}{\sqrt{2N_0}}\right)$$

Equation (11) is therefore identical to the result we previously obtained for polar baseband transmission with matched filtering.

In the general M-ary case, Eq. (10) accounts for just one of the boundaries between s_i and the other $M - 1$ signal points. A complete expression for $P(e|\ m_i)$ or $P(c|\ m_i)$ necessarily involves the specific geometry of the signal set, and it may or may not be easy to obtain. If the signal points form a rectangular array, then translation and rotation yields rectangular decision regions like Fig. 16.5–8 where we see that correct detection of m_i requires $-a_1 < \beta_1 < b_1$ and $-a_2 < \beta_2 < b_2$. Since these orthogonal noise coordinates are statistically independent, we have

$$P(c|\ m_i) = \int_{-a_1}^{b_1} p_{\beta_1}(\beta_1) \ d\beta_1 \int_{-a_2}^{b_2} p_{\beta_2}(\beta_2) \ d\beta_2$$

Each integral in Eq. [12a] can be expanded in the form

$$\int_{-a}^{b} p_{\beta}(\beta) \ d\beta = 1 - Q\left(\frac{a}{\sqrt{N_0/2}}\right) - Q\left(\frac{b}{\sqrt{N_0/2}}\right)$$

obtained from the graphical interpretation of the Q function for a gaussian PDF with zero mean and variance $N_0/2$.

Figure 16.5–7 (a) Signal-plus-noise vector; (b) noise vector projection obtained by translation and/or rotation of signal points.
When the geometry of the signal set makes exact analysis difficult, we may settle instead for an upper bound on the average error probability. To develop an upper bound, first consider the case of \(M = 3 \); \(P(e | m_i) \) then equals the probability of the union of the error events \(e_{2i} \) and \(e_{3i} \), so we write \(P(e | m_1) = P(e_{21} + e_{31}) = P(e_{21}) + P(e_{31}) - P(e_{21}, e_{31}) \leq P(e_{21}) + P(e_{31}) \). Extrapolating to arbitrary \(M \) and \(m_j \) gives the union bound

\[
P(e | m_i) \leq \sum_{i=1}^{M} P(e_j) \quad i \neq j
\]

with \(P(e_j) \) as in Eq. (10). There are \(M - 1 \) terms in this sum, and a simpler but looser bound is \(P(e | m_i) \leq (M - 1)Q(d_j/\sqrt{2N_0}) \), where \(d_j \) stands for the “distance” between \(s_j \) and its nearest neighbor, i.e.,

\[
d_j = \min_{i \neq j} \|s_i - s_j\| \quad (13a)
\]

Then, using Eq. (9a), we have

\[
P_e \leq \frac{M - 1}{M} \sum_{j=1}^{M} Q\left(\frac{d_j}{\sqrt{2N_0}}\right) \quad (13b)
\]

which is our final result.

Probability of Error and Signaling Distance

EXAMPLE 16.5–2

Consider the signal set back in Fig. 16.5–6b. The decision regions have a rather complicated pattern, but the nearest-neighbor distance is \(d_j = 2a = \sqrt{E_1} \) for all eight points. We also observe that \(\|s_1\|^2 = E_1 = (2a)^2 \) for even \(i \), while \(\|s_2\|^2 = E_2 = 2E_1 \) for odd \(i \). The average energy per symbol is then

\[
E = \frac{1}{8} [4 \times (2a)^2 + 4 \times 2(2a)^2] = 6a^2
\]
Hence, from Eq. (13),

\[P_e \leq \frac{7}{8} Q \left(\frac{2a}{\sqrt{2N_0}} \right) = 7Q \left(\frac{\sqrt{E}}{\sqrt{3N_0}} \right) \]

which is an upper bound on the error probability in terms of the average signal energy.

Closer examination of Fig. 16.5–6 reveals that the corner points have rectangular boundaries, equivalent to Fig. 16.5–8 with \(a_1 = a_2 = a \) and \(b_1 = b_2 = \infty \). Therefore, for even values of \(j \), Eq. (12) gives the exact result

\[P(c \mid m_j) = (1 - q)^2 \quad q = Q \left(\frac{a}{\sqrt{N_0}/2} \right) = Q \left(\frac{\sqrt{E}}{3N_0} \right) \]

Furthermore, for odd values of \(j \), we can omit the triangular area and write

\[P(c \mid m_j) > \int_{-a}^{a} p_\beta(\beta_1) \, d\beta_1 \int_{-a}^{a} p_\beta(\beta_2) \, d\beta_2 = (1 - q)(1 - 2q) \]

Thus, substitution in Eq. (9b) yields

\[P_c > \frac{1}{8} \left[4(1 - q)^2 + 4(1 - q)(1 - 2q) \right] \quad P_e = 1 - P_c < \frac{5}{2} q - \frac{3}{2} q^2 \]

which is a more accurate result than the union bound.

EXERCISE 16.5–1

Let a set of \(M = 6 \) signals be defined by \(s_1 = -s_2 = a\phi_1, s_3 = -s_4 = a\phi_1 + 2a\phi_2, \) and \(s_5 = -s_6 = a\phi_1 - 2a\phi_2 \). Construct the decision boundaries and use Eq. (12) to show that \(P_e = (7q - 4q^2)/3 \), where \(q = Q \left(\sqrt{6E/3N_0} \right) \) with \(E \) being the average signal energy.

Signal Selection and Orthogonal Signaling

Having learned how to implement optimum detection given a set of signals, we come at last to the important design task of signal selection for digital communication. We continue to assume equiprobable symbols and gaussian noise, but we now add a constraint on the average signal energy \(E \). In this context, we say that:

An optimum signal set achieves the lowest error probability for a specified value of \(E \) or, equivalently, achieves a specified error probability with the lowest value of \(E \).

Our vector interpretation suggests that the corresponding signal points should be arranged spherically around the origin to minimize vector length and signal energy,
with the largest possible spacing between points to maximize separation and minimize error probability. These optimal properties define the so called **simplex set** in a subspace with \(K = M - 1 \) dimensions.

The simplex signal points form the vertices of a \(K \)-dimensional pyramid whose center of gravity coincides with the origin. The pyramid reduces to an equilateral triangle when \(M = 3 \), and to antipodal points \((s_2 = -s_1)\) when \(M = 2 \). When \(M \) is large, there’s little difference between the optimal simplex set and a set of **equal-energy orthogonal signals**. Since orthogonal signals are easier to generate and analyze than simplex signals, we’ll focus attention on the nearly optimum case of digital communication via \(M \)-ary orthogonal signals.

Specifically, let an \(M \)-dimensional subspace be spanned by a set of orthonormal basis functions, and let

\[s_i(t) = \sqrt{E} \phi_i(t) \quad i = 1, 2, \ldots, M \quad (14a) \]

so that

\[(s_i, s_j) = \begin{cases} E & j = i \\ 0 & j \neq i \end{cases} \quad (14b) \]

\[d_{ij}^2 = ||s_i - s_j||^2 = 2E \quad j \neq i \quad (14c) \]

These relations define a set of mutually orthogonal signals with average signal energy \(E \), as illustrated in Fig. 16.5–9 for \(M = 3 \). We’ll also impose the timelimited condition that \(s_i(t) = 0 \) for \(t < 0 \) and \(t > D \). The values of \(D \) and \(M \) are related by

\[r_b = \frac{\log_2 M}{D} \]

where \(r_b \) is the equivalent bit rate of the information source.

There are many possible sets of timelimited orthogonal signals. At baseband, for instance, the signals could be nonoverlapping pulses of duration \(\tau \leq D/M \) — i.e., digital

![Figure 16.5–9](image_url)
Figure 16.5–9 Orthogonal signal set with \(M = 3 \).
pulse-position modulation (PPM). Or, for bandpass transmission, orthogonal signaling may take the form of frequency-shift keying (FSK) with frequency spacing 1/2D. Regardless of the particular implementation, M-ary orthogonal signaling is a wideband method requiring transmission bandwidth

$$B_T \equiv \frac{M}{2D} = \frac{M r_b}{2 \log_2 M} \geq r_b$$ \hspace{1cm} (15)$$

We’ll see that this method trades increased bandwidth for decreased error probability, similar to wideband noise-reduction in analog communication.

First note from symmetry that $P(c \mid m_j)$ is the same for all M signals, so

$$P_c = P(c \mid m_j) = P(z_i > z_j, \text{ all } i \neq j)$$

where z_i is the decision function in Eq. (7). Since the bias term c_i is independent of i, we can drop it and write $z_i = (y, s_i) = (v, s_i)$. When $m = m_j, v = s_j + n = \sqrt{E} \phi_i + n$ and

$$z_i = \left(\sqrt{E} \phi_j + n, \sqrt{E} \phi_i \right) = E(\phi_j, \phi_i) + \sqrt{E}(n, \phi_i) = \begin{cases} E + \sqrt{E} \beta_i & i = j \\ \sqrt{E} \beta_i & i \neq j \end{cases}$$

in which we’ve introduced the noise coordinates $\beta_i = (n, \phi_i)$.

Next, consider some particular value of β_i so, for any $i \neq j$, the probability of the event $z_i > z_j$ given β_i is

$$P(z_i > z_j \mid \beta_i) = P(E + \sqrt{E} \beta_i > \sqrt{E} \beta_j) = P(\beta_i < \sqrt{E} + \beta_j)$$

$$= \int_{-\infty}^{\sqrt{E} + \beta_i} p_{\beta_i}(d \beta_i)$$

Then, since the noise coordinates are independent RVs and there are $M - 1$ coordinates with $i \neq j$, the probability of correct detection given β_i is

$$P(c \mid \beta_i) = \left[\int_{-\infty}^{\sqrt{E} + \beta_i} p_{\beta_i}(d \beta_i) \right]^{M - 1}$$

Averaging $P(c \mid \beta_i)$ over all possible values of β_i finally yields

$$P_c = \int_{-\infty}^{\infty} P(c \mid \beta_i) p_{\beta_i}(d \beta_i) = \pi^{-M/2} \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\sqrt{E} N_0 + \lambda} e^{-\mu^2} d\mu \right]^{M - 1} e^{-\lambda^2} d\lambda$$ \hspace{1cm} (16)$$

where $\mu = \beta_i / \sqrt{N_0}$ and $\lambda = \beta_i / \sqrt{N_0}$.

The formidable expression in Eq. (16) has been evaluated numerically by Viterbi (1966), and plots of $P_c = 1 - P_c$ are shown in Fig. 16.5–10 for selected values of M. These curves are plotted versus

$$\frac{E}{N_0 \log_2 M} = \frac{SD}{N_0 \log_2 M} = \frac{S}{N_0 f_b}$$ \hspace{1cm} (17)$$
where $S = E/D$ is the average signal power. We see that when S/N_0r_b has a fixed value, the error probability can be made as small as desired by increasing M. In fact, Viterbi proves analytically that
\[
\lim_{M \to \infty} P_e = \begin{cases}
0 & S/N_0r_b > \ln 2 \\
1 & S/N_0r_b < \ln 2
\end{cases}
\]
represented by the dashed line in Fig. 16.5–10. Hence, if $M \to \infty$, then orthogonal signaling with optimum detection approaches errorless transmission at any bit rate
\[
r_b < \frac{S}{N_0 \ln 2} = C_\infty
\]
where C_∞ is the maximum capacity of an AWGN channel as predicted from information theory.

But keep in mind that increasing M means increasing both the bandwidth and the receiver complexity, which is proportional to M. Furthermore, Fig. 16.5–10

Figure 16.5–10 Error probability for M-ary orthogonal signaling.
reveals that orthogonal signaling with fixed $M \gg 1$ has a threshold effect in the sense that P_e rises abruptly if S/N_0 should happen to decrease somewhat. These observations point to the important conclusion that reliable, efficient, and practical digital communication usually involves some form of error-control coding as well as careful signal selection and optimum receiver design.

16.6 PROBLEMS

16.1–1* Suppose that equal numbers of the letter grades A, B, C, D, and F are given in a certain course. How much information in bits have you received when the instructor tells you that your grade is not F? How much more information do you need to determine your grade?

16.1–2 A card is drawn at random from an ordinary deck of 52 playing cards. (a) Find the information in bits that you receive when you’re told that the card is a heart; a face card; a heart face card. (b) If you’re told that the card is a red face card, then how much more information do you need to identify the specific card?

16.1–3 Calculate the amount of information needed to open a lock whose combination consists of three integers, each ranging from 00 to 99.

16.1–4* Calculate $H(X)$ for a discrete memoryless source having six symbols with probabilities

$$P_A = 1/2 \quad P_B = 1/4 \quad P_C = 1/8 \quad P_D = P_E = 1/20 \quad P_F = 1/40$$

Then find the amount of information contained in the messages ABABBA and FDDFDF and compare with the expected amount of information in a six-symbol message.

16.1–5 Do Prob. 16.1–4 with

$$P_A = 0.4 \quad P_B = 0.2 \quad P_C = 0.12 \quad P_D = P_E = 0.1 \quad P_F = 0.08$$

16.1–6 A certain source has eight symbols and emits data in blocks of three symbols at the rate of 1000 blocks per second. The first symbol in each block is always the same, for synchronization purposes; the remaining two places are filled by any of the eight symbols with equal probability. Find the source information rate.

16.1–7 A certain data source has 16 equiprobable symbols, each 1 ms long. The symbols are produced in blocks of 15, separated by 5 ms spaces. Find the source information rate.

16.1–8 Calculate the information rate of a telegraph source having two symbols: dot and dash. The dot duration is 0.2 sec. The dash is twice as long as the dot and half as probable.

16.1–9* Consider a source with $M = 3$. Find $H(X)$ as a function of p when $P_1 = 1/3$ and $P_2 = p$. Also evaluate $H(X)$ when $p = 0$ and $p = 2/3$.

$\\ H(X) = S/N_0$
16.6 Problems

16.1–10 Consider a source with $M > 2$. One symbol has probability $\alpha \ll 1/M$, and the remaining symbols are equally likely. Show that $H(X) = \log_2 (M - 1) + \alpha \log_2 (1/\alpha)$.

16.1–11 Obtain the bounds on K in Eq. (13) when N_i satisfies Eq. (15).

16.1–12 Obtain the Shannon-Fano code for the source in Prob. 16.1–4, and calculate the efficiency.

16.1–13 Show that there are two possible Shannon-Fano codes for the source whose symbol probabilities are given in Prob. 16.1–5. Then calculate the efficiency of the better code.

16.1–14 Consider a source with $M = 3$ and symbol probabilities 0.5, 0.4, and 0.1.
(a) Obtain the Shannon-Fano code and calculate its efficiency.
(b) Repeat part (a) for the second-extension code, grouping the symbols in blocks of two.

16.1–15 A binary source has symbol probabilities 0.8 and 0.2. (a) Group the symbols in blocks of two, obtain the corresponding second-extension Shannon-Fano code, and calculate its efficiency. (b) Repeat part (a) with blocks of three for a third-extension code.

16.1–16* A binary source has $P_0 = P_1 = 1/2$ and first-order memory such that $P(0 \mid 1) = P(1 \mid 0) = 3/4$. Calculate the resulting conditional entropy.

16.2–1 The joint entropy of a discrete system is defined as

$$H(X, Y) = \sum_{x, y} P(x, y) \log_2 \frac{1}{P(x, y)}$$

Show that $H(X, Y) = H(Y) + H(X \mid Y)$.

16.2–2 Expand Eq. (2) to obtain $I(X; Y) = H(X) + H(Y) - H(X, Y)$, where $H(X, Y)$ is the joint entropy defined in Prob. 16.2–1.

16.2–3 Consider a noiseless system with μ source symbols, μ destination symbols, and forward transition probabilities

$$P(y \mid x) = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

Show that $H(Y) = H(X), H(Y \mid X) = 0$, and therefore $I(X; Y) = H(X)$.

16.2–4 Figure P16.2–4 represents a nonsymmetric binary channel. Follow the method used in Example 16.2–1 to obtain

$$I(X; Y) = \Omega(\beta + (1 - \alpha - \beta)p) - p\Omega(\alpha) - (1 - p)\Omega(\beta)$$

16.2–5 The channel in Prob. 16.2–4 is said to be useless if $\beta = 1 - \alpha$. Justify this name from intuitive and analytical arguments.

16.2–6 When a and b are constants, show that
Then apply this relation to confirm that $I(X; Y)$ in Eq. (8) is maximum when $p = 1/2$.

16.2–7 The channel in Prob. 16.2–4 is called a **Z channel** when $\beta = 0$. Use the relation in Prob. 16.2–6 to show that if $\alpha = 1/2$, then $I(X; Y)$ is maximum when $p = 2/5$. Then evaluate C_s.

16.2–8* Let the channel in Prob. 16.2–4 have $\alpha = 1/4$ and $\beta = 0$. Use the relation in Prob. 16.2–6 to find C_s.

16.2–9 The **binary erasure channel** has two source symbols, 0 and 1, and three destination symbols, 0, 1, and E, where E denotes a detected but uncorrectable error. The forward transition possibilities are

$$
\begin{align*}
P(0 \mid 0) &= 1 - \alpha & P(E \mid 0) &= \alpha & P(1 \mid 0) &= 0 \\
P(0 \mid 1) &= 0 & P(E \mid 1) &= \alpha & P(1 \mid 1) &= 1 - \alpha
\end{align*}
$$

It follows from symmetry that $I(X; Y)$ is maximum when the source symbols are equiprobable. Find C_s in terms of α.

16.2–10 Derive the bound on $P(n \geq d)$ given in Eq. (14b).

16.3–1* Find $H(X)$ in terms of $S = \bar{x}^2$ and confirm that $H(X) \leq \frac{1}{2} \log_2 2\pi e S$ when $p(x)$ is a uniform PDF over $|x| \leq \bar{a}$.

16.3–2 Find $H(X)$ in terms of $S = \bar{x}^2$ and confirm that $H(X) \leq \frac{1}{2} \log_2 2\pi e S$ when $p(x)$ is a Laplace PDF in Example 8.3–1.

16.3–3 Find $H(X)$ in terms of $S = \bar{x}^2$ and confirm that $H(X) \leq \frac{1}{2} \log_2 2\pi e S$ when $p(x) = ae^{-ax^2}(x)$.

16.3–4 Express $H(Z)$ in terms of $H(X)$ when $Z = \alpha X + b$.

16.3–5* Find $p(x)$ that maximizes $H(X)$ and determine the resulting $H(X)$, given the signal constraints $x(t) \geq 0$ and $\bar{x}(t) = m$.

16.3–6 Find $p(x)$ that maximizes $H(X)$ and determine the resulting $H(X)$, given the signal constraints $x(t) \geq 0$ and $\bar{x}(t) = S$.

Figure P16.2–4

\[
\frac{d}{dp} \Omega(a + bp) = b \log_2 \frac{1 - a - bp}{a + bp}
\]
16.3–7 Write \(p_x(x | y)/p_x(x) = [p_x(x)p_y(y)/p_y(x, y)]^{-1} \) and use \(\ln v \leq v - 1 \) to show that \(l(X; Y) \approx 0 \).

16.3–8 Consider an AWGN channel with \(S/N_0 = 10^4 \). Find the maximum rate for reliable information transmission when \(B = 1 \) kHz, 10 kHz, and 100 kHz.

16.3–9 Consider an AWGN channel with \(B = 3 \) kHz. Find the minimum value of \(S/N \) in dB for reliable information transmission at \(R = 2400, 4800, \) and 9600 bits/sec.

16.3–10* Consider an AWGN channel with \(B = 1 \) kHz and \(S/N_0 = 1 \) \(\mu \)W/Hz. Find the minimum value of \(S \) in milliwatts for reliable information transmission at \(R = 100, 1000, \) and 10,000 bits/sec.

16.3–11 An engineer claims to have designed an analog communication system that has \(S_2/N_0 = 60 \) dB when \(S_1/N_0B_T = 5 \) dB and \(B_T = 10W \). Do you believe this claim?

16.3–12 An ideal system has \((S/N)_0 = 40 \) dB when \(B_T = 4W \). Find \((S/N)_0 \) when \(B_T \) is tripled while all other parameters are held fixed.

16.3–13 Do Prob. 16.3–12 with \(B_T \) reduced to \(W/2 \) instead of being tripled.

16.3–14* A communication system has \(B_T = 12 \) kHz, \(L = 60 \) dB, \(N_0 = \) pW/Hz. Find the minimum value of \(S_T \) needed to get \((S/N)_0 = 30 \) dB when \(W = 3 \) kHz.

16.3–15 Do Prob. 16.3–14 with \(W = 6 \) kHz.

16.4–1 Consider the signals \(v(t), w(t), \) and \(z(t) = v(t) + w(t) \) with energy \(E_v = E_w = 4 \) and \(E_z = 8 \). Construct a vector diagram based on this information, and use it to find \(E_z \) when \(x(t) = 3v(t) - 0.5w(t) \).

16.4–2 Do Prob. 16.4–1 with \(E_v = 4, E_w = 12, \) and \(E_z = 16 \).

16.4–3 Prove the triangle inequality in Eq. (2) from Eqs. (5) and (6).

16.4–4 Derive Eq. (7) and show that \(\|v_w\| \leq \|v\| \).

16.4–5* Apply the Gram-Schmidt procedure to obtain an orthonormal basis for the signals

\[
\begin{align*}
\mathbf{s}_1(t) &= 1 \\
\mathbf{s}_2(t) &= t \\
\mathbf{s}_3(t) &= t^2
\end{align*}
\]

defined over \(-1 \leq t \leq 1\). Then write the signal vectors in terms of the basis functions.

16.4–6 Apply the Gram-Schmidt procedure to obtain an orthonormal basis for the signals

\[
\begin{align*}
\mathbf{s}_1(t) &= 1 \\
\mathbf{s}_2(t) &= \cos \pi t/2 \\
\mathbf{s}_3(t) &= \sin \pi t
\end{align*}
\]

defined over \(-1 \leq t \leq 1\). Then write the signal vectors in terms of the basis functions.
16.5–1* Consider the following three sets of binary signals defined in terms of orthonormal basis functions ϕ_1 and ϕ_2:

(a) $s_1 = a\phi_1$, $s_2 = a\phi_2$
(b) $s_1 = a\phi_1$, $s_2 = -a\phi_2$
(c) $s_1 = a\phi_1$, $s_2 = 0$

Construct the maximum-likelihood decision regions and write the decision functions for each signal set. Then simplify and diagram optimum receivers using correlation detection.

16.5–2 Consider the following two sets of quaternary signals ($M = 4$) defined in terms of orthonormal basis functions ϕ_1 and ϕ_2:

(a) $s_1 = a\phi_1$, $s_2 = a\phi_2$, $s_3 = -a\phi_1$, $s_4 = -a\phi_2$
(b) $s_1 = a\phi_1$, $s_2 = a\phi_2$, $s_3 = a(\phi_1 + \phi_2)$, $s_4 = 0$

Construct the maximum-likelihood decision regions and write the decision functions for each signal set. Then simplify and diagram optimum receivers using correlation detection.

16.5–3 Consider the following set of quaternary signals ($M = 4$) defined in terms of orthonormal basis functions ϕ_1 and ϕ_2:

$$s_1 = -s_3 = a(\phi_1 + \phi_2), \quad s_2 = -s_4 = a(\phi_1 - \phi_2)$$

Construct the maximum-likelihood decision regions and find the error probability with AWGN, expressing your result in terms of the average signal energy E.

16.5–4 Suppose the signal $s_5 = 0$ is added to the set in Prob. 16.5–3. Construct the maximum-likelihood decision regions and obtain an upper bound on the error probability with AWGN, expressing your result in terms of the average signal energy E.

16.5–5* Suppose the signal $s_6 = 0$ is added to the set in Fig. 16.5–6a. Construct the maximum-likelihood decision regions and find the error probability with AWGN, expressing your result in terms of the average signal energy E. Compare with the upper bound obtained from Eq. (13).
Circuit and System Noise

OUTLINE

Circuit and Device Noise
Amplifier Noise
System Noise Calculations
Cable Repeater Systems
Transmission loss usually results in a very feeble signal at the input of a communication receiver. Consequently, to obtain an adequate signal level for further processing, the “front end” of a typical receiver includes several stages of amplification. But high-gain amplifiers amplify any noise that accompanies the received signal, and they also add their own internally generated noise. An accurate assessment of system performance must therefore take into account amplifier noise.

This appendix starts with circuit and device noise, as preparation for the description of amplifiers and other noisy two-port networks. Then we analyze noisy two-ports connected in cascade, a configuration that pertains to repeater systems as well as to receivers. Our analysis brings out the critical factors in receiver noise and the design principles for low-noise systems.

OBJECTIVES

After studying this appendix and working the exercises, you should be able to do each of the following:

1. Calculate the mean square noise voltage or current and the available power density for a passive network with internal resistance noise.
2. Use the concepts of available power gain, effective noise temperature, and noise figure to analyze the performance of a noisy two-port network.
3. Calculate the overall noise figure and noise temperature for a cascade system, and use them to find \((S/N)_o\) given \((S/N)\).

Circuit and Device Noise

Noise generated within an electrical circuit may come from numerous sources involving several different physical phenomena. Here we’ll describe major types of device noise found in communication systems, and we’ll develop appropriate circuit models and analysis methods.

The assumption of stationarity is reasonable for most electrical noise processes, thereby allowing us to represent noise sources in the frequency domain. For convenience, we’ll adopt the common practice of working entirely with positive frequency and one-sided frequency functions—as distinguished from the two-sided functions used in Sect. 9.3. To clarify this distinction, let \(G(f)\) be the two-sided available power spectrum of some noise source. Since \(G(f)\) has even symmetry, the corresponding **one-sided available power density** will be defined by

\[
\eta(f) \triangleq 2G(f) \quad f \geq 0
\]

(1a)

and the total available noise power is

\[
N = \int_{0}^{\infty} \eta(f) \, df
\]

(1b)

Likewise, the one-sided mean square voltage or current densities equal twice the two-sided frequency functions for \(f \geq 0\).

Figure A-1a shows the frequency-domain Thévenin circuit model of a stationary but otherwise arbitrary noise source with noiseless internal impedance \(Z(f)\).
The function $v_n^2(f)$ represents the **open-circuit mean square voltage density**, defined such that

$$\eta(f) = \frac{v_n^2(f)}{4 \text{Re} \{Z(f)\}} \quad (2)$$

Alternatively, an ideal voltmeter with bandwidth df centered at some frequency f would measure the RMS value $\sqrt{v_n^2(f)} \, df$ across the open terminals of this source. Converting Fig. A-1a to a Norton equivalent circuit gives the circuit model in Fig. A-1b, with

$$i_n^2(f) = \frac{v_n^2(f)}{|Z(f)|^2} \quad (3)$$

which represents the **short-circuit mean square current density**. Equation (3) also expresses Ohm's law in the form needed for circuit noise analysis.

Suppose the source in question happens to be a thermal resistance R at temperature T, so $G(f) = kT/2$ from Eq. (5), Sect. 9.3. Then

$$\eta(f) = kT \quad (4a)$$

and setting $Z(f) = R$ yields

$$v_n^2(f) = 4kT \quad i_n^2(f) = 4kT/R \quad (4b)$$

These constant densities correspond to white noise, at least up to infrared frequencies. For computational purposes, the quantity kT can be rewritten as

$$kT = kT_0(T/T_0) = 4 \times 10^{-21}(T/T_0)$$

where we've inserted the standard room temperature $T_0 = 290$ K.

Resistance noise occurs in almost all circuits, but reactive elements may alter the frequency density. In particular, let Fig. A-2a be a one-port (two-terminal) network containing only resistance, capacitance, and inductance, and having the equivalent impedance $Z(f) = R(f) + jX(f)$. When the resistances are in thermal equilibrium at temperature T, **Nyquist's formula** states that

$$v_n^2(f) = 4R(f)kT \quad (5)$$
Hence, the mean square voltage density takes the shape of the equivalent resistance \(R(f) \). Equation (5) includes the special case of an all-resistive network whose equivalent resistance will be independent of \(f \).

We prove Nyquist's formula by considering the complete circuit in Fig. A–2b, where the source has been connected to a load resistance \(R_L \) at the same temperature \(T \). This load resistance, of course, generates thermal noise with \(v_n^2(f) = 4 R_L kT \).

Since the two noise sources are physically independent, superposition applies and we can calculate the mean square current densities in each direction, namely,

\[
\begin{align*}
 i_1^2(f) &= \frac{v_n^2(f)}{|Z(f) + R_L|^2}, \quad
 i_2^2(f) &= \frac{4 R_L kT}{|Z(f) + R_L|^2}
\end{align*}
\]

The average power delivered from the source to the load in any frequency band \(df \) is \(R_L i_1^2(f) \, df \), while the load delivers \(R(f) i_2^2(f) \, df \) back to the source. But the net power transfer must be zero at every frequency for the circuit to be in thermal equilibrium. Therefore,

\[
\frac{R_L v_n^2(f) \, df}{|Z(f) + R_L|^2} = \frac{R(f) 4 R_L kT \, df}{|Z(f) + R_L|^2}
\]

and Eq. (5) follows after cancellation.

Nyquist's formula does not hold when the resistances are at different temperatures or the network contains nonthermal sources. However, such cases are easily analyzed provided that the sources are independent. You simply use superposition and sum the mean square values to find the resulting frequency density.

The most common type of nonthermal noise in most electrical circuits is **shot noise**. This phenomenon occurs whenever charged particles cross a potential barrier—as in semiconductor junctions or vacuum tubes. Small variations of kinetic energy among the individual particles cause random fluctuations of the total current, roughly analogous to the sound of a stream of buckshot falling on a drum. Schottky first
studied this effect in a vacuum-tube diode operated under temperature-limited conditions. He found that shot noise could be represented by a current source with

$$i_s^2(f) = 2ql$$

in which q is the electronic charge (1.6 \times 10^{-19} coulombs) and I is the DC current. Since Eq. (6) is independent of both frequency and temperature, shot noise is non-thermal white noise. Subsequent investigations have shown that $i_s^2(f)$ actually decreases at frequencies above $f = 1/\tau$, where τ denotes the average particle transit time.

Schottky’s result also holds for the semiconductor junction diode in Fig. A–3a. The net DC current consists of two components, given by the diode equation

$$I = I_s e^{qV/kT} - I_s$$

where V is the junction voltage and I_s is the reverse saturation current. The two current components produce statistically independent shot noise, so the total mean square noise current density becomes

$$i_n^2(f) = 2qi_s e^{qV/kT} + 2qi_s = 2q(l + 2I_s)$$

Figure A–3b shows the complete noise source model, including the diode’s dynamic resistance

$$r = \frac{1}{dI/dV} = \frac{kT}{q(l + I_s)}$$

Unlike ohmic resistance, dynamic resistance is noiseless since it does not correspond to any power dissipation.

Now consider the junction field-effect transistor (JFET) in Fig. A–4a, which has a reverse-biased junction between the gate terminal G and the semiconductor channel from the source terminal S to the drain terminal D. Figure A–4b shows a simplified noise equivalent circuit with current sources representing the gate shot noise and the channel terminal noise, given by

$$i_g^2(f) = 2qlg \quad i_d^2(f) = 4kT \times \frac{1}{2}g_m$$

where g_m is the transconductance. When external circuitry connects to the gate and source terminals, the shot noise is amplified via the controlled current generator g_mV_{gs} and adds to the output noise at the drain terminal.
An FET with an insulated gate structure avoids junction shot noise. But a bipolar junction transistor (BJT) has two semiconductor junctions and two sources of shot noise in addition to thermal noise from internal ohmic resistance. Besides thermal and shot noise, all transistors generate certain types of nonwhite noise that may or may not be significant, depending upon the particular device and the application.

Transistors, vacuum tubes, and other devices exhibit a low-frequency phenomenon known as flicker noise—often called "one-over-f" noise because the mean square density is proportional to $1/f^n$ with $n = 1$. Some semiconductor devices also produce burst or "popcorn" noise, whose waveform resembles the random telegraph wave in Fig. 9.2-3a. Hence, the mean square density eventually falls off as $1/f^2$. Figure A–5 illustrates the frequency variation that results when $i_3(f)$ consists of flicker, burst, and white noise. Flicker and burst noise pose serious problems for
low-frequency applications, but they usually can be ignored at frequencies above a few kilohertz. At much higher frequencies, capacitive coupling and various other effects tend to increase noise in electronic devices.

Vacuum diode noise generator

Noise generators are used in the lab to study noise characteristics, and Fig. A–6a gives the schematic diagram of a noise generator employing a temperature-limited vacuum diode. The choke coil and blocking capacitor serve to separate the DC and shot-noise currents, as indicated.

The corresponding noise circuit model in Fig. A–6b includes the diode's noiseless dynamic resistance r and the noisy thermal resistance R, presumed to be at room temperature T_0. The equivalent impedance is the parallel combination

$$Z(f) = \frac{R(r + 1/j\omega C)}{R + (r + 1/j\omega C)}$$

but the nonthermal shot noise precludes the use of Nyquist's formula. Instead, we convert the shot-noise current and dynamic resistance into Thévenin form shown in

Figure A–6 Circuit diagram and noise models of a vacuum diode noise generator.
Fig. A–6c. Now, applying superposition, the total short-circuit mean square current density is clearly seen to be

\[i_n^2(f) = \frac{r^2qI}{|r + 1/j\omega C|^2} + \frac{4kT_0}{R} \]

and therefore

\[\nu_n^2(f) = |Z(f)|^2 i_n^2(f) = \frac{R^2(r^2qI)}{|R + r + 1/j\omega C|^2} + \frac{R^2 |r + 1/j\omega C|^2}{|R + r + 1/j\omega C|^2} 4kT_0 \]

Note that the first term is the open-circuit mean square voltage density produced by \(\nu_n^2(f) \) when \(i_n^2(f) = 0 \), while the second term is produced by \(i_n^2(f) \) when \(\nu_n^2(f) = 0 \).

In normal operation of the noise generator, we're not concerned with the noise at low frequencies (which would probably be dominated by flicker noise), and the dynamic resistance \(r \) is much greater than \(R \). Under these conditions, our results simplify to

\[Z(f) = R \quad \nu_n^2(f) = 2R^2qI + 4RkT_0 \]

over the frequency range

\[1/2\pi\tau C \ll f < 1/\tau \]

Tubes designed for this application have very short transit times, typically \(\tau \leq 1 \text{ ns} \), so the shot noise remains constant up to about 1 GHz. Finally, from Eq. (2), the available noise power density is

\[\eta(f) = \frac{1}{2}qIR + kT_0 = k(T_x + T_0) \]

where

\[T_x = qIR/2k \]

which we interpret as the equivalent noise temperature of the shot noise. The voltage applied to the filament of the tube controls \(I \) and thus controls \(T_x \), whose value can be determined from an ammeter reading.

EXERCISE A–1 Consider the network in Fig. A–7, where \(R_1 \) and \(R_2 \) are thermal resistances at different temperatures. Let \(R_2 = R_1 = R \) and \(L = R/2\pi \). Obtain expressions for \(\nu_n^2(f) \) and \(\eta(f) \). Then simplify your results when \(T_1 = T_2 = T \).

Figure A–7 RL network with resistance noise.
Amplifier Noise

A detailed circuit model showing all the individual noise sources within an amplifier would be very complicated and of little practical value to a communications engineer. Consequently, alternative methods have been devised for the analysis of noise in amplifiers. Two particularly useful measures of amplifier noise are the effective noise temperature and the noise figure. Both of these measures involve the concept of available power gain, which we introduce first.

Let Fig. A–8 be the circuit model of a noiseless amplifier inserted between a source and a load. (For simplicity, we’ve omitted any reactances that might be associated with the source, amplifier, or load impedances.) The amplifier itself is characterized by an input resistance r_i, output resistance r_o, and voltage transfer function $H(f)$. The source generates a mean square voltage density —representing noise or an information signal or both—and the available power density from the source is $\eta_s(f) = v_s^2(f)/4R_s$. The available power density at the output of the amplifier is

$$\eta_o(f) = \frac{v_o^2(f)}{4r_o} = \frac{|H(f)|^2v_i^2(f)}{4r_o} = \frac{|H(f)|^2}{4r_o} \left(\frac{r_i}{R_s + r_i}\right)^2 v_s^2(f)$$

We define the amplifier’s available power gain $g_a(f)$ as the ratio of these available power densities, i.e.,

$$g_a(f) \triangleq \frac{\eta_o(f)}{\eta_s(f)} = \frac{v_o^2(f) R_s}{v_s^2(f) r_o} = \left(\frac{|H(f)| r_i}{R_s + r_i}\right)^2 \frac{R_s}{r_o}$$

[8]

The actual power gain of an amplifier equals the available power gain when the impedances are matched to obtain maximum power transfer at input and output.

We’ll assume hereinafter that the source generates white noise, thermal or non-thermal, with noise temperature T_s. Then $\eta_s(f) = kT_s$ and the available noise power at the output of a noiseless amplifier would be

$$\eta_o(f) = g_a(f) \eta_s(f) = g_a(f) kT_s$$

But a noisy amplifier contributes additional internally generated noise. Since the internal noise is independent of the source noise, we write

$$\eta_o(f) = g_a(f) kT_s + \eta_{int}(f)$$

[9]
\[\eta(f) = kT \]

where \(\eta(f) \) stands for the available power density of the internal noise seen at the output. Figure A–9a depicts Eq. (9) in the form of a block diagram. Integration then yields the total available output noise power

\[
N_o = \int_0^\infty \eta(f) \, df = kT \int_0^\infty g_a(f) \, df + \int_0^\infty \eta_{\text{int}}(f) \, df
\]

an expression that calls for some simplifications.

Most amplifiers in a communication system have a frequency-selective response, with maximum power gain \(g \) and noise equivalent bandwidth \(B_N \). These parameters are related to \(g_a(f) \) by

\[
gB_N = \int_0^\infty g_a(f) \, df
\]

so the first term of \(N_o \) reduces to \(kT gB_N \). Next, to simplify the second term, we define the effective noise temperature of the amplifier to be

\[
T_e \triangleq \frac{1}{gkB_N} \int_0^\infty \eta_{\text{int}}(f) \, df
\]

Hence, the total output noise power becomes

\[
N_o = kT gB_N + gkB_N T_e = gkT_e B_N
\]

diagrammatically portrayed by Fig. A–9b. This diagram brings out the fact that \(T_e \) represents the internal noise referred to the input and thereby expedites calculations of signal-to-noise ratios.

Now let Fig. A–10 represent a noisy amplifier with signal plus white noise at the input. The available signal power from the source is \(S_o \), and the signal spectrum falls
within the passband of the amplifier, so the available signal power at the output will be \(S_o = gS_s \). Thus, using Eq. (12), the output signal-to-noise ratio is

\[
\left(\frac{S}{N} \right)_o = \frac{gS_s}{N_o} = \frac{S_s}{k(T_s + T_e)B_N}
\]

(13)

where the gain \(g \) has cancelled out in numerator and denominator. Although the source noise does not necessarily have a defined bandwidth, the source signal-to-noise ratio is taken by convention to be

\[
\left(\frac{S}{N} \right)_s = \frac{S_s}{kT_s B_N}
\]

which just corresponds to the signal-to-noise ratio produced by an ideal noiseless filter with unit gain and bandwidth \(B_N \). However, from Eq. (13), the noisy amplifier produces

\[
\left(\frac{S}{N} \right)_o = \frac{S_s}{kT_s B_N} = \frac{1}{1 + T_e/T_s} \left(\frac{S}{N} \right)_s
\]

(14)

and we see that \((S/N)_o < (S/N)_s \).

We also see that the degradation of signal-to-noise ratio due to a noisy amplifier depends on the value of effective noise temperature relative to the source noise temperature. In particular, if \(T_e \ll T_s \) then \((S/N)_o = (S/N)_s \); under this condition the internal noise has little effect, and the amplifier appears to be noiseless. This condition holds primarily at carrier frequencies below about 30 MHz, whereas \(T_e \) becomes significant at higher frequencies. Such considerations often affect the design of receivers and repeaters.

When impedances are not matched at the input or output all signal and noise powers will be less than the available powers. Nonetheless, Eqs. (13) and (14) are still valid because they express power ratios measured at specific points, so the impedance mismatch factor cancels out along with the gain. The effective noise temperature is therefore a significant parameter, irrespective of impedance matching.

Another measure of amplifier noise is the noise figure \(F \). (This is also called the noise factor and symbolized by \(n_f \) or \(NF \). Some authors reserve the term “noise figure”
for the value of the noise factor expressed in dB.) The noise figure is defined such that
\[
\left(\frac{S}{N} \right)_s = \frac{1}{F} \left(\frac{S}{N} \right)_s \quad \text{when} \quad F_s = F_0 \tag{15}
\]
Since \(S_o = g S_s \) and \((S/N)_s = S_o/k T_0 B_N \) when \(F_s = F_0 \),
\[
F = \frac{N_o}{g k T_0 B_N} = 1 + \frac{F_e}{F_0} \tag{16}
\]
and conversely
\[
F_e = (F - 1) F_0 \tag{17}
\]
A very noisy amplifier has \(F_e \gg F_0 \) and \(F \gg 1 \)—in which case we usually express the value of \(F \) in decibels. Then, if the source noise is at room temperature, Eq. (15) says that \((S/N)_s\) in dB equals \((S/N)_s\) in dB minus \(F \) in dB. A low-noise amplifier has \(F_e < F_0 \) and \(1 < F < 2 \)—in which case we usually work with effective noise temperature and calculate \((S/N)_s\) from Eq. (13).

Table A–1 lists typical values of effective noise temperature, noise figure, and maximum power gain for various types of high-frequency amplifiers. Many low-noise amplifiers have cryogenic cooling systems to reduce the physical temperature and thus reduce internal thermal noise. Other amplifiers operate at room temperature, but the internal noise comes from nonthermal sources that may result in \(F_e > F_0 \).

Equation (16) defines the average or integrated noise figure in the sense that \(N_o \) involves the integral of \(\eta_o(t) \) over all frequency. But sometimes we need to know

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>(T_e) K</th>
<th>(F), dB</th>
<th>(g), dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maser</td>
<td>9 GHz</td>
<td>4</td>
<td>0.06</td>
<td>20–30</td>
</tr>
<tr>
<td>Parametric Amplifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room temperature</td>
<td>9 GHz</td>
<td>130</td>
<td>1.61</td>
<td>10–20</td>
</tr>
<tr>
<td>Cooled with liquid N(_2)</td>
<td>6 GHz</td>
<td>50</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>Cooled with liquid He</td>
<td>4 GHz</td>
<td>9</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>FET Amplifier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaAs</td>
<td>9 GHz</td>
<td>330</td>
<td>3.3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6 GHz</td>
<td>170</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1 GHz</td>
<td>110</td>
<td>1.4</td>
<td>12</td>
</tr>
<tr>
<td>Silicon</td>
<td>400 MHz</td>
<td>420</td>
<td>3.9</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>100 MHz</td>
<td>226</td>
<td>2.5</td>
<td>26</td>
</tr>
<tr>
<td>Integrated Circuit</td>
<td>10.0 MHz</td>
<td>1160</td>
<td>7.0</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>4.5 MHz</td>
<td>1860</td>
<td>8.7</td>
<td>75</td>
</tr>
</tbody>
</table>
how the internal noise varies with frequency. The spot noise figure $F(f)$ contains this information in the form

$$F(f) \equiv \frac{\eta_0(f)}{kT_s g_{\alpha}(f)} \text{ when } T_s = T_0$$ \hfill (18)

The value of $F(f)$ at a particular frequency serves as an estimate of the noise figure when a wideband amplifier is used for narrowband amplification with the help of additional filtering.

Finally, to relate system and circuit models of amplifier noise, we should mention the two-generator model diagrammed in Fig. A–11. This circuit model represents the internal noise in terms of fictitious voltage and current sources at the input terminals of an equivalent noiseless amplifier. The total mean square voltage density at the open-circuited output is

$$v_o^2(f) = \left(\frac{|H(f)| r_i}{R_s + r_i} \right)^2 \left[4 R_s kT_s + v_n^2(f) + R_s^2 (f) \right]$$

provided that $v_n^2(f)$ and $i_n^2(f)$ are uncorrelated. Using Eqs. (8) and (18) with $\eta_0(f) = v_n^2(f)/4r_o$, we find that

$$F(f) = 1 + \frac{v_n^2(f) + R_s^2 (f)}{4 R_s kT_0}$$ \hfill (19)

which shows that the spot noise figure depends in part upon the external source resistance. Hence, optimizing $F(f)$ at a particular frequency often requires a transformer to obtain the optimum source resistance.

Amplifier Noise Measurement

Measuring absolute noise power is a difficult chore, so clever techniques have been developed for amplifier noise measurement with a relative power meter connected at the output. One technique utilizes a calibrated source of white noise, such as a diode noise generator, impedance-matched to the input of the amplifier. The procedure goes as follows.
First, set the source noise temperature at $T_s = T_0$ and record the output meter reading N_1. From Eq. (12), this value corresponds to

$$N_1 = CN_0 = Cgk(T_0 + T_e)B_N$$

where the proportionality constant C includes any impedance mismatch factor at the output. Second, increase the source temperature to $T_s = T_x + T_0$ such that the meter reading has doubled and

$$N_2 = Cg[(T_x + T_0) + T_e]B_N = 2N_1$$

Then $N_2/N_1 = (T_x + T_0 + T_e)/(T_0 + T_e) = 2$, so

$$T_e = T_x - T_0 \quad F = T_x/T_0$$

Note that we don’t need to know g, B_N, or the constant C.

EXERCISE A–2

An amplifier with $g = 60$ dB and $B_N = 2$ MHz has $N_o = 40$ nW when the source noise is at room temperature. (a) Find the effective noise temperature and noise figure. (b) Calculate the source temperature needed for the second step of the measurement procedure in Example A–2.

System Noise Calculations

Here we take up the analysis of cascade-connected systems that include amplifiers and other noisy two-port networks. Our objective is to develop expressions for the overall performance of the system in terms of the parameters of the individual stages.

First, we must give consideration to lossy two-port networks such as transmission lines and connecting cables. Power loss implies dissipation by internal resistance. Consequently, the internal noise is thermal noise at the ambient temperature T_{amb} and $\eta_{int}(f) = kT_{amb}$. However, we cannot use the model in Fig. A–9a because lossy two-ports are bilateral, meaning that a portion of the internal noise flows back to the input. When impedances are matched, a bilateral two-port has constant gain $g < 1$ in both directions, so $g\eta_{int}(f)$ flows back to the input while $(1 - g)\eta_{int}(f)$ goes to the output. The total available noise power in bandwidth B_N at the output thus becomes

$$N_o = gkT_sB_N + (1 - g)kT_{amb}B_N = gk[T_s + (L - 1)T_{amb}]B_N$$

where

$$L = 1/g$$

which represents the transmission loss or attenuation. Comparing our expression for N_o with Eq. (12), we obtain the effective noise temperature

$$T_e = (L - 1)T_{amb}$$ \hspace{1cm} \text{(20a)}$$
and Eq. (16) gives the noise figure

\[F = 1 + (L - 1)\left(\frac{\mathcal{T}_{\text{amb}}}{\mathcal{T}_0}\right) \]

(20b)

If a lossy two-port is at room temperature, then \(\mathcal{T}_{\text{amb}} = \mathcal{T}_0 \) and Eq. (20b) reduces to \(F = L \).

Next, consider the cascade of two noisy two-ports in Fig. A–12, where subscripts identify the maximum power gain, noise bandwidth, and effective noise temperature of each stage. We reasonably assume that both stages are linear and time invariant (LTI). We further assume that the passband of the second stage falls within the passband of the first stage, so \(B_2 \leq B_1 \) and the overall noise bandwidth is \(B_N = B_2 \). This condition reflects the sensible strategy of designing the last stage to mop up any remaining noise that falls outside the signal band. The overall power gain then equals the product

\[g = g_1 g_2 \]

since the first stage amplifies everything passed by the second stage.

The total output noise power consists of three terms:

1. Source noise amplified by both stages;
2. Internal noise from the first stage, amplified by the second stage;
3. Internal noise from the second stage.

Thus,

\[N_0 = gk\mathcal{T}_1 B_N + g_2(g_1 k \mathcal{T}_1 B_N) + g_2 k \mathcal{T}_2 B_N = gk \left(\mathcal{T}_1 + \frac{\mathcal{T}_2}{g_1} \right) B_N \]

and the overall effective noise temperature is

\[\mathcal{T}_e = \mathcal{T}_1 + \frac{\mathcal{T}_2}{g_1} \]

The overall noise figure is

\[F = 1 + \frac{\mathcal{T}_1}{\mathcal{T}_0} + \frac{\mathcal{T}_2}{g_1 \mathcal{T}_0} = F_1 + \frac{F_2 - 1}{g_1} \]

which follows from the general relationship \(F = 1 + \mathcal{T}_e/\mathcal{T}_0 \).

The foregoing analysis readily generalizes to the case of three or more cascaded LTI two-ports. The overall effective noise temperature is given by Friis' formula as

\[\mathcal{T}_e = \mathcal{T}_1 + \frac{\mathcal{T}_2}{g_1} + \frac{\mathcal{T}_3}{g_1 g_2} + \cdots \]

(21)
and the overall noise figure is

$$F = F_1 + \frac{F_2 - 1}{g_1} + \frac{F_3 - 1}{g_1g_2} + \ldots$$ \hfill (22)

Both expressions bring out the fact that

> The first stage plays a critical role and must be given careful attention in system design.

On the one hand, suppose the first stage is a preamplifier with sufficiently large gain g_1 that Eq. (21) reduces to $T_e = T_1$. The system noise is then determined primarily by the preamplifier. The remaining stages provide additional amplification and filtering, amplifying the signal and noise without appreciably changing the signal-to-noise ratio. The design of low-noise receivers is usually based on this preamplification principle.

But, on the other hand, suppose the first stage happens to be a connecting cable or any other lossy two-port. From the noise viewpoint, the attenuation is twice cursed since $g_1 = 1/L_1 < 1$ and $T_1 = (L_1 - 1)T_{amb}$. Equation (21) thus becomes

$$T_e = (L_1 - 1)T_{amb} + L_1T_2 + L_1T_3/g_2 + \ldots$$

which shows that L_1 multiplies the noise temperatures of all subsequent stages.

Now consider a complete communications receiver as drawn in Fig. A–13a. The receiver has been divided into two major parts: a predetection unit followed by a detector. The detector processes the amplified signal plus noise and carries out a nonlinear operation, i.e., analog demodulation or digital regeneration. These operations are analyzed in Chaps. 10, 11, and 14, making the reasonable assumption that the detector introduces negligible noise compared to the amplified noise coming from the predetection unit. We’re concerned here with the predetection signal-to-noise ratio denoted by $(S/N)_R$.

The predetection portion of a receiver is a cascade of noisy amplifiers and other functional blocks that act as LTI two-ports under the usual small-signal conditions. Hence, as indicated in Fig. A–13a, the entire predetection unit can be characterized by its overall effective noise temperature calculated from Eq. (21). (When the predetection unit includes a frequency converter, as in a superheterodyne receiver, its conversion gain takes the place of available power gain.) For a well-designed receiver, the predetection noise bandwidth essentially equals the transmission bandwidth B_T required for the signal. If the available signal power at the receiver input is S_R and the accompanying noise has temperature T_R, then Eq. (13) becomes

$$\frac{(S/N)_R}{S_R} = \frac{N_0B_T}{N_0B_T} \quad \text{(23a)}$$

with

$$N_0 \triangleq k(T_R + T_e) = kT_N \quad \text{(23b)}$$
The sum $\mathcal{T}_N = \mathcal{T}_R + \mathcal{T}_e$ is called the **system noise temperature**, and N_0 represents the total noise power density referred to the input of an equivalent noiseless receiver—corresponding to the diagram in Fig. A–13b.

Satellite ground station

The signal received at a satellite ground station is extremely weak. Fortunately, the accompanying noise comes primarily from "cold" atmospheric phenomena and has a very low temperature. Minimizing the receiver noise is therefore both essential and justifiable. (In contrast, a receiving antenna pointed at or below the horizon picks up blackbody radiation from the "hot" earth; then $\mathcal{T}_R = \mathcal{T}_0$ and the receiver noise will be relatively less important.)

Figure A–14 depicts an illustrative low-noise microwave receiver for a satellite signal with frequency modulation. The waveguide is part of the antenna feed structure and introduces a small loss; the corresponding effective noise temperature is $\mathcal{T}_1 = (1.05 - 1)290 = 14.5$ K, from Eq. (20a). Two preamplifiers are employed to mitigate the noise of the high-gain FM receiver. Inserting numerical values into Eq. (21), we get the overall effective noise temperature

$$\mathcal{T}_e = 14.5 + 1.05 \times 9 + \frac{1.05 \times 170}{100} + \frac{1.05 \times 1860}{100 \times 10}$$

$$= 14.5 + 9.5 + 1.8 + 2.0 = 27.8$$ K

Notice that the waveguide loss accounts for half of \mathcal{T}_e, whereas the noise from the FM receiver has been nearly washed out by the preamplification gain.
The system noise temperature is $T_N = T_R + T_0 = 57.8\,\text{K} \approx 0.2T_0$. Therefore, using Eq. (23),

$$\left(\frac{S}{N}\right)_R = \frac{10^{-12}}{4 \times 10^{-21} \times 0.2 \times 25 \times 10^6} = 50 = 17\,\text{dB}$$

This small signal-to-noise ratio would be insufficient for analog communication, were it not for the further improvement afforded by FM demodulation.

Exercise A–3

Suppose the parametric amplifier in Fig. A–14 could be mounted directly on the antenna, ahead of the waveguide. Find T_N with and without the FET preamplifier.

Cable Repeater Systems

The adverse noise effect of lossy two-ports obviously cannot be avoided in cable transmission systems. However, we previously asserted that inserting repeater amplifiers improves performance compared to cable transmission without repeaters. Now we have the tools needed to analyze the noise performance of such repeater systems.

A repeater system normally consists of m identical cable/repeater sections like Fig. A–15. The cable has loss L_c and ambient temperature $T_{\text{amb}} = T_0$, so $F_c = L_c$. The repeater amplifier has noise figure F_r and gain $g_r = L_c$ to compensate for the cable loss. We’ll treat each section as a single unit with power gain $g_{cr} = (1/L_c)g_r = 1$

and noise figure

$$F_{cr} = F_c + \frac{F_r - 1}{(1/L_c)} = L_c + L_c(F_r - 1) = L_c F_r$$
calculated from Eq. (22). The overall noise figure for \(m \) cascaded sections then becomes

\[
F = mF_{cr} - (m - 1) = mF_{cr} - h
\]

The approximation in Eq. (24b) assumes \(F_{cr} \gg 1 \), consistent with \(L_c \gg 1 \). This result explains the rule of thumb that “doubling the number of repeaters increases the noise figure by 3 dB.”

Most systems do have \(F_{cr} \gg 1 \), so the effective noise temperature is

\[
T_e = (F - 1)T_0 = mF_{cr}T_0
\]

Furthermore, we can reasonably presume that the noise temperature at the transmitter will be small compared to \(T_e \). Under these conditions, the transmitted signal power \(S_T \) yields at the destination the predetection signal-to-noise ratio

\[
\left(\frac{S}{N} \right)_R = \frac{S_T}{kT_eB_N} = \frac{S_T}{m(kF_{cr}T_0B_T)} = \frac{1}{m} \left(\frac{S}{N} \right)_1
\]

where \((S/N)_1 = S_T/(kF_{cr}T_0B_T)\), which corresponds to the signal-to-noise ratio at the output of the first repeater.

Problems

A–1* Obtain expressions for \(v_0^2(f) \) and \(i_0^2(f) \) when resistance \(R_1 \) at temperature \(T_1 \) is connected in series with \(R_2 \) at temperature \(T_2 \). Check your result by taking \(T_1 = T_2 = T \).

A–2 Do Prob. A–1 for a parallel connection.

A–3 Find \(v_0^2(f) \) when the circuit in Fig. A–7 has \(T_1 = T_2 = T \), \(R_1 = 1 \), \(R_2 = 9 \), and \(L = 1/2\pi \).

A–4 Let the inductance in Fig. A–7 be replaced by capacitance \(C \). Find \(v_0^2(f) \) when \(T_1 = T_2 = T \) and \(R_1 = R_2 = R \).

A–5* Let the voltage in Fig. A–3 be \(V \gg kT/q \). Write \(i_0^2(f) \) in terms of \(r \) and explain why junction shot noise is sometimes called “half-thermal noise.”

A–6 An amplifier with \(r_1 = r_0 = 50 \Omega \) is connected to a room-temperature source with \(R_s = 50 \Omega \). The amplifier has \(|H(f)| = 200 \pi[(f - f_c)/B] \)
for \(f \geq 0 \) and
\[
\eta_{\text{no}}(f) = 2 \times 10^{-16} \Pi[(f - f_c)/B],
\]
where \(f_c = 100 \text{ MHz} \) and \(B = 1 \text{ MHz} \). Find \(g_B, kT_0 \), and \(N_0 \).

A-7
An amplifier with \(g = 50 \text{ dB} \) and \(B_N = 20 \text{ kHz} \) is found to have \(N_0 = 80 \text{ pW} \) when \(T_e = T_0 \). Find \(T_e \) and \(F \), and calculate \(N_0 \) when \(T_s = 2T_0 \).

A-8
When the noise temperature at the input to a certain amplifier changes from \(T_0 \) to the output noise increases by one-third. Find \(T_e \) and \(F \).

A-9
A sinusoidal oscillator may be used in place of a noise source for the measurement process in Example A-2. The oscillator is connected but turned off for the first measurement, so its internal resistance provides the source noise. The oscillator is then turned on, and its signal power \(S \) is adjusted to double the meter reading. Obtain an expression for \(F \) in terms of \(S \), and discuss the disadvantages of this method.

A-10
Impedance matching between a 300-\(\Omega \) antenna and a 50-\(\Omega \) receiver is sometimes accomplished by putting a 300-\(\Omega \) resistor in series with the antenna and a 50-\(\Omega \) resistor across the receiver's input terminals. Find the noise figure of this resistive two-port network by calculating its power gain with a 300-\(\Omega \) source resistance and a 50-\(\Omega \) load resistance.

A-11
Two cascaded amplifiers have the following properties: \(T_1 = 3T_0 \), \(g_1 = 10 \text{ dB} \), \(F_2 = 13.2 \text{ dB} \), \(g_2 = 50 \text{ dB} \), \(B_1 > B_2 = 100 \text{ kHz} \). What input signal power is required to get \(S/N \) when \(T_s = 2T_0 \)?

A-12
A system consists of a cable whose loss is 2 dB/km followed by an amplifier with \(F = 7 \text{ dB} \). If \(T_s = T_0 \), then what's the maximum path length for \(S/N \) when \(T_s = 10T_0 \)?

A-13
A receiver system consists of a preamplifier with \(F = 3 \text{ dB} \) and \(g = 20 \text{ dB} \); a cable with \(L = 6 \text{ dB} \) and \(T_{\text{amb}} = T_0 \); and a receiver with \(F = 13 \text{ dB} \).

(a) Calculate the system noise figure in dB. (b) Repeat part a with the preamplifier between the cable and the receiver.

A-14
A receiver system consists of a waveguide with \(L_1 = 1.5 \text{ dB} \); a preamplifier with \(g_2 = 20 \text{ dB} \) and \(T_2 = 50 \text{ K} \); and a receiver with \(F_3 = 10 \text{ dB} \). To what temperature must the waveguide be cooled so that the system has \(T_e \leq 150 \text{ K} \)?

A-15
The Haus-Adler noise measure for an amplifier is defined as
\[M = (F - 1)/(1 - 1/g). \]
Show from noise considerations that in a cascade of two different amplifiers, the first amplifier should have the lower value of \(M \). Hint: Write \(F_{12} - F_{21} \) for the two possible configurations.
Table T.1

Fourier Transforms

Definitions

Transform
\[V(f) = \mathcal{F}[v(t)] = \int_{-\infty}^{\infty} v(t) e^{-j2\pi ft} \, dt \]

Inverse transform
\[v(t) = \mathcal{F}^{-1}[V(f)] = \int_{-\infty}^{\infty} V(f) e^{j2\pi ft} \, df \]

Integral theorem
\[\int_{-\infty}^{\infty} v(t)w^\ast(t) \, dt = \int_{-\infty}^{\infty} V(f)W^\ast(f) \, df \]

Theorems

<table>
<thead>
<tr>
<th>Operation</th>
<th>Function</th>
<th>Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superposition</td>
<td>(a_1v_1(t) + a_2v_2(t))</td>
<td>(a_1V_1(f) + a_2V_2(f))</td>
</tr>
<tr>
<td>Time delay</td>
<td>(v(t-t_d))</td>
<td>(V(f)e^{-j2\pi ft_d})</td>
</tr>
<tr>
<td>Scale change</td>
<td>(v(\alpha t))</td>
<td>(1/</td>
</tr>
<tr>
<td>Conjugation</td>
<td>(v^\ast(t))</td>
<td>(V^\ast(-f))</td>
</tr>
<tr>
<td>Duality</td>
<td>(V(t))</td>
<td>(v(-f))</td>
</tr>
<tr>
<td>Frequent translation</td>
<td>(v(t)e^{j\omega t})</td>
<td>(V(f-f_c))</td>
</tr>
<tr>
<td>Modulation</td>
<td>(v(t)\cos(\omega_c t + \phi))</td>
<td>(\frac{1}{2} [V(f-f_c)e^{j\phi} + V(f+f_c)e^{-j\phi}])</td>
</tr>
<tr>
<td>Differentiation</td>
<td>(\frac{dv(t)}{dt^\alpha})</td>
<td>((j2\pi f)^\alpha V(f))</td>
</tr>
<tr>
<td>Integration</td>
<td>(\int_{-\infty}^{t} v(\lambda) , d\lambda)</td>
<td>(\frac{1}{j2\pi f}V(f) + \frac{1}{2}V(0)\delta(f))</td>
</tr>
<tr>
<td>Convolution</td>
<td>(v\ast w(t))</td>
<td>(V(f)W(f))</td>
</tr>
<tr>
<td>Multiplication</td>
<td>(v(t)w(t))</td>
<td>(V \ast W(f))</td>
</tr>
<tr>
<td>Multiplication by (r^n)</td>
<td>(r^nv(t))</td>
<td>((-j2\pi)^{r^n} \frac{d^nV(f)}{df^n})</td>
</tr>
<tr>
<td>Function</td>
<td>(v(t))</td>
<td>(V(f))</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Rectangular</td>
<td>(\Pi \left(\frac{t}{\tau} \right))</td>
<td>(\tau , \text{sinc} , fr)</td>
</tr>
<tr>
<td>Triangular</td>
<td>(\Lambda \left(\frac{t}{\tau} \right))</td>
<td>(\tau , \text{sinc}^2 , fr)</td>
</tr>
<tr>
<td>Gaussian</td>
<td>(e^{-b</td>
<td>t</td>
</tr>
<tr>
<td>Causal exponential</td>
<td>(e^{-bt}u(t))</td>
<td>(-\frac{2b}{b^2 + (2\pi f)^2})</td>
</tr>
<tr>
<td>Symmetric exponential</td>
<td>(e^{-b</td>
<td>t</td>
</tr>
<tr>
<td>Sinc</td>
<td>(\text{sinc} , 2Wt)</td>
<td>(\frac{1}{2W} , \Lambda \left(\frac{f}{2W} \right))</td>
</tr>
<tr>
<td>Sinc squared</td>
<td>(\text{sinc}^2 , 2Wt)</td>
<td>(\frac{1}{2W} , \Lambda \left(\frac{f}{2W} \right))</td>
</tr>
<tr>
<td>Constant</td>
<td>1</td>
<td>(\delta(f))</td>
</tr>
<tr>
<td>Phasor</td>
<td>(e^{j(\omega, \phi)})</td>
<td>(e^{j\phi} , \delta(f - f_s))</td>
</tr>
<tr>
<td>Sinusoid</td>
<td>(\cos \left(\omega, t + \phi \right))</td>
<td>(\frac{1}{2} \left[e^{j\phi} , \delta(f - f_s) + e^{-j\phi} , \delta(f + f_s) \right])</td>
</tr>
<tr>
<td>Impulse</td>
<td>(\delta(t - t_0))</td>
<td>(e^{-j\omega t_0})</td>
</tr>
<tr>
<td>Sampling</td>
<td>(\sum_{k=-\infty}^{\infty} \delta(t - kT_s))</td>
<td>(f_s , \sum_{k=-\infty}^{\infty} \delta(f - nf_s))</td>
</tr>
<tr>
<td>Signum</td>
<td>(\text{sgn} , t)</td>
<td>(1/j\pi f)</td>
</tr>
<tr>
<td>Step</td>
<td>(u(t))</td>
<td>(\frac{1}{j2\pi f} + \frac{1}{2} , \delta(f))</td>
</tr>
</tbody>
</table>
Table T.2

Fourier Series

Definitions

If \(v(t) \) is a periodic with fundamental period

\[T_0 = 1/f_0 = 2\pi/\omega_0 \]

then it can be written as the exponential Fourier series

\[v(t) = \sum_{n=-\infty}^{\infty} c_n e^{j\omega_0 t} \]

The series coefficients are

\[c_n = \frac{1}{T_0} \int_{t_1}^{t_1+T_0} v(t)e^{-j\omega_0 t} dt \]

where \(t_1 \) is arbitrary.

When \(v(t) \) is real, its Fourier series may be expressed in the trigonometric forms

\[v(t) = c_o + \sum_{n=1}^{\infty} |2c_n| \cos (n\omega_0 t + \arg c_n) \]

\[= c_o + \sum_{n=1}^{\infty} (a_n \cos n\omega_0 t + b_n \sin n\omega_0 t) \]

where

\[a_n = 2 \text{ Re } [c_n] \quad b_n = -2 \text{ Im } [c_n] \]

Coefficient calculations

If a single period of \(v(t) \) has the known Fourier transform

\[Z(f) = \mathcal{F} \left[v(t) \Pi \left(\frac{t-t_1}{T_0} \right) \right] \]

then

\[c_n = \frac{1}{T_0} Z(nf_0) \]
The following relations may be used to obtain the exponential series coefficients of a waveform that can be expressed in terms of another waveform \(v(t) \) whose coefficients are known and denoted by \(c_v(n) \).

<table>
<thead>
<tr>
<th>Waveforms</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Av(t) + B)</td>
<td>(Ac_v(0) + B) (n = 0)</td>
</tr>
<tr>
<td>(v(t - t_0))</td>
<td>(c_v(n) e^{-j\omega_0 t_0})</td>
</tr>
<tr>
<td>(dv(t)/dt)</td>
<td>((j2\pi f_0) c_v(n))</td>
</tr>
<tr>
<td>(v(t) \cos (m\omega_0 t + \phi))</td>
<td>(\frac{1}{2} c_v(n - m) e^{j\phi} + \frac{1}{2} c_v(n + m) e^{-j\phi})</td>
</tr>
</tbody>
</table>

Series coefficients for selected waveforms

The waveforms in the following list are periodic and are defined for one period, either \(0 < t < T_0 \) or \(|t| < T_0/2 \), as indicated. This listing may be used in conjunction with the foregoing relationships to obtain the exponential series coefficients for other waveforms.

<table>
<thead>
<tr>
<th>Waveform</th>
<th>Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulse train</td>
<td></td>
</tr>
<tr>
<td>(\delta(t)) (</td>
<td>t</td>
</tr>
<tr>
<td>Rectangular pulse train</td>
<td></td>
</tr>
<tr>
<td>(\Pi(t/\tau)) (</td>
<td>t</td>
</tr>
<tr>
<td>Square wave (odd symmetry)</td>
<td></td>
</tr>
<tr>
<td>+1 (0 < t < T_0/2)</td>
<td>0 (n) even</td>
</tr>
<tr>
<td>-1 (-T_0/2 < t < 0)</td>
<td>(-j2/\pi n) (n) odd</td>
</tr>
<tr>
<td>Triangular wave (even symmetry)</td>
<td></td>
</tr>
<tr>
<td>(1 - \frac{4</td>
<td>t</td>
</tr>
<tr>
<td>Sawtooth wave</td>
<td></td>
</tr>
<tr>
<td>(v/T_0) (0 < t < T_0)</td>
<td>(1/2) (n = 0)</td>
</tr>
<tr>
<td>(1/2\pi n) (n \neq 0)</td>
<td></td>
</tr>
<tr>
<td>Half-rectified sine wave</td>
<td></td>
</tr>
<tr>
<td>(\sin \omega_0 t) (0 < t < T_0/2)</td>
<td>(\frac{1}{\pi(1 - n^2)}) (n) even</td>
</tr>
<tr>
<td>(0) (T_0/2 < t < T_0)</td>
<td>(-jn/4) (n = \pm 1)</td>
</tr>
<tr>
<td>0 (T_0/2 < t < T_0)</td>
<td>0 otherwise</td>
</tr>
</tbody>
</table>
Table T.3

Mathematical Relations

Certain of the mathematical relationship encountered in this text are listed below for convenient reference. However, this table is not intended as a substitute for more comprehensive handbooks.

Trigonometric identities

\[e^{\pm j\theta} = \cos \theta \pm j \sin \theta \]
\[e^{j\alpha} + e^{j\beta} = 2 \cos (\alpha - \beta) e^{j(\alpha + \beta)} \]
\[e^{j\alpha} - e^{j\beta} = 2 \sin (\alpha - \beta) e^{j(\alpha + \beta)} \]
\[\cos \theta = \frac{1}{2} (e^{j\theta} + e^{-j\theta}) = \sin (\theta + 90^\circ) \]
\[\sin \theta = \frac{1}{2j} (e^{j\theta} - e^{-j\theta}) = \cos (\theta - 90^\circ) \]
\[\sin^2 \theta + \cos^2 \theta = 1 \]
\[\cos^2 \theta - \sin^2 \theta = \cos 2\theta \]
\[\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta) \]
\[\cos^3 \theta = \frac{1}{4} (3 \cos \theta + \cos 3\theta) \]
\[\sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta) \]
\[\sin^3 \theta = \frac{1}{4} (3 \sin \theta - \sin 3\theta) \]
\[\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta \]
\[\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \]
\[\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \]
\[\sin \alpha \sin \beta = \frac{1}{2} \cos (\alpha - \beta) - \frac{1}{2} \cos (\alpha + \beta) \]
\[\cos \alpha \cos \beta = \frac{1}{2} \cos (\alpha - \beta) + \frac{1}{2} \cos (\alpha + \beta) \]
\[\sin \alpha \cos \beta = \frac{1}{2} \sin (\alpha - \beta) + \frac{1}{2} \sin (\alpha + \beta) \]

\[A \cos (\theta + \alpha) + B \cos (\theta + \beta) = C \cos \theta - S \sin \theta = R \cos (\theta + \phi) \]

where

\[C = A \cos \alpha + B \cos \beta \]
\[S = A \sin \alpha + B \sin \beta \]
\[R = \sqrt{C^2 + S^2} = \sqrt{A^2 + B^2 + 2AB \cos (\alpha - \beta)} \]
\[\phi = \arctan \frac{S}{C} = \arctan \frac{A \sin \alpha + B \sin \beta}{A \cos \alpha + B \cos \beta} \]
Series expansions and approximations

\[(1 + x)^n = 1 + nx + \frac{n(n - 1)}{2!}x^2 + \cdots \quad |nx| < 1\]

\[e^x = 1 + x + \frac{1}{2!}x^2 + \cdots\]

\[a^x = 1 + x \ln a + \frac{1}{2!} (x \ln a)^2 + \cdots\]

\[\ln (1 + x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 + \cdots\]

\[\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \cdots\]

\[\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \cdots\]

\[\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \cdots\]

\[\arcsin x = x + \frac{1}{6}x^3 + \frac{3}{40}x^5 + \cdots\]

\[\arctan x = \begin{cases}
 x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \cdots & |x| < 1 \\
 \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \cdots & x > 1
\end{cases}\]

\[\text{sinc} x = 1 - \frac{1}{3!} (\pi x)^2 + \frac{1}{5!} (\pi x)^4 - \cdots\]

\[J_n(x) = \frac{1}{n!} \left(\frac{x}{2}\right)^n - \frac{1}{(n + 1)!} \left(\frac{x}{2}\right)^{n+2} + \frac{1}{2!(n + 2)!} \left(\frac{x}{2}\right)^{n+4} - \cdots\]

\[J_n(x) = \sqrt{\frac{2}{\pi x}} \cos \left(x - \frac{\pi}{4} - \frac{n\pi}{2} \right) \quad x \gg 1\]

\[I_n(x) = \begin{cases}
 e^{x^{1/4}} & x^2 \ll 1 \\
 e^{x} \sqrt{2\pi x} & x \gg 1
\end{cases}\]

Summations

\[\sum_{m=1}^{M} m = \frac{M(M + 1)}{2}\]

\[\sum_{m=1}^{M} m^2 = \frac{M(M + 1)(2M + 1)}{6}\]

\[\sum_{m=1}^{M} m^3 = \frac{M^2(M + 1)^2}{4}\]

\[\sum_{m=0}^{M} x^m = \frac{x^{M+1} - 1}{x - 1}\]
Definite integrals

\[
\begin{align*}
\int_0^\infty \frac{x^{m-1}}{1 + x^n} \, dx &= \frac{\pi/n}{\sin (m\pi/n)} \quad n > m > 0 \\
\int_0^\infty \frac{\sin x}{x} \, dx &= \int_0^\infty \frac{\cos x}{x} \, dx = \frac{\sqrt{\pi}}{2} \\
\int_0^\infty \frac{\tan x}{x} \, dx &= \frac{\pi}{2}
\end{align*}
\]

\[
\begin{align*}
\int_0^\infty \frac{\sin x \cos ax}{x} \, dx &= \begin{cases}
\frac{\pi}{2} & a^2 < 1 \\
\frac{\pi}{4} & a^2 = 1 \\
0 & a^2 > 1
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\int_0^\infty \frac{\sin^2 x}{x^2} \, dx &= \frac{\pi}{2} \\
\int_0^\infty \frac{\cos nx}{1 + x^n} \, dx &= \frac{\pi}{2} e^{-|b|} \\
\int_0^\infty \sin x \, dx &= \int_0^\infty \cos x \, dx = \frac{1}{2a} \\
\int_0^\infty e^{-ax} \cos bx \, dx &= \frac{1}{2a} \sqrt{\pi} e^{-(b/2a)^2} \\
\int_0^\infty e^{-ax^2} \, dx &= \frac{1}{2a} \sqrt{\pi} e^{-(b/2a)^2}
\end{align*}
\]

Schwarz’s inequality

\[
\left(\int_a^b v(\lambda) w(\lambda) \, d\lambda \right)^2 \leq \left(\int_a^b |v(\lambda)|^2 \, d\lambda \right) \left(\int_a^b |w(\lambda)|^2 \, d\lambda \right)
\]

The equality holds if \(v(\lambda) = K w(\lambda) \) where \(K \) is a constant.

Poisson’s sum formula

\[
\sum_{n=-\infty}^\infty e^{i2\pi n\lambda/k} = L \sum_{m=-\infty}^\infty \delta(\lambda - mL)
\]
Table T.4

The Sinc Function

Numerical values of \(\text{sinc} \, x = \frac{\sin \pi x}{\pi x} \) and its square are tabulated below for \(x \) from 0 to 3.9 in increments of 0.1.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\text{sinc} , x)</th>
<th>(\text{sinc}^2 , x)</th>
<th>(x)</th>
<th>(\text{sinc} , x)</th>
<th>(\text{sinc}^2 , x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>1.000</td>
<td>2.0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.984</td>
<td>0.968</td>
<td>2.1</td>
<td>0.047</td>
<td>0.002</td>
</tr>
<tr>
<td>0.2</td>
<td>0.935</td>
<td>0.875</td>
<td>2.2</td>
<td>0.085</td>
<td>0.007</td>
</tr>
<tr>
<td>0.3</td>
<td>0.858</td>
<td>0.737</td>
<td>2.3</td>
<td>0.112</td>
<td>0.013</td>
</tr>
<tr>
<td>0.4</td>
<td>0.757</td>
<td>0.573</td>
<td>2.4</td>
<td>0.126</td>
<td>0.016</td>
</tr>
<tr>
<td>0.5</td>
<td>0.637</td>
<td>0.405</td>
<td>2.5</td>
<td>0.127</td>
<td>0.016</td>
</tr>
<tr>
<td>0.6</td>
<td>0.505</td>
<td>0.255</td>
<td>2.6</td>
<td>0.116</td>
<td>0.014</td>
</tr>
<tr>
<td>0.7</td>
<td>0.368</td>
<td>0.135</td>
<td>2.7</td>
<td>0.095</td>
<td>0.009</td>
</tr>
<tr>
<td>0.8</td>
<td>0.234</td>
<td>0.055</td>
<td>2.8</td>
<td>0.067</td>
<td>0.004</td>
</tr>
<tr>
<td>0.9</td>
<td>0.109</td>
<td>0.012</td>
<td>2.9</td>
<td>0.034</td>
<td>0.001</td>
</tr>
<tr>
<td>1.0</td>
<td>0.000</td>
<td>0.000</td>
<td>3.0</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1.1</td>
<td>-0.089</td>
<td>0.008</td>
<td>3.1</td>
<td>-0.032</td>
<td>0.001</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.156</td>
<td>0.024</td>
<td>3.2</td>
<td>-0.058</td>
<td>0.003</td>
</tr>
<tr>
<td>1.3</td>
<td>-0.198</td>
<td>0.039</td>
<td>3.3</td>
<td>-0.072</td>
<td>0.006</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.216</td>
<td>0.047</td>
<td>3.4</td>
<td>-0.089</td>
<td>0.008</td>
</tr>
<tr>
<td>1.5</td>
<td>-0.212</td>
<td>0.045</td>
<td>3.5</td>
<td>-0.091</td>
<td>0.008</td>
</tr>
<tr>
<td>1.6</td>
<td>-0.189</td>
<td>0.036</td>
<td>3.6</td>
<td>-0.084</td>
<td>0.007</td>
</tr>
<tr>
<td>1.7</td>
<td>-0.151</td>
<td>0.023</td>
<td>3.7</td>
<td>-0.070</td>
<td>0.005</td>
</tr>
<tr>
<td>1.8</td>
<td>-0.104</td>
<td>0.011</td>
<td>3.8</td>
<td>-0.049</td>
<td>0.002</td>
</tr>
<tr>
<td>1.9</td>
<td>-0.052</td>
<td>0.003</td>
<td>3.9</td>
<td>-0.025</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Table T.5

Probability Functions

Binomial distribution
Let the discrete RV I be the number of times an event A occurs in n independent trials. If $P(A) = \alpha$, then

$$P_i(i) = \binom{n}{i} \alpha^i (1 - \alpha)^{n-i} \quad i = 0, 1, \ldots, n$$

$$E[I] = n\alpha \quad \sigma_I^2 = n\alpha(1 - \alpha)$$

If $n \gg 1$, $\alpha \ll 1$, and $m = n\alpha$ remains finite, then

$$P_i(i) \approx e^{-m} \frac{m^i}{i!}$$

Poisson distribution
Let the discrete RV I be the number of times an event A occurs in time T. If $P(A) = \mu \Delta T \ll 1$ in a small interval ΔT, and if multiple occurrences are statistically independent, then

$$P_i(i) = e^{-\mu T} \frac{(\mu T)^i}{i!} \quad E[I] = \mu T$$

Uniform distribution
If the continuous RV X is equally likely to be observed anywhere in a finite range, and nowhere else, then

$$p_X(x) = \frac{1}{b - a} \quad a \leq x \leq b$$

$$E[X] = \frac{1}{2} (a + b) \quad \sigma_X^2 = \frac{1}{12} (b - a)^2$$
Sinusoidal distribution

If X has a uniform distribution with $b - a = 2\pi$ and $Z = A \cos(X + \theta)$, where A and θ are constants, then

$$p_{Z}(z) = \frac{1}{\pi \sqrt{A^2 - z^2}} \quad |z| \leq A$$

$$E[Z] = 0 \quad \sigma^2_{Z} = \frac{1}{2} A^2$$

Laplace distribution

If the continuous RV X is governed by

$$p_{X}(x) = \frac{a}{2} e^{-|x|}$$

then

$$E[X] = 0 \quad \sigma^2_{X} = \frac{2}{a^2}$$

Gaussian (normal) distribution

If X represents the sum of a large number of independent random components, and if each component makes only a small contribution to the sum, then

$$p_{X}(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-(x-m)^2/2\sigma^2}$$

$$E[X] = m \quad \sigma^2_{X} = \sigma^2$$

(See Table T.6 for gaussian probabilities.)

Rayleigh distribution

If $R^2 = X^2 + Y^2$, where X and Y are independent gaussian RVs with zero mean and variance σ^2, then

$$p_{R}(r) = \frac{r}{\sigma^2} e^{-r^2/2\sigma^2} \quad r \geq 0$$

$$E[R] = \sqrt{\frac{\pi}{2}} \sigma \quad E[R^2] = 2\sigma^2$$
Table T.6

Gaussian Probabilities

The probability that a gaussian random variable with mean m and variance σ^2 will have an observed value greater than $m + k\sigma$ is given by the function

$$Q(k) \triangleq \frac{1}{\sqrt{2\pi}} \int_k^\infty e^{-\lambda^2/2} d\lambda$$

called the area under the gaussian tail. Thus

$$P(X > m + k\sigma) = P(X \leq m - k\sigma) = Q(k)$$

$$P(|X - m| > k\sigma) = 2Q(k)$$

$$P(m < X \leq m + k\sigma) = P(m - k\sigma < X \leq m) = \frac{1}{2} - Q(k)$$

$$P(|X - m| \leq k\sigma) = 1 - 2Q(k)$$

$$P(m - k_1\sigma < X \leq m + k_2\sigma) = 1 - Q(k_1) - Q(k_2)$$

Other functions related to $Q(k)$ are as follows:

$$\text{erf} \ k \triangleq \frac{2}{\sqrt{\pi}} \int_0^k e^{-\lambda^2} d\lambda = 1 - 2Q(\sqrt{2} \ k)$$

$$\text{erfc} \ k \triangleq \frac{2}{\sqrt{\pi}} \int_k^\infty e^{-\lambda^2} d\lambda = 1 - \text{erf} \ k = 2Q(\sqrt{2} \ k)$$

$$\Phi(k) \triangleq \frac{1}{\sqrt{2\pi}} \int_0^k e^{-\lambda^2/2} d\lambda = \frac{1}{2} - Q(k)$$

All of the foregoing relations are for $k \geq 0$. If $k < 0$, then

$$Q(-|k|) = 1 - Q(|k|)$$
Numerical values of $Q(k)$ are plotted below for $0 \leq k \leq 7.0$. For larger values of k, $Q(k)$ may be approximated by

$$Q(k) \approx \frac{1}{\sqrt{2\pi k}} e^{-k^2/2}$$

which is quite accurate for $k > 3$.
Glossary of Notation

Operations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>z^*</td>
<td>Complex conjugate</td>
</tr>
<tr>
<td>$\text{Re} [z], \text{Im} [z]$</td>
<td>Real and imaginary parts</td>
</tr>
<tr>
<td>$</td>
<td>z</td>
</tr>
<tr>
<td>$\arg z = \arctan \frac{\text{Im}[z]}{\text{Re}[z]}$</td>
<td>Angle of a complex quantity</td>
</tr>
<tr>
<td>$\langle v(t) \rangle = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} v(t) , dt$</td>
<td>Time average</td>
</tr>
<tr>
<td>$\mathcal{F} [v(t)] = \int_{-\infty}^{\infty} v(t) e^{-j2\pi ft} , dt$</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>$\mathcal{F}^{-1} [V(f)] = \int_{-\infty}^{\infty} V(f) e^{j2\pi ft} , df$</td>
<td>Inverse Fourier transform</td>
</tr>
<tr>
<td>$v \ast w(t) = \int_{-\infty}^{\infty} v(\lambda) w(t - \lambda) , d\lambda$</td>
<td>Convolution</td>
</tr>
<tr>
<td>$\hat{v}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{v(\lambda)}{t - \lambda} , d\lambda$</td>
<td>Hilbert transform</td>
</tr>
<tr>
<td>$R_{vw}(\tau)$</td>
<td>Cross-correlation</td>
</tr>
<tr>
<td>$R_{v}(\tau) = R_{vw}(\tau)$</td>
<td>Autocorrelation</td>
</tr>
<tr>
<td>$G_v(f) = \mathcal{F}^{-1}[R_v(\tau)]$</td>
<td>Spectral density or power spectrum</td>
</tr>
<tr>
<td>$E[X]$</td>
<td>Mean or expected value</td>
</tr>
<tr>
<td>$E[v(t)]$</td>
<td>Ensemble average</td>
</tr>
</tbody>
</table>
Functions

\[
Q(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\lambda^2/2} d\lambda
\]

Gaussian probability

\[
\exp t = e^t
\]

Exponential

\[
Si(\theta) \triangleq \int_{0}^{\theta} \text{sinc}(\mu) d\mu = \pi \int_{0}^{\theta/\pi} \text{sinc}(\mu) d\mu
\]

\[
\text{sinc} t = \frac{\sin \pi t}{\pi t}
\]

Sinc

\[
\text{sgn } t = \begin{cases}
1 & t > 0 \\
-1 & t < 0
\end{cases}
\]

Sign

\[
u(t) = \begin{cases}
1 & t > 0 \\
0 & t < 0
\end{cases}
\]

Step

\[
\Pi\left(\frac{t}{\tau}\right) = \begin{cases}
1 & |t| < \frac{\tau}{2} \\
0 & |t| > \frac{\tau}{2}
\end{cases}
\]

Rectangle

\[
\Lambda\left(\frac{t}{\tau}\right) = \begin{cases}
1 - \frac{|t|}{\tau} & |t| < \tau \\
0 & |t| > \tau
\end{cases}
\]

Triangle

Miscellaneous symbols

\[\triangleq\] “Equals by definition”

\[\approx\] “Approximately equals”

\[
\int_{t_i}^{t_i+T} \]

where \(t_i\) is arbitrary

\[\leftrightarrow\] Denoting a Fourier transform pair

\[
\binom{n}{i} = \frac{n!}{i!(n-i)!}
\]

Binomial coefficient
Solutions to Exercises

2.1-1 \[v(t) = 3 \cos (2\pi 0t \pm 180^\circ) + 4 \cos (2\pi 15t - 90^\circ \pm 180^\circ) \]

2.1-2

2.1-3 \[P = 7^2 + 2 \times 5^2 + 2 \times 2^2 = 107 \]

2.2-1 \[V(f) = 2 \int_0^\infty A e^{-bf} \cos \omega t \ dt = \frac{2A}{\omega} \frac{b/\omega}{1 + (b/\omega)^2} = \frac{2Ab}{b^2 + (2\pi f)^2} \]

\[|V(f)| \geq \frac{1}{2} \left(\frac{2A}{b} \right) \Rightarrow |f| \leq \frac{b}{2\pi} \]

2.2-2

\[\int_{-\infty}^{\infty} |V(f)|^2 df = \frac{2A^2}{b^2} \int_0^{\infty} \frac{df}{1 + (2\pi f/b)^2} = \frac{A^2}{\pi b} \frac{\pi/2}{\sin \pi/2} = \frac{A^2}{2b} \]

\[\int_{-\infty}^{\infty} |v(t)|^2 dt = A^2 \int_0^{\infty} e^{-2bt} dt = \frac{A^2}{2b} \]

2.2-3 \[z(t) = V(t) \] with \(b = 1 \) and \(2A = B \), so \(Z(f) = A e^{-b|f|} = \frac{B}{2} e^{-|f|} \)
2.3-1 \[\mathcal{F}[v(t)] = \frac{1}{\sqrt{-1}} [V_0(-f) + jV_d(-f)] = V_0(f) - jV_d(f) \]

\[Z(f) = a_1[V_0(f) + jV_d(f)] + a_2[V_0(f) - jV_d(f)] = (a_1 + a_2)V_0(f) + j(a_1 - a_2)V_d(f) \]

2.3-2 \[\frac{d}{df} \left[\int_{-\infty}^{\infty} v(t) e^{-j2\pi ft} dt \right] = \int_{-\infty}^{\infty} v(t)(-j2\pi f) e^{-j2\pi ft} dt = -j2\pi \mathcal{F}[v(t)] \]

Thus, \(v(t) \leftrightarrow \frac{1}{j2\pi f} \frac{d}{df} V(f) \)

2.4-1 \((A \text{sinc } 2Wt)^2 \leftrightarrow \frac{A}{2W} \Pi \left(\frac{f}{2W} \right) \ast \frac{A}{2W} \Pi \left(\frac{f}{2W} \right) = \frac{A^2}{2W} \left\{ \begin{array}{cl} \Lambda \left(\frac{f}{2W} \right) & \text{if } f > 2W \\ 0 & \text{otherwise} \end{array} \right. \]

2.5-1 (a) \[\int_{-\infty}^{\infty} v(t) \delta(t + 4) dt = v(-4) = 49 \]

(b) \[v(t) * \delta(t + 4) = v(t + 4) = (t + 1)^2 \]

(c) \[v(t) \delta(t + 4) = v(-4) \delta(t + 4) = 49 \delta(t + 4) \]

(d) \[v(t) * \delta(-t/4) = -4v(t) * \delta(t) = 4(t - 3)^2 \]

2.5-2 \[\mathcal{F}[Au(t) \cos \omega_c t] = \frac{A}{2} \left[\frac{1}{j2\pi(f - f_c)} + \frac{1}{j2\pi(f + f_c)} \right] \]

2.5-3 \[\frac{dv(t)}{dt} = \frac{2A}{\tau} \Pi \left(\frac{t}{\tau} \right) - A\delta \left(t + \frac{\tau}{2} \right) - A\delta \left(t - \frac{\tau}{2} \right) \]

\[j2\pi f V(f) = 2A \text{sinc } f \tau - A e^{j\pi f \tau} - A e^{-j\pi f \tau} \]

\[V(f) = \frac{jA}{\pi f} (\cos \pi f \tau - \text{sinc } \pi f \tau) \]
2.6-1 With impulse sampling \(x(t) \rightarrow x(t)\delta(t - kT) \rightarrow x(kT) \). We then divide up the spectra into \(n \) frequency samples, or \(f_n = nf_0/N \). By the sifting property for the impulse function, we get

\[
X(f) = \int x(t)e^{-j2\pi ft}dt \Rightarrow X(f) = \int x(kT)\delta(t - kT)e^{-j2\pi ft} \, dt
\]

\[\Rightarrow X(f_n) = \sum_{k=0}^{N} x(kT)e^{-j2\pi ft_n} = \text{with } f_n \Rightarrow n \text{ and } kT \Rightarrow k\]

\[\Rightarrow X(n) = \sum_{k=0}^{N} x(k)e^{-j2\pi kn/N}\]

3.1-1 \(g(t) = e^{-t/RC}u(t) \)

\[h(t) = e^{-t/RC} \frac{du}{dt} + \frac{d}{dt}(e^{-t/RC})u(t) = \delta(t) - \frac{1}{RC}e^{-t/RC}u(t)\]

3.1-2 \[H(f) = \frac{j2\pi fL}{R} + j2\pi fL = \frac{jf}{f_1 + jf}\]

3.1-3 \(H(f) = T \text{sinc} fT e^{-j2\pi fT}, X(f) = A\tau \text{sinc} f\tau\)

\[\tau < T, Y(f) = A\tau H(f), y(t) = A\tau h(t)\]

\[\tau = T, Y(f) = AT^2 \text{sinc}^2 fT e^{-j2\pi fT}, y(t) = A\tau A \left(\frac{t - T}{T} \right)\]

\[\tau > T, Y(f) = TX(f), y(t) = Tx(t)\]

3.2-1 \(t_d(f) = \begin{cases} \frac{-1}{2\pi f} \left(-\frac{\pi}{2} \right) & \frac{f}{30 \text{ kHz}} = \frac{1}{120} \text{ ms } |f| < 30 \text{ kHz} \\ \frac{-1}{2\pi f} \left(-\frac{\pi}{2} \right) & \frac{1}{4f} \text{ ms } |f| > 30 \text{ kHz} \end{cases} \]

3.2-2 \[x(t) = x_1(t) \cos \omega_c t - x_2(t) \sin \omega_c t\]

\[y(t) = Ax_1(t - t_d) \cos \omega_c(t - t_d) - Ax_2(t - t_d) \sin \omega_c(t - t_d)\]

With \(x(t - t_d) = X(f)e^{-j\omega t_d} \) and \(t_d(f) = t_d - \phi_0/(2\pi f) \)

\[\Rightarrow Y(f) = X_1(f)e^{-j\omega t_d} \ast \cos \{2\pi(t - t_d)\} - X_2(f)e^{-j\omega t_d} \ast \sin \{2\pi(t - t_d)\}\]

and

\[e^{-j\omega t_d} = e^{-j\omega_0 t_d} \ast d\omega(t) = e^{-j\omega_0 t_d} \ast d\omega,\]

then
SOLUTIONS TO EXERCISES

⇒ \(\gamma(f) = X_1(f) e^{-j\omega_0} e^{j\phi_0} \ast \Im\{\cos 2\pi(t - t_d)\} - X_2(f) e^{-j\omega_0} e^{j\phi_0} \ast \Im\{\sin 2\pi(t - t_d)\} \)
⇒ \(\gamma(t) = x_1(t - t_d) \cos[2\pi(t - t_d) + \phi_0] - x_2(t - t_d) \sin[2\pi(t - t_d) + \phi_0] \)

3.2-3 \[|H_{eq}(f)| = \frac{1}{4}|H(f)| \]
\[
= \begin{cases}
\frac{1}{4} & |f| < 20 \text{ kHz} \\
\frac{1}{4} & |f| > 20 \text{ kHz}
\end{cases}
\]
\[
\arg H_{eq}(f) = -2\pi f \frac{10^{-3}}{120} - \arg H(f)
\]
\[
= \begin{cases}
0 & |f| < 30 \text{ kHz} \\
-2\pi f \frac{10^{-3}}{120} + \frac{\pi}{2} & |f| > 30 \text{ kHz}
\end{cases}
\]

3.3-1 (a) \[P_{\text{dBm}} = 10 \log_{10} \left(\frac{P}{1 \text{ mW}} \times \frac{1 \text{ mW}}{1 \text{ W}} \right) \]
\[= 10 \log_{10} \frac{P}{1 \text{ W}} + 10 \log_{10} 10^3 = P_{\text{dBW}} + 30 \text{ dB} \]
(b) \[|H(f)| = 10^{-3 \text{ dB/10}} = 10^{-0.3} = 0.501 \rightarrow |H(f)| = \frac{1}{\sqrt{2}} \]

3.3-2 (a) 33 dBm - 24 x 2.5 dB = -27 dBm = 10^{-2.7} mW \approx 2 \mu W
(b) -27 dBm + 64 dB - (40 - 24) x 2.5 dB
\[= -3 \text{ dBm} = 10^{-0.3} \text{ mW} = 0.5 \text{ mW} \]

3.4-1 Let \(f_c = f_f + \frac{\phi}{2} = (f_f + f_d) \) and let \(V(f) = 2K \Pi(f/B) \), so
\[H(f) = \frac{1}{2} [V(f - f_c) + V(f + f_c)] e^{-j\omega t} \]
\[v(t) = \nu(t - t_d) \cos \omega_d(t - t_d) \quad \text{where} \quad \nu(t) = 2BK \text{sinc Bt} \]

3.4-2 \[|H(f)|_{\text{dB}} = 10 \log_{10} \left(\frac{1}{1+(f/B)^{2n}} \right) = 10 \log_{10} \left(\frac{f}{B} \right)^{2n} \]
\[= -20n \log_{10} \left(\frac{f}{B} \right) \quad \text{for} \ f > B \]
\[|H(2B)|_{\text{dB}} = -20n \log_{10} 2 = -6.0n \leq -20 \text{ dB} \Rightarrow n \geq \frac{20}{6} \quad n_{\text{min}} = 4 \]
3.4-3 \(\tau_{\text{min}} = 10 \, \mu s \), but the minimum pulse spacing is \(30 \, \mu s - \tau_{\text{max}} = 5 \, \mu s \), so
\[
B \approx \frac{1}{2 \times 5 \, \mu s} = 100 \, \text{kHz}, \quad t_s = \frac{1}{2B} = 5 \, \mu s
\]

3.5-1 \(\mathcal{F}[\hat{x}(t)] = (-j \, \text{sgn} \, f)X(f) \) and
\[
\mathcal{F}\left[-\frac{1}{\pi t}\right] = -H_0(f) = +j \, \text{sgn} \, f, \text{ so}
\]
\[
\mathcal{F}\left[\hat{x}(t) \ast \left(-\frac{1}{\pi t}\right)\right] = (\text{sgn} \, f)^2X(f)
\]

\[
= X(f) \Rightarrow \hat{x}(t) \ast \left(-\frac{1}{\pi t}\right) = x(t)
\]

3.6-1 Let \(z(t) = u(t) + w(t) \) where \(u(t) = \frac{A}{2} \, e^{j\phi} e^{i\omega t} \),
\(w(t) = \frac{A}{2} \, e^{-j\phi} e^{-i\omega t} \),
then \(R_{uw}(\tau) = 0 \) since \(\omega_w \neq \omega_u \), so
\[
R_z(\tau) = R_u(\tau) + R_w(\tau) = \frac{A^2}{2} \, e^{j\phi} e^{i\omega t}
\]
\[
+ \frac{A^2}{2} \, e^{-j\phi} e^{-i\omega t} = \frac{A^2}{2} \cos \omega_0 \tau
\]

3.6-2 \(z(t) = w \ast (-t) = w(-t) \),
\[
R_{uw}(\tau) = \int_{-\infty}^{\infty} u(\lambda)z(\tau - \lambda) \, d\lambda
\]
\[
E_v = E_w = A^2 D
\]
\[
|R_{uw}(\tau)|_{\text{max}}^2 = (A^2 D)^2 = E_v E_w \text{ at } \tau = -t_d
\]

3.6-3 \(\mathcal{F}_r[v \ast (-\tau)] = \int_{-\infty}^{\infty} v \ast (-\tau) e^{-j\omega \tau} \, d\tau
\]
\[
= \int_{-\infty}^{\infty} v \ast (\lambda) e^{-j\omega \lambda} \, d\lambda
\]
\[
= \left[\int_{-\infty}^{\infty} v(\lambda) e^{-j\omega \lambda} \, d\lambda \right]^* = V \ast (f) \text{ so}
\]
4.1-1 \[v_{bp}(t) = z(t) + z^*(t), z(t) = v_{ip}(t)e^{j\omega_c t} \]
\[V_{bp}(f) = \mathcal{F}[z(t)] + \mathcal{F}[z^*(t)] \] where
\[\mathcal{F}[z(t)] = V_{ip}(f - f_c) \]
and \[\mathcal{F}[z^*(t)] = Z^*(-f) = V_{ip}^*(-f - f_c) \]
so \[V_{bp}(f) = V_{ip}(f - f_c) + V_{ip}^*(-f - f_c) \]

4.1-2 \[H_{ip}(f) = K_o + K_a f/f_c, \quad f_c - f < f < f_o - f_c \]
\[Y_{ip}(f) = K_o X_{ip}(f) + \frac{K_1}{j2\pi f_c} \left[j2\pi f X_{ip}(f) \right] \] where
\[X_{ip}(t) = A_v(t) \cos \omega_c t \Rightarrow X_{ip}(t) = \frac{1}{2} A_v(t) \]
so \[y_{ip}(t) = \frac{1}{2} K_o A_v(t) + j \frac{1}{2} \left[-\frac{K_1}{2\pi f_c} \frac{dA_v(t)}{dt} \right] \] and
\[y(t) = K_o A_v(t), y_d(t) = -\frac{K_1}{2\pi f_c} \frac{dA_v(t)}{dt} \]

4.2-1 AM, \(\mu = 0.5 \)

4.2-2 DSB: \(S_T = 2P_{sh} = 20 \text{ W}, A_c^2_{\text{max}} = \frac{P_{sh}}{S_n/4} = 200 \text{ W} \)

AM: \(P_c = \frac{P_{sh}}{2\mu^2 S_n} = 100 \text{ W} \Rightarrow S_T = P_c + 2P_{sh} = 120 \text{ W} \) and
\[A_c^2_{\text{max}} = \frac{P_{sh}}{S_n/16} = 800 \text{ W} \]

4.2-3 \[x_c(t) = \frac{A_c}{2} \cos (\omega_c - \omega_m)t + \frac{A_c}{2} \cos (\omega_c + \omega_m)t \]
\[v_i = \frac{A_c}{2} \cos \omega_m t + \frac{A_c}{4} \cos \omega_m t = \frac{3A_c}{4} \cos \omega_m t \]
\[v_q = \frac{A_c}{2} \sin \omega_m t - \frac{A_c}{4} \sin \omega_m t = \frac{A_c}{4} \sin \omega_m t \]
\[A(t) = \sqrt{\left(\frac{3}{4} A_c \cos \omega_m t\right)^2 + \left(\frac{1}{4} A_c \sin \omega_m t\right)^2} = \frac{A_c}{4} \sqrt{9 \cos^2 \omega_m t + \sin^2 \omega_m t} \]
\[= \frac{A_c}{4} \sqrt{8 \cos^2 \omega_m t + 1} = \frac{A_c}{4} \sqrt{5 + 4 \cos 2\omega_m t} \]
\[\phi(t) = \arctan \left(\frac{A_c/4 \sin \omega_m t}{3A_c/4 \cos \omega_m t} \right) = \arctan \left(\frac{\tan \omega_m t}{3} \right) \]

4.3-1 Expanding \(\cos^3 \theta = \frac{3}{4} \cos \theta + \frac{1}{4} \cos 3\theta \),
\[
u_{\text{out}^}\pm = a_1(A_c \cos \omega_c t \pm \frac{1}{2} x) + a_2(A_c^2 \cos^2 \omega_c t \pm 2\frac{1}{2} A_c \cos \omega_c t + \frac{1}{4} x)
+ a_3(A_c^2 \frac{1}{2} \cos \omega_c t + A_c^2 \frac{3}{2} \cos 3\omega_c t \pm 3\frac{1}{2} A_c \cos \omega_c t + 3\frac{1}{2} A_c^2 \cos \omega_c t \pm 3\frac{1}{2} A_c \cos \omega_c t + \frac{1}{4} x)\]

Only underlined terms are passed by BPFs, so
\[x_i(t) = v_{\text{out}^+} - v_{\text{out}^-} = 2a_1x(t)A_c \cos \omega_c t = (2a_1A_c)x(t) \cos \omega_c t \]

4.4-1 \(x_c(t) = \frac{1}{2} A_c A_m \cos \omega_m t \cos \omega_c t \mp \sin \omega_m t \sin \omega_c t \)
\[= \frac{1}{2} A_c A_m \cos (\omega_c - \omega_m) t + \cos (\omega_c + \omega_m) t \]
\[\mp \cos (\omega_c - \omega_m) t \mp \cos (\omega_c + \omega_m) t \]
\[= \frac{1}{2} A_c A_m \cos (\omega_c \pm \omega_m) \]
\[A(t) = \frac{1}{2} A_c \sqrt{A_m^2 \cos^2 \omega_m t + A_m^2 \sin^2 \omega_m t} = \frac{1}{2} A_c A_m \]

4.4-2 \(x(t) = \cos \omega_m t \)
\[A_c/2 x(t) = \cos \omega_c t = A_c/4 [\cos(\omega_c - \omega_m) t + \cos(\omega_c + \omega_m) t] \]

\[\hat{x}(t) = \cos (\omega_m t - 90°) \]
\[\hat{x}(t) \cos (\omega_c t - 90°) = \]
\[\frac{A_c}{4} [\cos (\omega_c - \omega_m) t + \cos [(\omega_c + \omega_m) t - 180°]] \]
4.5-1 \[f_2 < f_1 \quad \begin{array}{c} f_1 - f_2 \\ f_1 \\ f_1 + f_2 \end{array} \]

\[f_2 = f_1 \quad \begin{array}{c} f_1 - f_2 \\ f_1 \\ f_1 + f_2 \end{array} \]

\[f_2 > f_1 \quad \begin{array}{c} f_1 - f_2 \\ f_1 \\ f_1 + f_2 \end{array} \]

4.5-2 Let \(a = \frac{A_c A_m}{2} \), so

\[
A^2(t) = (A_{L0} \cos \phi' + a \cos \omega_m t)^2 + (A_{L0} \sin \phi' \pm a \sin \omega_m t)^2
\]

\[
= A_{L0}^2 + a^2 + 2A_{L0}a(\cos \omega_m t \cos \phi' \pm \sin \omega_m t \sin \phi') \quad \text{and}
\]

\[
A(t) = A_{L0} \sqrt{1 + \left(\frac{a}{A_{L0}} \right)^2 + 2a \cos (\omega_m t \mp \phi')}
\]

\[
= A_{L0} + \frac{1}{2} A_c A_m \cos (\omega_m t \mp \phi')
\]

4.5-3

\% Show how an envelope detector demodulates AM and DSB signals
\%
\% Clear and initialize variables
\%
clear
\fors t = 1: 2000
\j(t) = t;
x_c_am(t) = 0; \% AM signal
x_c_dsb(t) = 0; \% DSB signal
v_am(t) = 0; \% Rectified AM signal
v_dsb(t) = 0; \% Rectified DSB signal
y_am(t) = 0; \% output of envelope detector
y_dsb(t) = 0; \% output of envelope detector
hlpf(t) = 0; \% LPF for envelope detector
\end;
\Ts = 1/1000; \% sample period is 1/1000 seconds
\fc = 100; \% carrier frequency is 100 Hz
\fm = 2; \% message frequency is 2 Hz
\Ac = 1.5; \% carrier amplitude is 1.5
\%
\% Generate a single-tone message
\fors t = 1: 2000
\[m(t) = \cos(2\pi fm t \cdot Ts); \]
\[\text{end;} \]

\% Generate AM and DSB modulated signals.
\textbf{for} t =1:2000
\[x_{c_am}(t) = Ac \cdot (1 + m(t)) \cdot \cos(2\pi fc t \cdot Ts); \]
\[x_{c_dsb}(t) = Ac \cdot m(t) \cdot \cos(2\pi fc t \cdot Ts); \]
\textbf{end;}

\% Generate impulse response function for first order Butterworth
\% filter using Eq. (8b) of Sect. 3.1.
\textbf{for} t =1:2000
\[h_{lpf}(t) = 2\pi \cdot \exp(-t \cdot 2\pi \cdot 5 \cdot Ts); \]
\textbf{end;}

\% Demodulate the AM and DSB signals using an envelope detector
\% Rectify AM and DSB signals
\textbf{for} t =1:2000
\textbf{if} xc_am(t) \textbf{>=} 0
\[v_{am}(t) = x_{c_am}(t); \]
\textbf{end;}
\textbf{if} xc_dsb(t) \textbf{>=} 0
\[v_{dsb}(t) = x_{c_dsb}(t); \]
\textbf{end;}
\textbf{end;}

\% Low pass filter rectified signals via convolving with LPF
\[y_{am} = \text{conv}(h_{lpf}, v_{am}); \]
\[y_{dsb} = \text{conv}(h_{lpf}, v_{dsb}); \]

\% Remove DC offset from signals [this functions as
\% the blocking capacitor]
\% calculate DC offset by determining average value
\% of signal
\[dc_{am} = 0; \]
\[dc_{dsb} = 0; \]
\textbf{for} t =1:2000
\[dc_{am} = dc_{am} + y_{am}(t); \]
\[dc_{dsb} = dc_{dsb} + y_{dsb}(t); \]
\textbf{end;}
\[dc_{am} = dc_{am} / 2000; \]
\[dc_{dsb} = dc_{dsb} / 2000; \]
\% subtract DC offset
\textbf{for} t =1:2000
\[y_{am}(t) = y_{am}(t) - dc_{am}; \]
Envelope detection of AM and DSB signals with 2 Hz message. (a) DSB signal, (b) detector output, (c) AM signal, (d) detector output, (e) original message.

Notes:
1. Interference component on the signals of (b) and (d) is due to the non-ideal nature of LPF.
2. Envelope detector signal output in part (b) does not resemble the message whereas the signal in (d) does resemble the message.
3. As seen in parts (b) and (c) the LPF output does have a transient component and causes a phase change.
5.1-1 \(\chi_c(t) = A_c \cos \omega_c t + \omega_c \mu x(t) t \) \(\Rightarrow \theta_c(t) = 2\pi [f_c + f_c \mu x(t) t] \)

\[f(t) = \frac{1}{2\pi} \theta_c(t) = f_c + f_c \mu x(t) + f_c \mu x(t) t \]

\[= f_c [1 + \mu \cos \omega_m t - \mu \omega_m t \sin \omega_m t] \]

so \(f(t) = -f_c \mu \omega_m t \sin \omega_m t \) for \(\mu \omega_m t \gg 1 \) and \(|f(t)| \to \infty \) as \(t \to \infty \).

5.1-2 \[\mathcal{F} \left[\phi(t) \right] = \frac{\phi_\Delta}{2W} \Pi \left(\frac{f}{2W} \right) \]

\[\mathcal{F} \left[\phi^*(t) \right] = \frac{\phi_\Delta}{2W} \Lambda \left(\frac{f}{2W} \right) \]

\[\chi_c(f) = \frac{1}{2} A_c \left\{ \delta(f - f_c) + \frac{j \phi_\Delta}{2W} \Pi \left(\frac{f - f_c}{2W} \right) - \frac{j \phi_\Delta}{4W} \Lambda \left(\frac{f - f_c}{2W} \right) \right\}, \quad f \geq 0 \]

5.1-3 \(\beta = 8 \text{ kHz} / 4 \text{ kHz} = 2 \)

\[f_c = 30 \text{ kHz} \]

\[f_c = 11 \text{ kHz} \]

Note “folded” terms at

\[|11 - 12| = 1 \text{ kHz} \]

\[|11 - 16| = 5 \text{ kHz} \]

5.2-1

<table>
<thead>
<tr>
<th>(D)</th>
<th>(2M(D))</th>
<th>Approximation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>3.0</td>
<td>(2(D + 1) = 2.6)</td>
</tr>
<tr>
<td>3.0</td>
<td>10</td>
<td>(2(D + 2) = 10)</td>
</tr>
<tr>
<td>30</td>
<td>(\cdots)</td>
<td>(2(D + 1) = 62)</td>
</tr>
</tbody>
</table>

5.2-2 Since \(H(f + f_c) = e^{-j2\pi f_c t} \), we have \(K_0 = 1, K_1 = 0 \), and \(t_0 = 0 \) in Eq. (12), so \(A(t) = A_c \).

\[\phi(t - t_1) = \beta \sin \omega_m (t - t_1) \]

\[= \beta (\cos \omega_m t_1 \sin \omega_m t - \sin \omega_m t_1 \cos \omega_m t) \]

\[= \beta (\sin \omega_m t - \omega_m t_1 \cos \omega_m t_1 \cos \omega_m t) \]

and \(y_c(t) = A_c \cos (\omega_c t + \beta \sin \omega_m t - \beta \omega_m t_1 \cos \omega_m t) \)

For Eq. (14), \(|H(f_c)| = 1 \) and \(f(t) = f_c + \beta f_m \cos \omega_m t \), so

\[\arg H[f(t)] = -2\pi [f(t) - f_c] = -\beta \omega_m t \cos \omega_m t \] and

\[y_c(t) = A_c \cos (\omega_c t + \beta \sin \omega_m t - \beta \omega_m t_1 \cos \omega_m t) \]
5.3-1 \[x_c(t) = A_c \cos \omega_c t - A_c \phi_x \sin \omega_c t = A_c \sqrt{1 + (\phi_x)^2} \cos [\omega_c t + \arctan (\phi_x)] \]

Thus, \(\phi(t) = \arctan (\phi_x) = \phi_x(t) - \frac{1}{2} \phi_x(t)^2 + \frac{1}{2} \phi_x(t)^3 + \cdots \)

5.3-2 \[x_c(t) - x_c(t - t_0) = t_0 \phi(t) = t_0 2\pi A_c [f_c + f_x(t)] \sin [\theta(t) \pm 180^\circ] \]

5.4-1 \[1 + \cos \theta = 2 \cos^2 \frac{\theta}{2} \]

\[A_c(t) = A_c \sqrt{2 + 2 \cos \theta} = A_c \sqrt{4 \cos^2 \frac{\theta}{2} + \frac{\theta_c}{2} \cos \frac{\theta}{2}} = 2A_c \left| \cos \frac{\omega_t}{2} \right| \]

\[\frac{\sin \theta}{1 + \cos \theta} = \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \cos \frac{\theta}{2}} = \tan \frac{\theta}{2} \]

\[\phi(t) = \arctan \left(\tan \frac{\theta}{2} \right) = \frac{\omega t}{2} \]

5.4-2 \[A_{mpe} = A_\infty \sqrt{1 + (f/B_{de})^2} \leq \frac{1 \text{ kHz}}{15 \text{ kHz}} \sqrt{1 + 7.5^2} = 0.5 \]

\[\beta = 0.5 \times 75 \text{ kHz} / 15 \text{ kHz} = 2.5, \quad M(\beta) = 4.5 \]

\[B = 2 \times 4.5 \times 15 \text{ kHz} = 135 \text{ kHz} < B_T \]
6.1-1 \[s_p(t) = \sum_{n=-\infty}^{\infty} c_n e^{-j\omega_n t}, \quad p(t) = s_p(t)\left(\frac{t}{T_s}\right) \Rightarrow c_n = \frac{1}{T_s} p(nf_s) \]

Thus, \[S_p(f) = \mathcal{F}\left\{ \sum_{n} \frac{1}{T_s} p(nf_s) e^{-j\omega_n t}\right\} = f_s \sum_{n=-\infty}^{\infty} P(nf_s) \delta(f - nf_s) \]

6.1-2 Sample values are identical, so the reconstructed waveforms will be the same for both signals.

6.1-3 Zero-padding interpolation involves adding an integer amount of zeros around the \(N/2\) point on the DFT graph. Because the original shape of the DFT is unchanged (i.e., you haven’t change the relative magnitudes of the nonzero DFT values), this process yields perfect interpolation. For example, let’s say you have a bandlimited signal with \(N = 8\) samples taken and you want to represent the signal with \(N = 16\) samples, effectively doubling your sampling rate. First, take the 8-point DFT, then add four zeros on each side of the \(N/2\) point, yielding a 16-point DFT. Taking the 16-point IDFT will yield a signal with 16 sample points with perfect interpolation.

6.2-1 \[\frac{1}{\tau} = \frac{1}{0.1T_s} = 10f_s = 80 \text{ kHz}, \quad B_1 \geq \frac{1}{2\tau} = 40 \text{ kHz} \]

6.3-1 \[c_n = f_s \tau \sin nf_s \tau = \frac{1}{\pi n} \sin \pi nf_s \tau \]

\[x_p(t) = A \left[f_s \tau + \sum_{n=1}^{\infty} \frac{2}{\pi n} \sin \pi nf_s \tau \cos n\omega_s t \right] \]

\[\tau = \tau_0[1 + \mu x(t)] \]

\[= A f_s \tau_0[1 + \mu x(t)] + \sum_{n=1}^{\infty} \frac{2A}{\pi n} \sin \{n\pi f_s \tau_0[1 + \mu x(t)]\} \cos n\omega_s t \]

7.1-1 \[f_{if} = 7.0 \text{ and } 10 < f_{i0} < 10.5 \text{ with } f'_c - 10.5 = 7 \Rightarrow 17 < f'_c < 17.5 \]

\[f_{if} = 7.0 \text{ and } 30 < f_{i0} < 31.5 \text{ with } 31.5 - f''_c = 7 \Rightarrow 23 < f''_c < 24.5 \]

\[f_{if} = 7.0 \text{ and } 30 < f_{i0} < 31.5 \text{ with } f'''_c - 31.5 = 7 \Rightarrow 37 < f'''_c < 38.5 \]

With 1st-order Butterworth LPF, spurious rejection is

\[20 \log \left(\frac{1}{\sqrt{1 + (f/4)^2}}\right) \quad \text{for } f = 17, 23, 37 \text{ MHz} \]

\[= -12.8 \text{ dB}, \quad -15.3 \text{ dB}, \text{ and} \]

\[-19.4 \text{ dB} \]

7.1-2 \[H_{RF}(f_c) = 1, \quad H_{RF}(f'_c) = \left[1 + jQ\left(x - \frac{1}{x} \right) \right]^{-1} \quad \text{where } x = \frac{f'_c}{f_c} \]

\[|R| = 1 + 50^2 \left(x - \frac{1}{x} \right)^2 = 10^6 \Rightarrow x = 20 \text{ or } \frac{1}{20} \]

But \[\frac{f'_c}{f_c} = 1 + 2f_{if} = 1 + \frac{2f_{if}}{f_c} > 1 \text{ so take } \frac{f'_c}{f_c} = 20 \text{ and } f_{if} = 9.5f_c \]

7.1-3 \[a = 100; \quad N = 64; \]
SOLUTIONS TO EXERCISES

% Generate a 64 point monocycle centered at
% n=32.

k=(0:N-1);
for j=1:N
 x(j)=(j-N/2)/a*exp(-(j-N/2)^2)/a);
end;
x=x/max(x); % normalize x

% Generate its 64 point DFT, and power spectrum
n=(0:N-1);
u=fft(x,N);
Pu2=u.*conj(u)/N;

% Modify the power spectrum so it starts at f=0 Hz, and
% looks like how it would appear on a spectrum analyzer.

% Assume the sampling frequency is fs =1 Hz.
% The discrete frequency is fs/N

f=(0:N/2)/N;

plot(f,Pu2(1:(N/2+1)));
title('Frequency content of x(t)');
xlabel('Frequency -Hz');

Notes:
1. See Fig. 2.6–1 for the original x(k) function and its corresponding DFT components X_R(n), X_I(n),
 and |X(n)|^2.
2. Note that just as there is no DC component in x(k), neither is there a DC component in |X(n)|^2.
3. It is assumed that T_s = 1 second \(\Rightarrow f_s = 1\) Hz \(\Rightarrow \Delta f = \frac{1}{T_s} = \frac{1}{64}\) Hz
4. The graph on the next page would be smoother if \(f_s\) and \(N\) were increased.

7.2-1 \((v_2 \cos \omega_2 t)^2v_1 \cos \omega_1 t = \frac{1}{2} v_2^3 (1 + \cos 2\omega_2 t)v_1 \cos \omega_1 t = \frac{1}{2} v_1 v_2^2 \cos \omega_1 t + \text{components at } |2f_2 \pm f_1|

AM: \(v_1 v_2^2 = 1 + x_1(t) + 2x_2(t) + 2x_1(t)x_2(t) + x_1(t)x_2^2(t) + x_2^3(t)\)\text{ intelligible}

DSB: \(v_1 v_2^2 = x_1(t)x_2^2(t)\) unintelligible
Refer to Fig. 7.2–6.

With the receiver input being \(x_c(t_0) = x_1(t)\cos \omega_c t + x_2(t)\sin \omega_c t \)

At the lower branch we have

\[
x_d(t) \cos \omega_c t = [x_1 \cos \omega_c t + x_2(t) \sin \omega_c t] \cos \omega_c t
= \frac{x_1(t)}{2} \cos(0) + \frac{x_2(t)}{2} \sin(0) + \sin(2\omega_c t)
\]

At the LPF output we get \(\frac{x_d(t)}{2} \)

Similarly at the upper branch, we have

\[
x_d(t) \sin \omega_c t = [x_1 \cos \omega_c t + x_2(t) \sin \omega_c t] \sin \omega_c t
= \frac{x_1(t)}{2} \sin(0) + \frac{x_2(t)}{2} \cos(0) - \sin(2\omega_c t)
\]

At the LPF output we get \(\frac{x_d(t)}{2} \)

7.2-3 \(\tau = \frac{1}{f} \times \frac{1}{8} \times \frac{1}{750}, B_T \approx \frac{1}{\tau} = 8 \times 750 = 6 \text{ kHz} \)
7.2-4 \[T_g = \frac{(-60)}{(-54.5 \times 4 \times 10^1)} = 2.8 \mu s, \]

\[T_g/M = \frac{1}{(10 \times 8 \times 10^1)} = 12.5 \mu s, \]

\[\tau = \frac{12.5}{5} = 2.5 \mu s, \quad t_0 \leq \frac{1}{2} (12.5 - 2.5 - 2.8) = 3.6 \mu s \]

7.3-1

\[e > 0 \text{ for all } e \]

so \(e(t) \) continually increases

and \(e_{ss} \) does not exist

7.3-2 \[f_v = \frac{nf_c}{m} - \Delta f, \quad K \geq |\Delta f| = \left| f_v - \frac{nf_c}{m} \right| \]

7.4-1 \n
\[n_p = (37 \text{ cm} \times 40 \text{ lines/cm})(59 \text{ cm} \times 40 \text{ lines/cm}) \]

\[= 3.5 \times 10^6 \]

\[T_{\text{frame}} = \frac{1}{3.2 \times 10^3} \times \frac{0.714n_p}{1 \times 1} = 781 \text{ sec} = 13 \text{ min} \]

7.4-2 \[-\sin \omega_c t = \cos (\omega_c t + 90^\circ) \]

\[A_{ca} \ll A_{cp}, |\mu x| < 1, \text{ and } |\mu x_q| \ll 1 \]

Thus, \(A_y = A_{cp}(1 + \mu x) + A_{ca} \cos (\omega_s t + \phi) \)
8.1-1

M = 9 equally likely outcomes

\[
P(A) = \frac{1}{3} \\
P(B) = \frac{1}{3} = \frac{1}{3} \\
P(AB) = P(GG + RR) = \frac{3}{9} \\
P(A + B) = \frac{5}{9}
\]

8.1-2

\[
P(D) = \frac{3}{8}, \ P(BD) = \frac{1}{4}, \\
P(B|D) = (\frac{3}{8})/(\frac{1}{4}) = \frac{3}{2} = P(B) \\
P(D|B) = (\frac{3}{8})/(\frac{1}{4}) = \frac{3}{2} = P(D), \\
P(B)P(D) = (\frac{3}{8})(\frac{1}{4}) = \frac{1}{8} = P(BD)
\]

8.2-1

<table>
<thead>
<tr>
<th>Outcome</th>
<th>GG</th>
<th>GR</th>
<th>GY</th>
<th>RG</th>
<th>RR</th>
<th>RY</th>
<th>YG</th>
<th>YR</th>
<th>YY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weights</td>
<td>2.2</td>
<td>2.1</td>
<td>2.0</td>
<td>-1.2</td>
<td>-1.1</td>
<td>-1.0</td>
<td>0.2</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>(X)</td>
<td>2.0</td>
<td>0.5</td>
<td>1.0</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.0</td>
<td>1.0</td>
<td>-0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccccc}
X & -1.0 & -0.5 & 0.0 & 0.5 & 1.0 & 2.0 \\
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_X(x))</td>
<td>1/9</td>
<td>3/9</td>
<td>4/9</td>
<td>6/9</td>
<td>8/9</td>
<td>9/9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
P(-1.0 < X \leq 1.0) = F_X(1.0) - F_X(-1.0) = \frac{2}{9}
\]

8.2-2

\[
P(\pi < X < 3\pi/2) = \int_{\pi}^{3\pi/2} \frac{1}{2\pi} \, dx = \frac{1}{4},
\]

\[
P(X > 3\pi/2) = \int_{3\pi/2}^{2\pi} \frac{1}{2\pi} \, dx = \frac{1}{4},
\]

\[
P(\pi < Z \leq 3\pi/2) = \int_{\pi}^{3\pi/2} \frac{1}{2\pi} \, dz = \frac{1}{4},
\]

\[
P(\pi \leq Z \leq 3\pi/2) = \int_{\pi}^{3\pi/2} \left[\frac{1}{2} \delta(z + \pi) + \frac{1}{2\pi} \right] \, dz = \frac{3}{4}
\]

8.2-3

\[
p_X(x) = \begin{cases} \frac{1}{2} & \text{for} \ 0 < x \leq 4, \\ 0 & \text{otherwise} \end{cases} \Rightarrow g^{-1}(z) = z^2 \Rightarrow dg^{-1}(z)/dz = 2z
\]

\[
p_Z(z) = \begin{cases} \frac{7}{2} & \text{for} \ 0 < z \leq 2, \\ 0 & \text{otherwise} \end{cases}
\]

8.3-1

\[
m_X = \int_0^{2\pi} x \frac{1}{2\pi} \, dx = \pi \quad X^2 = \int_0^{2\pi} x^2 \frac{1}{2\pi} \, dx = \frac{4\pi^2}{3}
\]
\[\sigma_X = \sqrt{\left(\frac{3\pi}{8}\right) - \pi^2} = \pi / \sqrt{3}, \]

\[P(|X - m_X| < 2\sigma_X) = P\left(\pi - \frac{2\pi}{\sqrt{3}} < X < \pi + \frac{2\pi}{\sqrt{3}}\right) = 1 \]

8.3-2 \[E[X + Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) p_{XY}(x, y) \, dx \, dy \]
\[= \int_{-\infty}^{\infty} x \left[\int_{-\infty}^{\infty} p_{XY}(x, y) \, dy \right] \, dx \]
\[+ \int_{-\infty}^{\infty} y \left[\int_{-\infty}^{\infty} p_{XY}(x, y) \, dx \right] \, dy \]
\[= \int_{-\infty}^{\infty} xp_X(x) \, dx + \int_{-\infty}^{\infty} yp_Y(y) \, dy = \overline{X} + \overline{Y} \]

8.3-3 \[\Phi_X(2\pi t) = \mathcal{F}^{-1}[a^{-1} \Pi(f/a)] = \text{sinc} \, at, \text{ so} \]
\[\Phi_X(\nu) = \text{sinc} \, at|_{t=\nu/2\pi} = \text{sinc}(a\nu/2\pi) \]

8.4-1 \[m = 10^4 \times 5 \times 10^{-3} = 0.5, P_i(\lambda) = e^{0.5}(0.5/\lambda!) \]
\[F_1(2) = e^{-0.5} \left(\frac{0.5^0}{0!} + \frac{0.5^1}{1!} + \frac{0.5^2}{2!} \right) = 0.986 \]

8.4-2 \[\sigma = 8 \text{ so } 9 = m + 0.5\sigma, 25 = m + 2.5\sigma \]
\[P(9 < X \leq 25) = P(X > 9) - P(X \geq 25) \]
\[= P(X - m > 0.5\sigma) - P(X - m \geq 2.5\sigma) \]
\[= Q(0.5) - Q(2.5) = 0.31 - 0.06 = 0.30 \]

8.4-3 \[F_\cap(r) = \int_{-\infty}^{r} p_\cap(\lambda) \, d\lambda = \int_{0}^{r} \left(\frac{\lambda}{\alpha^2} \right) e^{-\lambda^2/2\alpha^2} \, d\lambda \quad r \geq 0 \]

Let \(\alpha = \lambda^2/2\sigma^2 \) so
\[F_\cap(r) = \int_{0}^{r^{1/2\sigma^2}} e^{-\alpha} \, d\alpha = 1 - e^{-r^{1/2\sigma^2}} \quad r \geq 0 \]

9.1-1 \[\overline{V(t)} = E[X + 3t] = \overline{X} + 3t = 3t \]
\[R_v(t_1, t_2) = E[X^2 + 3(t_1 + t_2)X + 9t_1t_2] \]
\[= \overline{X}^2 + 3(t_1 + t_2)\overline{X} + 9t_1t_2 = 5 + 9t_1t_2 \]
\[\overline{V^2(t)} = R_v(t, t) = 5 + 9t^2 \]
9.1-2 \[E[z^2(t_1, t_2)] = E[v^2(t_1) + v^2(t_2) + 2v(t_1)v(t_2)] \]
\[= \overline{v^2(t_1)} + \overline{v^2(t_2)} + 2R_v(t_1, t_2) \geq 0 \]
Since \(\overline{v^2(t)} = R_v(0) \) for all \(t \),
\[|R_v(\tau)| = |R_v(t, t - \tau)| \leq \frac{1}{2} [\overline{v^2(t)} + \overline{v^2(t - \tau)}] = R_v(0) \]

9.1-3 Being produced by a linear operation on a gaussian process, \(W(t) \) is another gaussian process with
\[R_w(t_1, t_2) = E[4v(t_1)v(t_2) - 16v(t_1) - 16v(t_2) + 64] \]
\[= 4R_v(t_1, t_2) - 16[\overline{v(t_1)} + \overline{v(t_2)}] + 64 \]
\[= 36e^{-5|t-t_2|} + 64 \]
Thus, \(R_w(\tau) = 36e^{-5|t|} + 64 \) and
\[\overline{w^2} = R_w(0) = 100, m_w = \sqrt{R_w(\pm \infty)} = 8, \]
\[\sigma_w = \sqrt{100 - 8^2} = 6 \]
Hence, \(W(t) \) is stationary and ergodic.

9.2-1 \[R_v(\tau) = E[v(t)v(t - \tau) - m_vv(t - \tau) - m_vv(t) + m_v^2] \]
\[= R_v(\tau) - m_v^2 - m_v^2 + m_v^2 \]
Thus, \(R_v(\tau) = R_v(\tau) + m_v^2 \Rightarrow G_v(f) = G_v(f) + m_v^2 \delta(f) \)

9.2-2 Let \(W(t) \) be a randomly phased sinusoid with \(A = 1 \), so
\[G_w(f) = \frac{1}{2} [\delta(f - f_c) + \delta(f + f_c)] \] and
\[G_v(f) = G_v(f) * G_w(f) = \frac{1}{2} [G_v(f - f_c) + G_v(f + f_c)] \]

9.2-3 \[G_v(f) = \sigma^2D \text{sinc}^2 fD = \sigma^2D \text{ for } |f| \ll \frac{1}{D}. \text{ Thus, if } B \ll \frac{1}{D}, \]
\[G_v(f) = \frac{1}{1 + (f/B)^2} \sigma^2D \text{ and } R_v(\tau) = \sigma^2 D \pi B e^{-\pi |\tau|} \]

9.3-1 \[\overline{v^2} = \frac{2(\pi 4 \times 10^{-22})^2}{3 \times 6.62 \times 10^{-34} \times 1000} = 1.6 \times 10^{-6} V^2, \]
\[\sigma_v = 1.26 \text{ mV} \frac{h}{\pi c^2} = 8 \times 10^{-13} \text{ so} \]
\[\frac{h|f|}{2kT} \ll 1 \text{ for } |f| \leq 10^9 \]
\[\int_{-10^9}^{10^9} G_v(f) \text{ df} = 2 \times 10^9 G_v(0) = 1.6 \times 10^{-9} V^2, \text{ and} \]
\[\frac{1.6 \times 10^{-9}}{1.6 \times 10^{-6}} = 0.1\% \]
SOLUTIONS TO EXERCISES

9.3-2 \(|H(f)|^2 = 1/[1 + (f/B)^{2n}]\) and \(g = |H(0)|^2 = 1\) so

\[
B_n = \int_{0}^{\infty} \frac{df}{1 + (f/B)^{2n}} \quad B = \int_{0}^{\infty} \frac{d\lambda}{1 + \lambda^{2n}}
\]

\[
= B \frac{\pi/2n}{\sin(\pi/2n)} = \frac{\pi B}{2n \sin(\pi/2n)}
\]

and \([\sin(\pi/2n)]/(\pi/2n) = \text{sinc}(1/2n) \rightarrow 1\) as \(n \rightarrow \infty\)

9.4-1 \(S_{R_{\text{max}}} = 174 - 10 \log_{10}(5 \times 4.2 \times 10^6) \geq 50\) dB

\[S_R \geq -51\) dBm \(= 8.4 \times 10^{-6}\) mW

\(S_T \geq 10^{14}S_R = 840\) kW without repeater

\(S_T \geq 840\) kW/(5 \times 10^6) \(= 168\) mW with repeater

9.5-1 (a) \(\sigma_n/A = \sqrt{\frac{N_0}{2E_p}} = 0.1\)

\(\sigma/\tau = \sqrt{\frac{N_0}{4BE_p\tau}} = \sqrt{\frac{N_0}{2E_p}} = 0.1\)

(b) \(\sigma_n/A = \frac{N_oB_T}{A^2} = \sqrt{\frac{N_oB_T}{E_p}} = 0.4\)

\(\sigma/\tau = \sqrt{\frac{N_0}{4B_TE_p\tau}} = 0.025\)

9.5-2 \(h_{\text{opt}}(t) = \left(\frac{2K}{N_0}\right)[u(t_d - t) - u(t_d - t - \tau)]\)

\[
= \begin{cases}
1 & \text{if } t_d - \tau < t < t_d \\
0 & \text{otherwise}
\end{cases}
\]

so, with \(\frac{2K}{N_0} = 1\), \(h_{\text{opt}}(t) = u(t - t_d + \tau) - u(t - t_d)\)

Realizability requires \(h_{\text{opt}}(t) = 0\) for \(t < 0\), so take \(t_d \geq \tau\).

\(h_{\text{opt}}(t) * x_a(t) = A \Lambda \left(\frac{t - t_d}{\tau}\right)\) where, at \(t = t_d\).

\(A = \int_{t_d - \tau}^{t_d} A_p\,d\lambda = A_p\tau.\)

9.5-3

\(\%\hspace{1cm}\text{Compare the performance of a matched filter versus a 1st order}\)

\(\%\hspace{1cm}\text{Butterworth to process a noisy sinusoid.}\)

\(\%\hspace{1cm}\text{Clear and initialize variables}\)
clear
for t = 1:500
 j(t) = t;
 c(t) = 0;
 n(t) = 0;
 v(t) = 0;
 hlpf(t) = 0;
 hopt(t) = 0;
 y(t) = 0;
 n(t) = 0;
end;

Ts = 1/100; % set the sample period to 1/100 seconds
% generate impulse response function for first order Butterworth filter
% for t = 1:50
 hlpf(t) = 2*pi*exp(-t*2*pi*Ts);
end;

% generate impulse response function for optimum filter
for t = 1:50
 hopt(t) = sin(2*pi*t*Ts);
end;

% generate a sinusoidal signal
for t = 1:500
 p(t) = sin(2*3.1415*t*Ts);
end;

% add gaussian white noise to sinusoidal signal
for t = 1:500
 n(t) = randn;
 y(t) = p(t) + n(t); % Add gaussian noise to the signal
end;

% Filter noisy signal with first order Butterworth LPF,
% then normalize the amplitude
 c = conv(hlpf, y);
 c = c / max(c);

% Filter noisy signal using matched filter,
% then normalize the amplitude
Filtering of noisy signals. (a) Noiseless signal, (b) signal with noise, (c) noisy signal filtered via first-order Butterworth LPF, (d) noisy signal filtered via matched filter.

10.1-1 \(G_n(f) \) for \(f > 0 \)
10.1-2 \(A_n = \sqrt{\pi \times \frac{10^{-6}}{2}} = 1.3 \text{ mV and } A_n^2 = 2 \times 10^{-6} \)

so \(\sigma_n = \sqrt{2 - \frac{\pi}{2} \times 10^{-3}} = 0.655 \text{ mV} \)

Let \(a^2 = (2A_n)^2 = 2\pi N_r \) so \(P(A_n > a) = e^{-\pi} = 0.043 \)

10.2-1 \(G_n(f) \)

\[
N_D = \frac{N_0}{2} \times 2W + \frac{N_0}{2} \times 2 \frac{W}{4} = 1.25N_0W,
\]

\[
\left(\frac{S}{N} \right)_D = 0.8y, \quad 10 \log 0.8 = -1 \text{ dB}
\]

10.2-2 \(S_x = 1 \Rightarrow A_c^2 = S_R, \quad P(A_c \geq A_n) = 0.99 \Rightarrow P(A_n > A_c) = 0.01 \)

Thus, \(e^{-A_c^2/2N_x} = e^{-S_x/2N_x} = 0.01 \) and \(\left(\frac{S}{N} \right)_{R_n} = 2 \ln \frac{1}{0.01} = 4 \ln 10 = 9.2 \)

10.3-1 \(\left| H_{dc}(f) \right|^2 G_n(f) = \frac{N_0}{2S_R} \frac{f^2}{2W} \frac{1}{1 + (f/B_{de})^2} \frac{\Pi(f/B_T)}{B_T} = \frac{N_0}{2S_R} \frac{B_{de}^2}{B_T} \)

for \(B_{de} < |f| < \frac{B_T}{2} \)

\[
N_D = \frac{N_0}{2S_R} \frac{B_{de}^2}{B_T} \times 2 \frac{B_T}{2} = \frac{N_0B_{de}^2B_T}{2S_R} = \left(\frac{B_T}{2W} \right) \frac{N_0B_{de}^2W}{S_R}
\]

10.3-2 \(\left(\frac{f_\Delta}{B_{de}} \right)^2 S_x \frac{S_R(\text{FM})}{N_0 W} = \phi_\Delta^2 S_x \frac{S_R(\text{PM})}{N_0 W} \) where \(\phi_\Delta \leq \pi \) and \(S_T(\text{FM}) = 1 \text{ W} \)

\[
\frac{S_T(\text{PM})}{S_T(\text{FM})} = \left(\frac{f_\Delta}{\phi_\Delta B_{de}} \right)^2 \approx \left(\frac{75}{\pi \times 2.1} \right)^2 \Rightarrow S_T(\text{PM}) > 130 \text{ W}
\]

10.3-3 \(B_T = 5W \Rightarrow \gamma_{th} = 10 \times 5 = 50 \)

so \(\left(\frac{S}{N} \right)_D \approx \left(\frac{10B_{de}}{B_{de}} \right)^2 \times \frac{1}{2} \times 50 = 2500 \approx 34 \text{ dB} \)
10.6-1 \(\tau_{\text{max}} = \tau_0(1 + \mu) \leq T_s \) and \(\tau_{\text{min}} = \tau_0(1 - \mu) \geq 0 \) so
\[
\tau_{\text{max}} - \tau_{\text{min}} = 2\mu\tau_0 \leq T_s \Rightarrow \mu\tau_0 \leq T_s/2 = 1/4W
\]
\[
\left(\frac{S}{N} \right)_D = 4(\mu\tau_0)^2B_1 \left(\frac{W}{f_s\tau_0} \right) S_\gamma = 4\mu^2\tau_0^2 B_1 \frac{W}{f_s} S_\gamma \leq \frac{1}{2} \frac{B_1}{W} S_\gamma
\]

since \(\mu \leq 1, \tau_0 \leq \frac{T_s}{2} = \frac{1}{2f_s}, \) and \(f_s \leq 2W \)

11.1-1 \(\text{sinc}^2 \) at \(\{ \begin{array}{c} 1 \\ 0 \end{array} \} \begin{array}{c} t = 0 \\ \pm \frac{1}{a}, \pm \frac{2}{a}, \ldots \end{array} \) so take \(r = a \)
\[
\mathcal{F}[\text{sinc}^2 \text{at}] = \frac{1}{a} \Lambda \left(\frac{f}{a} \right) = 0 \text{ for } |f| > a \Rightarrow B \geq a \Rightarrow r \leq B
\]

11.1-2 \(P(f) = \frac{1}{r_b} \text{sinc} \left(\frac{f}{r_b} \right) = 0 \) for \(f = \pm r_b, \pm 2r_b, \ldots \)
Thus, \(G_s(f) = \frac{A^2}{4r_b} \text{sinc}^2 \frac{f}{r_b} + \frac{A^2}{4} \delta(f) \)
\[
\bar{x}^2 = A^2/2 \text{ by inspection of } x(t) \text{ or integration of } G_s(f)
\]

11.1-3 \(P(f) = \frac{1}{r_b} \prod \left(\frac{f}{r_b} \right) = 0 \) for \(|f| > \frac{r_b}{2} \)
Thus, \(G_s(f) = \frac{A^2}{r_b} \sin^2 \frac{\pi f}{r_b} \prod \left(\frac{f}{r_b} \right), \) \(\bar{x}^2 = \frac{1}{2} \frac{A^2}{r_b} \times 2 \frac{r_b}{2} = \frac{A^2}{2} \)

11.2-1 \(A/\sigma = 2 \sqrt{\frac{1}{2} \times 50} = 10 \)
\[
P_e = Q(0.4 \times 10) = 3.4 \times 10^{-5}, P_s = Q(0.6 \times 10) = 1.2 \times 10^{-9}
\]
\[
P_e = \frac{1}{2} (P_s + P_e) = 1.7 \times 10^{-5}
\]
whereas \(P_{e_{\text{un}}} = Q(0.5 \times 10) = 3 \times 10^{-7} \)

11.2-2 (b) \(S_R = \frac{1}{2} A^2, \tau = \frac{1}{2} T_B = \frac{1}{2r_B}, \sigma^2 = \frac{N_0}{2\tau} = N_0 r_B \)
\[
\left(\frac{A}{2\sigma} \right)^2 = \frac{A^2}{4\sigma^2} = \frac{4S_R}{N_0 r_B} = S_R = N_0 r_B = \gamma_B
\]

11.2-3 \(P_e = \frac{1}{2} \times 2Q \left(\frac{A}{2\sigma} \right) + 2 \times \frac{1}{2} Q \left(\frac{A}{2\sigma} \right) = \frac{3}{2} Q \left(\frac{A}{2\sigma} \right) \)
\[
S_R = \frac{1}{4} A^2 + \frac{1}{2} (-A)^2 + \frac{1}{2} 0 = A^2 \left(\frac{A}{2\sigma} \right)^2 = \frac{2S_R}{4N_R} \leq \frac{S_R}{2N_0 r_B} = \gamma_B
\]
so \(P_e = \frac{3}{2} Q(\sqrt{\gamma_B}) \)
SOLUTIONS TO EXERCISES

11.3-1 Note that \(P(f) \) has even symmetry, so consider only \(f > 0 \).

\[
P(f) = \frac{1}{r} \left[\int_{-r}^{0} \frac{2}{r} \left(1 + \frac{2\lambda}{r} \right) d\lambda + \int_{0}^{f} \frac{2}{r} \left(1 - \frac{2\lambda}{r} \right) d\lambda \right] = \frac{1}{r} \left(1 - \frac{2f^2}{r^2} \right)
\]

Thus, \(P(f) = \frac{1}{r} \left(1 - \frac{2f^2}{r^2} \right) \) for \(0 \leq f \leq \frac{r}{2} \)

\[
P(f) = \begin{cases} \frac{1}{r} \left(1 - \frac{2f^2}{r^2} \right) & |f| \leq \frac{r}{2} \\ \frac{2}{r} \left(1 - |f| \right) & \frac{r}{2} \leq |f| \leq r \end{cases}
\]

\[
p(t) = \sin^2 \frac{rt}{2}, \quad p(t) = \sin^2 \frac{rt}{2} \sin rt
\]

No additional zero-crossings, but \(|p(t)| < 0.01\) for \(|t| > 2D\).
11.3-2 Let \(I_H = \int_{-\infty}^{\infty} |V(f)|^2 df \int_{-\infty}^{\infty} |W(f)|^2 df \) with
\[
V(f) = |H_R(f)| \sqrt{G_n(f)}, \quad W(f) = \frac{|P(f)|}{|H_\xi(f)||H_R(f)|}
\]
Then \(I_{HR} \) is minimized when \(V(f) = gW(f) \), so
\[
|H_R(f)| \sqrt{G_n(f)} = g \frac{|P(f)|}{|H_\xi(f)||H_R(f)|} \Rightarrow |H_R(f)|^2 = \frac{g|P(f)|}{\sqrt{G_n(f)||H_\xi(f)|}},
\]
and \(|H_T(f)|^2 = \frac{|P(f)|^2}{|P_x(f)H_\xi(f)H_R(f)|^2} = \frac{|P(f)| \sqrt{G_n(f)}}{g|P_x(f)|^2H_\xi(f)} \)

11.3-3

<table>
<thead>
<tr>
<th>(m_k)</th>
<th>(m_{k-2})</th>
<th>(m'_k)</th>
<th>(m'k - m{k-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

\(y(t_k) = (m'_k - m'_{k-2})A = \begin{cases}
0 & m_k = 0, m'_{k-2} = 0 \\
0 & m_k = 0, m'_{k-2} = 1 \\
A & m_k = 1, m'_{k-2} = 0 \\
-A & m_k = 1, m'_{k-2} = 1
\end{cases} \)

11.4-1 \(m_1 = m_2 + m_3 + m_4 + m_5 \) and output \(m_5 \)

| shift | \(m_1 \) | \(m_2 \) | \(m_3 \) | \(m_4 \) | \(m_5 \) | shift | \(m_1 \) | \(m_2 \) | \(m_3 \) | \(m_4 \) | \(m_5 \)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>18</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>27</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>31</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
12.1-1 \(\nu f_s \leq 36,000 \) and \(f_s = 2W = 6400 \) \(\nu \leq \frac{36,000}{6400} = 5.6 \Rightarrow \nu = 5 \)

so \(q = 2^5 = 32 \), \(f_s = r/\nu = 7.2 \) kHz

12.1-2
(a) \(4.8 + 6\nu \geq 50 \) dB \(\Rightarrow \nu = 8 \), \(r = \nu f_s = 80 \) Mbps
(b) \((S/N)_D = 4.8 + 6\nu - 10 \geq 50 \) dB \(\Rightarrow \nu = 11 \), \(r = 110 \) Mbps

12.1-3
3-bit quantizer \(\Rightarrow 8 \) levels, with \(x_{\text{max}} = 8.75 \) V \(\Rightarrow \) step size = 2.5 V.

For an input of 0.6 V \(\Rightarrow x_q = 1.25 \) V \(\Rightarrow \epsilon_q = 1.25 - 0.60 = 0.65 \) V.

With companding: \(z(x) = 8.75 \left(\frac{\ln (1 + 255 \times 0.6/8.75)}{\ln (1 + 255)} \right) = 4.60 \)

4.601 feeds to a quantizer \(\Rightarrow x'_q = 3.75 \) V.

\(x'_q \) is then expanded using Eq. (13):

\[x = \frac{8.75}{255} \left[(1 + 255)^{8.75/8.75} - 1 \right] = 0.34 \]

\(\epsilon'_q = 0.60 - 0.34 = 0.26 \) (with companding) versus

\(\epsilon_q = 0.65 \) (without companding)

12.2-1
\(1 + 4q^2P_e = 10^{0.1} = 1.259 \Rightarrow P_e = 0.065/q^2 = 10^{-6} \)

\(M = 2, P_e = Q[\sqrt{(S/N)_R}] = 10^{-6} \Rightarrow (S/N)_R = 4.76^2 = 13.6 \) dB

Eq. (5) gives \((S/N)_{R_b} = 6(2^2 - 1) = 12.6 \) dB

12.2-2
\(\gamma_{th} = \frac{6}{b} \left(M^2 - 1 \right) \Rightarrow M_{th}^2 = 1 + \frac{W}{6bT} \gamma_{th} = 1 + \frac{\gamma_{th}}{6b} \)

Thus, \((S/N)_{D_b} = 3M_{th}^{2b}S_x = 3\left(1 + \frac{\gamma_{th}}{6b} \right)^b S_x \)

For WBFM, \((S/N)_{D_b} = 3(\frac{3}{2})^2S_x\gamma_{th} = \frac{3}{2} b^2 \gamma_{th} S_x \)

12.3-1
\(W_{rms}^2 = \frac{1}{S_x} \int_{-W}^{W} f^2 \frac{S_x}{2W} df = \frac{W^2}{3} \Rightarrow W_{rms} = \frac{W}{\sqrt{3}} \)

\(s = \frac{f_s \Delta \sqrt{3}}{2\pi \sigma W} = \frac{\Delta \sqrt{3} b}{\pi \sqrt{S_x}} \)

\(s_{opt} = \ln 2b \Rightarrow \Delta_{opt} = \frac{\pi \sqrt{S_x}}{\sqrt{3b}} \ln 2b = 0.393 \sqrt{S_x} \)

12.3-2
PCM: \((S/N)_D = 4.8 + 6.0\nu + 10 \log_{10} S_x \) dB

DPCM: \((S/N)_D = G_{ps} + 4.8 + 6.0\nu' + 10 \log_{10} S_x \) dB

If \(G_p = 6 \) dB, then \(6 + 6.0\nu' = 6.0\nu \Rightarrow \nu' = \nu - 1 \)
12.4–1 One frame has a total of 588 bits consisting of 33 symbols and 17 bits/symbol. But, of 17 bits, only 8 are info, so 8 info bits × 33 symbols/frame = 264 info bits/frame. Output is 4.3218 Mbits/sec × one frame/588 bits = 7350 frames/sec.

12.5–1 Voice PCM bits/frame = 30 channels × 8 bits/channel = 240 bits.

13.1–1 We see that and will be even smaller, etc.

Hence, \(V = \frac{r}{T_{frame}} = \frac{1.048 \text{ Mbps}}{125 \mu s} = 8.384 \text{ Mbits/sec} \) one frame 588 bits

13.1–2 We want \(R_c' = \frac{r_b}{r} \geq 0.5 \), given \(\frac{2t_f r_b}{k} = 2.2 \) and \(p = 10 \alpha = 0.011 \)

Go-back-N: \(R_c' \leq \frac{9}{10} \frac{0.989}{0.989 + 2.2 \times 0.011} = 0.879 \) OK

Stop-and-wait: \(R_c' \leq \frac{9}{10} \frac{0.989}{1 + 2.2} = 0.278 \) Unacceptable

13.2–1 \((c_1, c_2, c_3) = (m_1, m_2, m_3) \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \)

\(c_1 = m_1 \oplus 0 \oplus m_3, c_2 = m_1 \oplus m_2 \oplus 0, c_3 = 0 \oplus m_2 \oplus m_3 \)

| \hline m_1m_2m_3 | c_1c_2c_3 | W \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1 0 1</td>
<td>3</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 1</td>
<td>3</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 1 0</td>
<td>4</td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 1 0</td>
<td>3</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 1 1</td>
<td>4</td>
</tr>
<tr>
<td>1 1 0</td>
<td>1 0 1</td>
<td>4</td>
</tr>
<tr>
<td>1 1 1</td>
<td>0 0 0</td>
<td>3</td>
</tr>
</tbody>
</table>
| \hline
13.2-2 \[S = Y[P^T|1_g^T] = (y_1 \ y_2 \ \cdots \ y_n) \begin{bmatrix} p_{11} & p_{21} & \cdots & p_{k1} & | & 1 & 0 & \cdots & 0 \\
p_{12} & p_{22} & \cdots & p_{k2} & | & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & | & \vdots & \vdots & \ddots & \vdots \\
p_{1q} & p_{2q} & \cdots & p_{kq} & | & 0 & 0 & \cdots & 1 \end{bmatrix}^T \]

\[s_i = y_1 p_{i1} + y_2 p_{i2} + \cdots + y_k p_{ik} + 0 + 0 + \cdots + y_{k+j} + 0 + 0 + \cdots + 0 \]

\[j - 1 \text{ terms} \]

\[q - 1 \text{ terms} \]

For \(P^T = \begin{bmatrix} 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \end{bmatrix} \]

it is received version of CRC-8:

For \(P^T \)

\[s_1 = y_1 \oplus y_2 \oplus y_3 \oplus 0 \oplus y_5, \]

\[s_2 = 0 \oplus y_2 \oplus y_3 \oplus y_4 \oplus y_6, \]

\[s_3 = y_1 \oplus y_2 \oplus 0 \oplus y_4 \oplus y_7 \]

13.2-3 "J" = 1 0 0 1 0 1 0 \(\Rightarrow Q_m(p) = p^6 + p^3 + p \)

CRC-8: \(G(p) = p^8 + p^2 + p + 1 \)

\[X(p) = Q_m(p) G(p) = p^{14} + p^{11} + p^8 + p^7 + p^6 + p^5 + p^4 + p^2 + p \]

\(Y(p) = p^{13} + p^{11} + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^2 + p \)

\(Y(p) \)

\(G(p) = p^{8} + p^{2} + p + 1 \)

\(\frac{Y(p)}{G(p)} = p^{13} + 0 + p^{11} + 0 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + 0 + p^2 + p \)

\(\frac{p^{13}}{p^{11}} + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^2 + p \)

\(\frac{p^{11}}{p^{11}} + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^2 + p \)

\(\frac{p^9 + p^8}{p^9} + p^5 + p^4 + p^3 + p^2 + p \)

\(\frac{p^5}{p^5} + p^2 + p + 1 \)

\(s(p) = \text{rem} \left[\frac{Y(p)}{G(p)} \right] = p^5 + p^2 + p + 1 \neq 0 \Rightarrow \text{an error has occurred} \)
13.2-4 \(n = 63, \ k = 15 \Rightarrow t = \frac{63 - 15}{2} = 24 \) errors can be corrected

13.3-1

Minimum-weight paths:

\[
\begin{align*}
abce &= D^{\frac{1}{2}} \\
abdce &= D^{\frac{3}{2}}
\end{align*}
\]

\(d_i = 4, \ M(d_i) = 1 + 2 = 3 \)

(b) \(\alpha \approx \frac{1}{\sqrt{20\pi}} e^{-5} = 8.5 \times 10^{-4} \Rightarrow P_{be} = 3 \times 2^4 \times \alpha^2 = 3.5 \times 10^{-5} \)

\(P_{ube} = \frac{1}{\sqrt{40\pi}} e^{-10} = 4.1 \times 10^{-6} < P_{be} \)

Coding increases error probability when \(\frac{R_i d_i}{2} = 1 \)

14.1-1 \(B_T \leq 0.1 f_c = 100 \text{ kHz}, \ r_b \leq (r_e / B_T) \times 100 \text{ kHz} \)

(a) \(r_e / B_T \approx 1 \text{ so } r_b \approx 100 \text{ kbps} \) \hspace{1cm} (b) \(r_e / B_T \approx 2 \text{ so } r_b \leq 200 \text{ kbps} \)

(c) \(r_e / B_T \approx 2 \log_2 8 = 6 \text{ so } r_b \leq 600 \text{ kbps} \)
\[\phi_k = \pm \frac{\pi}{4} \Rightarrow l_k = \cos \phi_k = \frac{1}{\sqrt{2}}, Q_k = \sin \phi_k = \pm \frac{1}{\sqrt{2}} \]

\[x(t) = \sum_k \frac{1}{\sqrt{2}} p_{r_1}(t - kT_b) = \frac{1}{\sqrt{2}} \Rightarrow G_i(f) = \frac{1}{2} \delta(f) \]

\[Q_k = 0, Q_k^2 = \frac{1}{2} \Rightarrow G_q(f) = \frac{1}{2} r_b |p_{r_1}(f)|^2 = \frac{1}{2r_b} \sin^2 \frac{f}{r_b} \]

Thus, \[G_{ip}(f) = \frac{1}{2} \delta(f) + \frac{1}{2r_b} \sin^2 \frac{f}{r_b} \]

\[x(t) = A_c \sum_k [\cos(\omega_d a_k t) \cos(\omega_c t + \theta) - \sin(\omega_d a_k t) \sin(\omega_c t + \theta)]p_{r_1}(t - kT_b) \]

where \(a_k = \pm 1, p_{r_1}(t) = u(t) - u(t - T_b), \omega_d = \frac{\pi}{T_b} = \pi f_b \)

so \(\cos(\omega_d a_k t) = \cos \omega_d t, \sin(\omega_d a_k t) = a_k \sin \omega_d t. \) Thus,

\[x(t) = \sum_k \cos(\omega_d a_k t)p_{r_1}(t - kT_b) = \sum_k \cos \omega_d t p_{r_1}(t - kT_b) = \cos \omega_d t, \) and

\[x_q(t) = \sum_k \sin(\omega_d a_k t)p_{r_1}(t - kT_b) = \sum_k a_k \sin \omega_d t p_{r_1}(t - kT_b). \) But

\[\sin \omega_d t = \sin \frac{\pi t}{T_b} = \sin [\frac{\pi}{T_b} (t - kT_b) + k\pi] \]

\[= \cos k\pi \sin [\frac{\pi}{T_b} (t - kT_b)] = (-1)^k \sin [\pi r_b (t - kT_b)] \]

so \[x_q(t) = \sum_k (-1)^k a_k \sin [\pi r_b (t - kT_b)]p_{r_1}(t - kT_b) \]

\[\frac{Q_k}{p(T - kT_b)} \]
14.2-1 Let \(V(\lambda) = s_1(\lambda) - s_0(\lambda) \) and \(W^*(\lambda) = h(T_b - \lambda) \), so

\[
\frac{|Z_1 - Z_0|^2}{4 \sigma^2} = \left| \int_{-\infty}^{\infty} V(\lambda) W^*(\lambda) \, d\lambda \right|^2 = \frac{1}{2 N_0} \int_{-\infty}^{\infty} |V(\lambda)|^2 \, d\lambda
\]

\[
= \frac{1}{2 N_0} \int_{-\infty}^{\infty} |s_1(\lambda) - s_0(\lambda)|^2 \, d\lambda
\]

The equality holds when \(W(\lambda) = KV(\lambda) \), so

\[h(T_b - \lambda) = K [s_1(\lambda) - s_0(\lambda)] \Rightarrow h_{opt}(t) = K [s_1(T_b - t) - s_0(T_b - t)] \]

14.2-2 \(h(t) = A_c \rho(t)(T_b - t) \cos [2\pi(f_c \pm f_d)(T_b - t)] \) with \(f_c T_b = N_c, f_d T_b = \frac{1}{2} \)

\[
= A_c [u(T_b - t) - u(-t)] \cos [2\pi(N_c \pm \frac{1}{2}) - 2\pi(f_c \pm f_d)t]
\]

\[
= -A_c \cos [2\pi(f_c \pm f_d)t][u(t) - u(t - T_b)], \quad f_d = \frac{r_b}{2}
\]

since \([u(T_b - t) - u(-t)] = [u(t) - u(t - T_b)] = \Pi\left(\frac{t - \frac{T_b}{2}}{T_b}\right)\)

Thus, \(|H(f)| = \frac{A_c T_b}{2} \left| \sin \left[\frac{f - \left(f_c \pm \frac{r_b}{2} \right)}{r_b} \right] \right| + \left| \sin \left[\frac{f + \left(f_c \pm \frac{r_b}{2} \right)}{r_b} \right] \right| \)

14.2-3
% Exercise 14.2-3
% Implement a matched filter detector for a noisy OOK signal
% A “1” will be a pulse consisting of 3 one Hz sin waves and a “0”
% consists of zero volts
% The transmitted message will be 1011
% Sampling period, \(T_s \) will be 1/50 seconds
% Bit duration, \(T_b = 150 \) seconds
% Initialize variables

clear
for t = 1:900
 x(t) = 0; % Noiseless signal
 h1(t) = 0; % Impulse response function of matched filter
 y(t) = 0; % Noisy signal
 n(t) = 0; % Noise
 znoisy(t) = 0; % Matched filter output with noisy input
 znoiseless(t) = 0; % Matched filter output with noiseless input
end;

Ts = 1/50; % Sampling period = 1/50 seconds
Tb = 150; % Bit duration = 150 seconds

% Create the impulse response function, h1(t) for the matched filter
% that consists of three 1 Hz sine waves
for t = 1:Tb
 h1(t) = sin(2*pi*t*Ts);
end;

% Modulate message sequence 1011 onto a 1 Hz OOK carrier
% digits occur at t=150, t=300, t=450 and t=600
% OOK pulses are spaced Tb apart.

for t = Tb:2*Tb
 x(t) = sin(2*3.1415*(t)*Ts); % "1"
end;

for t = 2*Tb:3*Tb
 x(t) = 0; % "0"
end;
for t = 3*Tb:4*Tb
 x(t) = sin(2*3.1415*(t)*Ts); % "1"
end;
for t = 4*Tb:5*Tb
 x(t) = sin(2*3.1415*(t)*Ts); % "1"
end;

% Add gaussian noise to the OOK signal
for t = 1:900
 n(t) = randn;
 y(t) = x(t) + n(t);
end;
Matched filter signals. (a) Noiseless 1011 OOK input, (b) matched filter output of noiseless input, (c) noisy 1011 OOK input, (d) matched filter output of noisy input. Sample and hold circuitry captures the 1011 message at 2T_b, 3T_b, 4T_b, and 5T_b.

Exercise 14.2-4

% Implement a correlation detector for a noisy OOK signal.
% A “1” will be a pulse consisting of three Hz sin waves and a “0”
% consists of zero volts. The transmitted message will be 1011.
% Sampling period, T_s will be 1/50 seconds; bit duration, T_b=150
% seconds

% Initialize variables
clear
for t = 1: 900
 j(t) = t;
 x(t) = 0; % Noiseless signal
 h1(t) = 0; % Impulse response function of matched filter
 y(t) = 0; % Noisy signal
 n(t) = 0; % Noise
 w(t) = 0;
 V_est(t) = 0; % Correlator output with noiseless input
 W_est(t) = 0; % Correlator output with noisy input
end;
Ts = 1/50; % Sampling period = `1/50 seconds
Tb = 150; % Bit duration = 150 seconds

% Create the impulse response function h1(t) correlator
% that consists of three 1 Hz sine waves
for t = 1: Tb
 h1(t) = sin(2*pi*t*Ts);
end;

% Modulate message sequence 1011 onto a 1 Hz OOK carrier; digits occur
% at t = 150, 300, and t = 600 seconds
for t = Tb: 2*Tb
 x(t) = sin(2*3.1415*t*Ts); % "1"
end;
 for t = 2*Tb: 3*Tb
 x(t) = 0; % "0"
end
 for t = 3*Tb: 4*Tb
 x(t) = sin(2*3.1415*t*Ts); % "1"
end;
 for t = 4*Tb: 5*Tb
 x(t) = sin(2*3.1415*t*Ts); % "1"
end;

% Add gaussian noise to the OOK signal
for t = 1: 900
 n(t) = randn;
 y(t) = x(t) + n(t);
end;

% Implement correlator for noisy and noiseless OOK signals.
for k = 1: 4
 % Multiply incoming OOK pulses by a % replica of correct "1" pulse
for \(t = k \cdot T_b + 1: (k+1) \cdot T_b \)
\[
\begin{align*}
w(t) &= h_1(t - k \cdot T_b + 1) \cdot y(t); & \text{multiplier output for noisy signal} \\
v(t) &= h_1(t - k \cdot T_b + 1) \cdot x(t); & \text{multiplier output for noiseless signal}
\end{align*}
\]
end;

\[
\begin{align*}
W_{\text{hold}} &= 0; \\
V_{\text{hold}} &= 0;
\end{align*}
\]
\[
\begin{align*}
&\text{for } t = (k \cdot T_b + 1): (k+1) \cdot T_b \\
&W_{\text{hold}} = W_{\text{hold}} + w(t); \\
&V_{\text{hold}} = V_{\text{hold}} + v(t); \\
&W_{\text{est}}(t) = w(t) + W_{\text{hold}}; \\
&V_{\text{est}}(t) = v(t) + V_{\text{hold}};
\end{align*}
\]
end;

\[
\begin{align*}
&\text{normalize outputs} \\
&W_{\text{est}} = W_{\text{est}} / \max(W_{\text{est}}); \\
&V_{\text{est}} = V_{\text{est}} / \max(V_{\text{est}});
\end{align*}
\]

\[
\begin{align*}
\% \text{ Plot OOK input and correlator outputs} \\
\text{plot}(j, x + 15, j, V_{\text{est}} + 10, j, y + 5, j, W_{\text{est}})
\end{align*}
\]

Correlator signals. (a) Noiseless 1011 OOK input, (b) correlator output of noisless input, (c) noisy 1011 OOK input, (d) correlator output of noisy input. Sample and hold circuitry captures the 1011 message at \(2T_b, 3T_b, 4T_b, \text{ and } 5T_b\). Note also the ramp in parts (b) and (d) matches the envelope of the matched filter output shown in parts (b) and (d) in the graph of Example 14.2–3.
For correlation detection

\[y(t_k) = \int_{-\infty}^{(k+1)D} x_{c}(\lambda) K \alpha_c \cos(\omega_c \lambda) d\lambda, \quad t_k = (k + 1)D \]

For filter detection

\[y(t_k) = \int_{-\infty}^{\infty} x_{c}(\lambda) h(t_k - \lambda) d\lambda \]
Thus, \(h[(k + 1)D - \lambda] = \begin{cases} KA_c \cos \omega_c \lambda & \text{if } kD \leq \lambda \leq (k + 1)D \\ 0 & \text{otherwise} \end{cases} \)

So \(h(t) = KA_c \cos ((k + 1)\omega_cD - \omega_c t) \) \(0 \leq t \leq D \)

\[= KA_c \cos \omega_c t p_0(t) \quad \text{since} \quad \omega_c D = 2\pi N_c \]

\[E = \frac{1}{2} A_c^2 D = \frac{A_c^2}{2r} \Rightarrow K = \frac{A_c}{E} = \frac{2r}{A_c} \]

\[\sigma^2 = \frac{N_0}{2} \int_{-\infty}^{\infty} |h(t)|^2 dt = \frac{N_0}{2} \int_0^D (KA_c)^2 \cos^2 \omega_c t dt \]

\[= \frac{N_0}{4} (KA_c)^2 D = \frac{A_c^2 N_0}{2E} = N_{ef} \]

14.5-1 Loss of orthogonality among the received subcarriers can be caused by Doppler shift combined with multipath, particularly in mobile environments.

14.5-2 \(X_k(t)e^{2\pi ft} = X_k(t)[\cos 2\pi f_1t + j \sin 2\pi f_2t] \)

with

\[X_k(t) = [I_k(t) + jQ_k(t)] \]

\[\Rightarrow [I_k(t) + jQ_k(t)][\cos 2\pi f_1t + j \sin 2\pi f_2t] \]

\[= [I_k(t) \cos 2\pi f_1t - Q_k(t) \sin 2\pi f_1t] + j[Q_k(t) \cos 2\pi f_1t + I_k(t) \sin 2\pi f_1t] \]

\[\Rightarrow \text{Re}([I_k(t) \cos 2\pi f_1t - Q_k(t) \sin 2\pi f_1t] + j[Q_k(t) \cos 2\pi f_1t + I_k(t) \sin 2\pi f_1t]) \]

\[= v_k(t) \]

15.1-1 \(10 \log (J/S_b) = 10 \log (P_g) - 10 \log (E_b/N_j) \)

\[= 10 \log (10,000) - 10 \log (1.80 \times 10^{-11}/1.48 \times 10^{-13}) \]

\[= 19.2 \text{ dB} \]

15.1-2 \(P_e = Q(\sqrt{2E_b/N_0}) = 1 \times 10^{-7} \Rightarrow 2E_b/N_0 = 27.04 \)

Multiple users:

\[P_e = Q\left(\frac{1}{\sqrt{(M-1)/3000 + N_0/2E_b}}\right) = 1 \times 10^{-5} \]

\[= Q\left(\frac{1}{\sqrt{(M-1)/3000 + 1/27.04}}\right) \Rightarrow (M-1) = 54 \]

\[\Rightarrow 54 \text{ total users} \]
15.2-1

Multiple users:

Assume 2nd term does not significantly contribute to the overall error so that with users, we have

But with FH-SS, comparing to Exercise 15.1-2, for and the same we require

15.3-1

<table>
<thead>
<tr>
<th>shift</th>
<th>m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>m_4</th>
<th>m_5</th>
<th>shift</th>
<th>m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>m_4</th>
<th>m_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The above output occurs with all 1s as initial conditions. Any other set of nonzero initial conditions will produce a delayed version of the above output. Therefore, this register configuration only produces one unique sequence. Any n-bit register configured to produce a ml sequence will only have one unique output sequence regardless of initial conditions.

16.1-1 \(P_2 + P_3 = 1 - P_1 \) so \(2P_2 = 2P_3 = 1 - p \) and

\[
H(X) = p \log_2 \frac{1}{p} + 2 \left(\frac{1-p}{2} \right) \log_2 \frac{2}{1-p} = p \log_2 \frac{1}{p} + (1-p) \left[\log_2 \frac{1}{1-p} + \log_2 2 \right] \\
= p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p} + (1-p) = \Omega(p) + 1 - p
\]

\(H(X) \big|_{\text{max}} = \log_2 M = \log_2 3 = 1.58 \) at \(p = \frac{1}{3} \)

16.1-2

<table>
<thead>
<tr>
<th>(x_i)</th>
<th>(p_i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Codeword</th>
<th>(N_i)</th>
<th>(I_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/2</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1/4</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>1/8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>110</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>1/8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>111</td>
<td>3</td>
</tr>
</tbody>
</table>

\(N_0 = \frac{1}{8} \times 1 + \frac{1}{4} \times 1 + \frac{1}{8} \times 1 = \frac{7}{8} = \bar{N}/2 \)

\(N_1 = \frac{1}{8} \times 1 + \frac{1}{8} \times 2 + \frac{1}{8} \times 3 = \frac{7}{8} = \bar{N}/2 \)

16.1-3 From Table 16.1-5 with \(p = 0.9 \) we have the data compression \(\bar{N}/E = 0.50 \) so \(r_0/r = 0.50 \).

But \(R = rH(X) \leq r_0 \), so

\(H(X) \leq r_0/r = 0.50 \) bits/sample.

16.2-1

\[
H(Y \mid X) = P(x_1) \left[P(y_1 \mid x_1) \log_2 \frac{1}{P(y_1 \mid x_1)} + P(y_2 \mid x_1) \log_2 \frac{1}{P(y_2 \mid x_1)} \right] \\
+ P(x_2) \left[P(y_1 \mid x_2) \log_2 \frac{1}{P(y_1 \mid x_2)} + P(y_2 \mid x_2) \log_2 \frac{1}{P(y_2 \mid x_2)} \right]
\]
\[p \left[\left(1 - \alpha \right) \log_2 \frac{1}{1 - \alpha} + \alpha \log_2 \frac{1}{\alpha} \right] \\
+ (1 - p) \left[\alpha \log_2 \frac{1}{\alpha} + (1 - \alpha) \log_2 \frac{1}{1 - \alpha} \right] \\
= \alpha \log_2 \frac{1}{\alpha} + (1 - \alpha) \log_2 \frac{1}{1 - \alpha} = \Omega(\alpha) \]

16.2-2 \(P(x, y) = P(x)P(y) \) \(P(x | y) = P(x|y)/P(y) = P(x) \)

Thus, \(H(X | Y) = \sum_{y} P(x)P(y) \log_2 \frac{1}{P(x)} \)

\[= \left[\sum_{y} P(y) \right] \left[\sum_{x} P(x) \log_2 \frac{1}{P(x)} \right] = 1 \times H(X) \]

so \(I(X; Y) = H(X) - H(X | Y) = 0 \)

16.3-1
(a) \(p(x) = 0 \) for \(|x| > M \) so

\[I = \int_{-M}^{M} p(x) \log_2 \frac{1}{p(x)} dx \quad \text{and} \quad \int_{-M}^{M} p(x) dx = 1 \Rightarrow F_1 = p, c_1 = 1 \]

\[-\frac{\ln p + 1}{\ln 2} + \lambda_1 = 0 \Rightarrow \ln p = \lambda_1 \ln 2 - 1 \Rightarrow p = e^{(\lambda_1 \ln 2 - 1)} = \text{constant} \]

Thus, \(p(x) = \frac{1}{2M} \) for \(-M < x < M\), and \(H(X) = \int_{-M}^{M} \frac{1}{2M} \log_2 2M dx \)

\[= \log_2 2M \]

(b) \(p(z) = 1/2KM \) for \(-KM < z < KM \) so \(H(Z) = \log_2 2KM \)

But \(dz/dx = K \) so \(H_0(Z) - H_0(X) = -\log_2 K \) and

\[H_{abs}(Z) - H_{abs}(X) = \log_2 2KM - \log_2 2M - \log_2 K \]

\[= \log_2 \left(\frac{2KM}{2M \times K} \right) = 0 \]

16.3-2
(a) \(R = r \log_2 64 \leq B \log_2 (1 + S/N) \Rightarrow r \leq (3 \times 10^3 \log_2 1001)/6 \)

\[= 5000 \text{ symbols/sec} \]

(b) \(S/N_0B = 10^3 \Rightarrow S/N_0 = 3 \times 10^3 \times 10^3 = 3 \times 10^6 \)

\(B = 1 \text{ kHz} \):

\(C = 10^3 \log_2 (1 + 3 \times 10^6/10^3) = 1.2 \times 10^4 \Rightarrow r \leq 1.2 \times 10^4/6 = 2000 \)

\(B \rightarrow \infty \):

\(C_{\infty} = 1.44 \times 3 \times 10^6 = 4.32 \times 10^6 \Rightarrow r \leq 4.32 \times 10^6/6 = 720,000 \)
16.4-1 \(\| s'_i \|^2 = (3 \sqrt{2})^2 \times 2 = 36 \quad \phi_i = s'_i / 6 \)
\[
\alpha_{21} = \int s'_i \phi_i \, dt = \int_0^2 \phi_i \, dt = 6 \quad g_2 = s'_2 - 6\phi_i
\]
\[\| g_2 \|^2 = 36 \quad \phi_2 = g_2 / 6\]
(b) \(\| s'_2 \|^2 = 6^2 + 6^2 = 72 \quad \| s'_2 \|^2 = \int_0^2 (3 \sqrt{2})^2 \, dt = 18 \times 4 = 72 \)

16.5-1 \[E_i = a^2 \quad i = 1, 2\]
\[= a^2 + (2a)^2 \quad i = 3, 4, 5, 6\]
\[E = \frac{12 \times a^2 + 4 \times 5a^2}{3} = \frac{11a^2}{3}\]
\[\frac{a}{\sqrt{N_0/2}} = \sqrt{\frac{6E}{11N_0}} \text{ so let } q = Q\left(\sqrt{\frac{6E}{11N_0}} \right)\]
For \(i = 1, 2 \)
\[P(c \mid m_i) = \int_a^\infty p_{\beta_1}(\beta_1) \, d\beta_1 \int_a^\infty p_{\beta_2}(\beta_2) \, d\beta_2 = (1 - 2q)(1 - q)\]
For \(i = 3, 4, 5, 6 \) \[P(c \mid m_i) = \int_a^\infty p_{\beta_1}(\beta_1) \, d\beta_1 \int_a^\infty p_{\beta_2}(\beta_2) \, d\beta_2 = (1 - q)^2\]
\[P_r = \frac{1}{4} [2(1 - 2q)(1 - q) + 4(1 - q)^2] = \frac{1}{3} (3 - 7q + 4q^2)\]
Thus, \(P_e = 1 - P_r = \frac{1}{3} (7q - 4q^2) \)

A-1
\[i_2^2(f) = \frac{4Rkf_1}{|R + jfR|^2} + \frac{4Rkf_2}{|R|^2} = \frac{4k}{R} \left(\frac{f_1}{1 + f^2 + f_2} \right)\]
\[Z(f) = \frac{R(R + jfR)}{R + R + jfR} = \frac{R(1 + jf)}{2 + jf}, \quad |Z(f)|^2 = R^2 \frac{1 + f^2}{4 + f^2}\]
SOLUTIONS TO EXERCISES

\[\text{Re}[Z(f)] = R \frac{2 + f^2}{4 + f^2} \]

\[v_0^2(f) = |Z(f)|^2 = 4kR \frac{\mathcal{F}_1 + (1 + f^2)\mathcal{F}_2}{4 + f^2} \]

\[\eta(f) = \frac{v_0^2(f)}{4 \text{Re}[Z(f)]} = k \frac{\mathcal{F}_1 + (1 + f^2)\mathcal{F}_2}{2 + f^2} \]

If \(\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F} \), then \(\eta(f) = k\mathcal{F} \).

A-2

(a) \(N_o = 10^6(\mathcal{F}_0 + \mathcal{F}_e) \times 2 \times 10^6 \)

\[= 2 \times 10^{12} \times 4 \times 10^{-21} \frac{\mathcal{F}_0 + \mathcal{F}_e}{\mathcal{F}_0} = 40 \times 10^{-9} \]

so \(\frac{\mathcal{F}_0 + \mathcal{F}_e}{\mathcal{F}_0} = 5 \Rightarrow \mathcal{F}_e = 4\mathcal{F}_0, F = 1 + \frac{4\mathcal{F}_0}{\mathcal{F}_0} = 5 \)

(b) \(F = \frac{\mathcal{F}_e}{\mathcal{F}_0} = 5, \mathcal{F} = \mathcal{F}_0 + \mathcal{F}_e = 6\mathcal{F}_0 = 1740 \text{ K} \)

A-3

With FET: \(\mathcal{F}_e = 9 + \frac{14.5}{100} + 1.8 + 2.0 = 12.9, \mathcal{F}_N = 42.9 \text{ K} \)

Without: \(\mathcal{F}_e = 9 + \frac{14.5 + 1.05 \times 1860}{100} = 28.7, \mathcal{F}_N = 58.7 \text{ K} \)

Note that FET increase \((S/N)_R\) by \(58.7/42.9 = 1.37 \approx 1.4 \text{ dB}\)
Selected answers are given here for problems marked with an asterisk (*).

2.1-9 0.23A^2, 0.24A^2, 0.21A^2
2.2-4 \(-j(A/\pi f)[\text{sinc}(2\pi f) - \cos 2\pi f]\)
2.2-8 50%, 84%
2.2-12 \(AW[\text{sinc}(2Wt - \frac{1}{2}) - \text{sinc}(2Wt + \frac{1}{2})]\)
2.3-1 \(2A\tau\text{sinc}f\tau \cos 2\pi fT\)
2.3-6 \((1/|a|)V(f/a)e^{-j\omega_0/\alpha}\)
2.3-21 \((j2Abf)/[b^2 + (2\pi f)^2]^2\)

\[y(t) = \begin{cases}
0 & t < 0, t > 5 \\
At^2/2 & 0 < t < 2 \\
2A & 2 < t < 3 \\
(A/2)[4 - (t - 3)^2] & 3 < t < 5
\end{cases}\]

\[y(t) = \frac{1}{2} \text{sinc}\left(\frac{t}{2}\right) \text{(Hint: Use duality)}\]

\[2A\tau\text{sinc}2f\tau e^{-j2\pi f\tau}\]

\[2A\tau\text{sinc}f\tau(1 + \cos 4\pi fT)\]

2.5-13 4

2.6-2 \(H(0) = 1, H(1) = [0.25 - j0.604], H(2) = 0.0, H(3) = [0.25 - j0.104]\)

3.1-3 \(AH^2(f)e^{-j2\pi f0}\)

3.1-9 \(y(t) \approx 2\pi B \int_{-\infty}^{t} x(\lambda) d\lambda\)

3.1-18 \(h(t) = \frac{1}{K} \delta(t) - \frac{1}{K^2} e^{-t/K}u(t), g(t) = \frac{1}{K} e^{-t/K}u(t)\)

3.2-5 \(y(t) = 1.28 \cos(\omega_0 t - 72^\circ) + 0.31 \cos(3\omega_0 t - 45^\circ) + 0.14 \cos(5\omega_0 t - 31^\circ)\)

3.2-10 \(y(t) \approx \frac{\alpha}{2} x(t) + x(t - T) - \frac{\alpha}{2} x(t - 2T)\)

3.3-1 \(\ell_1 = 22 \text{ km}, g_2 = 56 \text{ dB}, g_4 = 34 \text{ dB}\)

3.3-6 \(r = 1.55 \text{ m}\)

3.3-12 29 W

3.4-2 \(h(t) = K\delta(t - t_d) - 2BK\text{sinc}(t - t_d)\cos\omega_c(t - t_d)\)

3.4-8 \(g(t) = 1 - e^{-bt}(\sin bt + \cos bt) \text{ for } t \geq 0, t = 1/2.8B\)

3.5-2 \(\dot{u}(t) = \lim_{t \to \infty} (A/\pi)\ln |(2t + \tau)/(2t - \tau)| = 0\)
3.5-5 \[\dot{x}(t) = 4 \sin \omega_0 t + \frac{4}{9} \sin 3 \omega_0 t + \frac{4}{25} \sin 5 \omega_0 t \]

3.6-6 \[G_v(f) = \left(\frac{A}{2W} \right)^2 \Pi \left(\frac{f}{2W} \right), R_v(\tau) = \left(\frac{A^2}{2W} \right) \text{sinc} 2W \tau, E_v = \frac{A^2}{4W} \]

3.6-11 \[R_v(\tau) = A^2/2, P_v = A^2/2, G_v(f) = (A^2/2) \delta(f) \]

4.1-4 \[v_{ip}(t) = 400 \text{sinc} 400t e^{-j2\pi 100t}, v_i(t) = 800 \text{sinc} 400t \cos 2\pi 100t, \]

\[v_d(t) = -800 \text{sinc} 400t \sin 2\pi 100t \]

4.1-10 \[y_{ip}(t) = A(1 - e^{-\pi t^2}) \cos \omega t u(t) \]

4.1-17 \[2200 \text{ Hz} \]

4.2-3 \[\text{AM: } B_T = 200, S_T = 68; \text{ DSB: } B_T = 200, S_T = 50 \]

4.2-11 \[5 \text{ kHz} < f_c < 50 \text{ kHz} \]

4.3-2 \[K = \sqrt{b/a} \]

4.3-7 \[f_c > 4000 \text{ Hz} \]

4.4-7 \[S_T = 7A^2/4, B_T = 400 \]

4.4-14 \[x_s(t) = (A_c/2)[\cos \omega_c t \cos \omega_c t - 2a \sin \omega_c t \sin \omega_c t] \]

4.5-5 \[a = \frac{1}{2} \text{ will produce standard AM with no distortion at the output.} \]

\[a = 1 \text{ will produce USSB + C } \]

\[a = 0 \text{ will produce LSSB + C } \]

maximum distortion from envelope detector.

5.1-4 \[\theta(t) = 2\pi[f_1t + (f_2 - f_1)t/2]/T \]

5.1-10 \[f(t) = 40 + 40 \cos 2\pi 20t; S_T = 6441.5 \]

5.2-7 \[5 \times 10^{12} < B_T < 5 \times 10^{13} 2.5 \times 10^{12} < f_\Delta < 2.5 \times 10^{13} \]

5.2-11 \[y_s(t) = A_s[\cos \omega_c t - \phi_\Delta(\pi f_c/Q) \dot{x}(t) \sin \omega_c t]; \]

\[\phi(t) = \arctan[\phi_\Delta(\pi f_c/Q) \dot{x}(t)] \]

5.2-17 \[f_\Delta < (f_c - 2W)/9 \]

5.3-5 Signal has low frequencies boosted.

5.3-11 \[K_1 = \frac{A_c}{2f_c \sqrt{2}}, K_2 = \frac{A_c}{8f_c^2 \sqrt{2}}, f_\Delta/f_c < 0.08 \]

5.4-5 \[S_s \text{ will increase dramatically and will have a larger impact on DSB.} \]

\[P_{sb}/A_{max}^2 = S_s/4 \text{ for DSB however } P_{sb}/A_{max}^2 = S_s/16 \text{ for AM.} \]

5.4-10 \[y_o(t) = \frac{\{1 + \rho \cos[\phi(t) - \theta(t)]\} \phi(t)/2\pi + \{\rho + \cos[\phi(t) - \theta(t)]\} \rho f_i}{1 + \rho^2 + 2\rho \cos[\phi(t) - \theta(t)]} \]

5.4-11 \[d = 2.219 + n6 \text{ meters} \]

6.1-4 \[K_1 = 2 \text{ and } K_2 = \pi/2 \]
6.1-15 \(f_s \leq 12 \text{ MHz} \), \(W_{\text{preampling}} \leq 137.5 \text{ MHz} \)
6.1-17 (a) 1.64\%, (b) -14.3\%
6.1-20 (a) 100 Hz, (b) 200 Hz, (c) 400 kHz
6.1-22 \(f_s = 187 \text{ kHz} \)
6.2-3 (a) \(H(f) = \text{sinc} f \tau e^{-j\omega \tau/2} \), \(X_p(f) = P(f)X_d(f) \) where \(X_d(f) = f_s \sum_n H(f - nf_s)X(f - nf_s) \)
(b) \(H_{eq}(f) = K e^{-j\omega (\tau/2)} / \text{sinc}^2 f \tau, \quad |f| \leq W \)
6.3-1 \(B_T \geq 400 \text{ kHz} \)
7.1-1 \(f_{\text{IF}} \geq 532.5 \text{ kHz} \), \(f_{\text{LO}} = 1072.5 \) to 2132.5 kHz, 10 kHz < \(B_{RF} < 1065 \text{ kHz} \)
7.1-3 \(C = 6 \) to 25.6 nF, 19.3 to 3.506 nF
7.1-10 (a) 50–54 MHz, 50.910 to 54.910 MHz
(b) 50–54 MHz, 64 to 68 MHz
7.1-13 (a) 2 MHz at 0 dB, 2.9 MHz at 10 dB, 4.550 at 23.1 dB, 5.365 MHz at 25.4 dB
7.1-17 (a) -24 dB, (b) -35.6 dB
7.1-22 20 bits
7.2-4 \(B_g \geq 0.76W, B_T \geq 17W \)
7.2-11 \(r = 200 \text{ kHz}, \tau = 2.5 \mu s, B_T \geq 200 \text{ kHz} \)
7.2-14 (a) \(B_T \geq 250 \text{ kHz} \), (b) \(B_T = 250 \text{ kHz} \)
7.2-19 \(M = 28 \)
7.3-5 \(\cos \theta_1(t) = \cos [(\omega_1 + \omega_2)t + \phi_0 + \phi_1 + 90^\circ - \epsilon_3] \)
7.3-8 \(f_p = 5 \text{ kHz}, 50 \text{ kHz} \)
7.3-12 (a) \(\frac{E(f)}{\Phi(f)} = \frac{jf}{jf + KH(f)} \)
7.3-13 (a) \(A_s = \frac{f_s}{K} \frac{A_m}{\sqrt{1 + (f_m/K)^2}} \), (b) \(K \geq 2f_s \)
7.4-4 \(n_p = 25,921, B = 805 \text{ kHz} \)
7.4-6 \(n_p = 2.18 \times 10^5, T_{\text{line}} = 64 \mu s, B = 4.99 \text{ MHz} \)
8.1-1 \(P(A'B) = 2/12 \)
8.1-7 \(P(C) = P(A) + P(B) - 2P(AB) \)
8.1-11 0.6048
8.1-17 (a) \(P(A) = 11/24 \)
(b) \(P(L|A) = 9/11 \)
8.2-1 \(P(X \geq 2) = 0.4 \)
8.2-5 \(K = 0.01, P(5 < X \leq 7) = F_X(7) - F_X(5) = 0.49 - 0.25 = 0.24 \)
8.2-9 \(p_z(z) = e^{-(z+5)}u(z + 5) \)
8.2-16 \(p_Y(y) = e^{-y}u(y) \)
8.3-1 \(m_x = 1/a \)
8.3-5 \(m_x = \frac{K - 1}{2} a \quad \sigma_x = \sqrt{\frac{K^2 - 1}{3} a} \)
8.3-9 \(\beta = -m_x \)
8.3-16 \(\Phi_x(\nu) = \left(1 - \frac{\nu}{a}\right)^{-1} \)
8.4-1 \(P(i < 3) = 56/1024 \)
8.4-5 \(P(i > 1) = 0.264 \)
8.4-9 \(P(X > 20) = Q(0.5) = 0.31 \)
8.4-13 \(P(FA) = 0.154, V_T = 2.9 \)
8.4-16 \(P_e = 0.0570 \)
8.4-24 \(E[Y] = e^{\sigma_x^2/2}e^{m_x}, \ E[Y^2] = e^{2\sigma_x^2}e^{2m_x} \)
8.4-31 \(m_2 = 0, \sigma_2^2 = 100 \)
9.1-1 \(\overline{\nu(t)} = \frac{3}{t} (e^{2t} - 1), \quad \overline{v^2(t)} = \frac{9}{t} (e^{6t} - 1) \)
9.1-7 \(R_{\omega}(t_1, t_2) = \sigma^2 \sin \omega(t_1 - t_2) \)
9.1-10 \(m_2 = \overline{x(t)} = 0, \sigma_2^2 = 2[R_x(0) - R_x(t)] \)
9.2-1 \(\langle v(t) \rangle = \pm 3, \langle v^2(t) \rangle = 25, V_{RMS} = 4 \)
9.2-12 \(R_x(t) = \overline{x(t)}^{-1} [(2\pi f)G_x(f)] \)
9.2-14a \(4W \)
9.3-3 \(\overline{y^2} = N_0T/2 \)
9.3-7 \(\overline{y^2} = N_0R/4L \)
9.3-10 \(z = \sqrt{\frac{2}{\pi}} \sigma = 16 \mu V, \sigma_2 = \sqrt{\sigma^2 - \left(\frac{2}{\pi} \sigma\right)^2} = 12 \mu V \)
9.3-15 \(B_N = \frac{\sqrt{\frac{\pi}{2a}}}{\sqrt{2}}, \quad B = \frac{1}{a} \sqrt{\ln \frac{2}{2}}, \quad B_N/B = 1.06 \)
9.4-1 \((S/N)_{d_{\text{dB}}} = 61 \text{ dB} \)
9.4-7 \((S/N)_{d} = \frac{2}{3} \frac{S_t}{\text{LN}_0 W} \)
9.4-11 \(m_{\text{min}} = 5 \)
9.5-1 \((\sigma_n/A)^2 = kT_N B_N T/\epsilon_p = 0.4 \)
9.5-5 \(\epsilon_p = 5 \times 10^{-8} \)
9.5-8 \(h_{\text{opt}}(t) = \frac{2K\tau}{N_0} A \left(\frac{t - t_0}{\tau}\right) \)
10.1-3 \(G_d(f) = N_0 = 0.1 \text{ at } f/f_c = \pm 0.5 \)
9.08 ANSWERS TO SELECTED PROBLEMS

10.1-7 \[\alpha_y = \sqrt{8 - 2\pi} = 1.3 \]
10.1-10 \[R_n(\tau) = N_0B_f \sin B_f \tau \cos \omega_t \tau \]
10.1-16 \[R_{n_n}(\tau) = -\pi N_0 B_f^2 \tau \sin^2 B_f \tau \]
10.2-1 \((S/N)_D = 50 \text{ dB} \)
10.2-5 \((S/N)_D = \gamma/2 \) for both channels
10.2-11 \[g_T = \gamma/\gamma_{th} = 1500 = 32 \text{ dB} \]
10.3-1 \[\text{FM:} N_D = N_0 W^3/3S_R = 1.67 \times 10^5 \]
10.3-6 \((S/N)_D = 290 = 24.6 \text{ dB} \)
10.3-10 \((S/N)_{D_n} \leq 2030 = 33 \text{ dB} \)
10.4-1 (c) \(S_T = 200 \text{ W} \)
10.4-5 \((S/N)_D = 90 = 19.5 \text{ dB} \)
10.4-9 \[S_T = 0.105 \text{ W} \]
10.6-1 \((S/N)_D = 2.78 \times 10^5 = 54.4 \text{ dB} \)
11.1-7 (a) \(B \geq 160 \text{ kHz}, \) (b) \(M \geq 8 \)
11.1-11 \(r = 0.78 \)
11.1-12 63 MHz
11.2-1 \((S/N)_R = 19.2, P_e = 6 \times 10^{-6} \) (polar)
11.2-4 (a) \[P_e = \frac{1}{2} Q \left(\frac{A - 2\alpha}{2\sigma} \right) + \frac{1}{2} Q \left(\frac{A + 2\alpha}{2\sigma} \right), \]
\[P_e = 3.7 \times 10^{-4} \text{ and } 3.4 \times 10^{-5} \text{ if } \varepsilon = 0 \]
11.2-8 \[P_e = 1.5 \times 10^{-22} \text{ (regenerative), } P_e = 1.2 \times 10^{-2} \text{ (nonregenerative) } \]
11.2-14 \(M_{\text{min}} = 16, S_R = 670 \text{ pW} \)
11.2-19 \(V_T = 2.5, P_{be} = 2.5 \times 10^{-4}, E_b = 1.25 \times 10^{-4} \)
11.3-3 (a) 3 kbps, (b) 4 kbps, (c) 4.8 kbps
11.3-20 \[c_{-1} = -0.3834, c_0 = 1.127, c_1 = -0.2058, \varepsilon_R^{MSE} = 0.0312, \varepsilon_S^{2, \text{forced}} = 0.0481 \]
11.4-1 scrambled output: 010011101101100, dc value: 0.53 (scrambled), 0.80 (unscrambled)
12.1-1 \(\nu = 3, f_s = 33.3 \text{ kHz}, n = 3 \)
12.1-5 \(M = 3, \nu = 5, f_s = 6.4 \text{ kHz} \)
12.1-10 \(q = 4096, 0.488 \text{ mV, } (S/N)_D = 74 \text{ dB} \)
12.1-14 24 M bits
12.1-20 \(\varepsilon_{\text{with companding}} = 0.42, \varepsilon_{\text{w/o companding}} = 0.65 \)
12.2-1 \(M = 8, \nu = 2, q = 64, S_R = 56.7 \text{ mW} \)
12.2-4 \(\gamma = 22.8 \text{ dB (PCM), } \gamma = 50 \text{ dB (analog), advantage: 27.2 dB} \)
12.2-11 \(B_T = 16.35 \text{ kHz}, \nu = 5 \)
12.3-2 0.372
12.3-7 \(W_{\text{RMS}} = 1.3 \text{ kHz}, K = \frac{f_s S_x}{2 \arctan (W/f_0)} \)
ANSWERS TO SELECTED PROBLEMS

12.3-10 \(n = 1; c_1 = \rho_1, G_p = 10.1 \text{ dB}, n = 2; c_1 = 0.9744, c_2 = -0.0256, G_p = 10.1 \text{ dB} \)

12.4-1 5.9 Gbits

12.5-1 \(N = 4, \text{ efficiency} = 7.8\% \)

12.5-4 49.5 secs/page

13.1-1 \(P(\text{no errors}) = 0.6561, P(\text{detected error}) = 0.2916, P(\text{undetected error}) = 0.0523 \)

13.1-8 (31, 26): \(\gamma_b = 8.9 \text{ dB}, (31, 21): \gamma_b = 8.2 \text{ dB}, (31, 16): \gamma_b = 8.3 \text{ dB}, \text{ uncoded: } \gamma_b = 10.5 \text{ dB} \)

13.1-11 0.76 or 24% less power

13.1-15 \(P_{be} = 10^{-6}, N \geq 10, r_b \leq 269 \text{ kbps} \)

13.2-15 \(Q_M(p) = p^2 + p + 1, C(p) = 0 + 0 + p + 1, X = (10100111) \)

13.2-21 (a) \(\alpha = 6 \times 10^{-4}, P_{be} = 2.2 \times 10^{-6} \)

13.2-27 \(X = (100010110101001111) \)

13.3-6 \(X = (10110001000000011000000) \)

13.3-13 (a) minimum weight path: \(abc = D^{31}, d_r = 3, M(d_i) = 1 \)

(b) \(T(D, I) = \frac{D^{31}}{1 - D} \)

(c) Eq. (9): \(P_{be} = 8\alpha^{3/2}, \text{ Eq. (10): } P_{be} = 8\alpha^{3/2} \)

13.3-16 \(Y + \hat{E} = 00110101111010111 \)

\(\hat{M} = 01100100 \)

14.1-1 \(r_b = 385 \text{ bps} \)

14.1-15 \(r_b = Q(\sqrt{1.216\gamma_b}) \)

14.2-6 \(\theta_c < \arccos (3.74/4.27) = 29^\circ \)

14.2-14 (a) \(A_c = 0.00133, (b) A_c = 0.0023 \)

14.3-1 \(\gamma_b > 10.9 \text{ dB}, P_{el} < 3 \times 10^{-4} \)

14.3-4 (a) \(P_e = 3.4 \times 10^{-5}, (b) P_e = 1.76 \times 10^{-4} \)

14.3-9 (a) 11.8 kbps (b) 23.5 kbps (c) 28.4 kbps

14.4-1 (a) \(\gamma_b \geq 10.5 \text{ dB}, (b) \gamma_b \geq 12.8 \text{ dB} \)

14.4-3 (a) 16-QAM with \(\gamma_b \geq 14.4 \text{ dB}, (b) 16-PSK with \gamma_b \geq 18.4 \text{ dB} \)

14.4-6 5.2

14.4-11 (a) \(P_e = 2.32 \times 10^{-5}, (b) P_e = 1.8 \times 10^{-10}, (c) P_e = 0.4, (d) P_e = 0.017 \)

14.5-2 \(K \geq 32, \text{ } T_{syn} \geq 10 \mu s \)

14.6-1 \(P_e = 4 \times 10^{-11}, \text{ output symbol rate does not change} \)

14.6-4 \(x_2x_1 = \{00, 01, 10, 01, 11, 00\} \rightarrow \)

\(y_2y_1 = \{000, 100, 011, 010, 111, 111\} \)

15.1-1 (a) \(W_c = 203 \text{ kcps}, (b) B_T = 0.41 \text{ MHz} \)
15.1-5 \(W_c > 487 \text{ kcps} \)
15.1-10 \(P_g = 37 \text{ dB}, B_T = 17 \text{ MHz} \)
15.2-1 \(P_g = 2^7 = 256, B_T = 768 \text{ kHz} \)
15.2-4 \(P_e = 4.95 \times 10^{-2} \)
15.3-5 \(\{0000 0000 1001 0100 1001 1110 1010 110\}, |R_{st}(\tau)|_{\text{max}} = 0.29 \)
15.4-3 \(T_{\text{acq}} = 0.51 \text{ secs}, \sigma_{\text{acq}} = 0.38 \text{ secs} \)
16.1-1 \(I(\text{not } F) = \log 5/4 = 0.322 \text{ bits} \)
16.1-4 \(H(X) = 1.94 \text{ bits} \)
16.1-9 \(H(X) = \frac{1}{3} \log 3 + p \log \frac{1}{p} + \left(\frac{2}{3} - p \right) \log \frac{1}{2} - \frac{1}{3} - p \)
16.1-16 \(H(X) = 0.811 \text{ bits} \)
16.2-8 \(C_s = 0.577 \text{ bits/symbol} \)
16.3-1 \(H(X) = \log \sqrt{12S} \)
16.3-5 \(p(x) = \frac{1}{m} e^{-x/m}u(x) \quad H(X) = \log em \)
16.3-10 \(S \geq 10^{-3}(2^{8/1000} - 1) \)
16.3-14 \(S_T = \gamma LN_0 W \)
16.4-5 \(s_1 = \sqrt{2} \phi_1 \quad s_2 = \sqrt{2/3} \phi_2 \quad s_3 = \sqrt{2/3} \phi_1 + \sqrt{8/45} \phi_3 \)
16.5-1 (a) \(z_1 = (y, s_1) \quad z_2 = (y, s_2) \)
16.5-5 \(P_e = \frac{20}{9} Q \left(\sqrt{\frac{9E}{24N_0}} \right) - \frac{16}{9} Q^2 \left(\sqrt{\frac{9E}{24N_0}} \right) \)
A-1 \(\nu_n^2(f) = 4R_1 k\mathcal{F}_1 + 4R_2 k\mathcal{F}_2 \)
A-5 \(i_n^2(f) = 4(r/2)k\mathcal{F}, \quad r = k\mathcal{F}/qI \)
A-10 \(F = 26 \)
A-14 \(\mathcal{F} \leq 103 \text{ K} \)
INDEX

912

baseband communication
bandlimited digital PAM systems and, 506–523
binary error and, 491–496
correlative coding and, 517–523
digital transmission and, 481–533
equalization and, 513–517
M-ary error and, 502–506
matched filtering and, 428–432, 498–500
Nyquist pulse shaping and, 506–508
pulse width and noise, 427–432
regenerative repeaters and, 496–498
signal with noise, 422–427
synchronization techniques and, 526–529
terminal filters and, 506–513
 baud rate, 482
Bayer's theorem, 352
BCH (Bose, Chaudhuri, and Hocquenghem) codes, 613, 616–617
BCJR (Bahl, Cocke, Jelinek, and Raviv) algorithm, 637
Bell, Alexander Graham, 22, 116
BER (bit error rate) code, 505
Bessel functions, 215
Bessel-Thomson filter, 131
binary codeword, 11
binary error probabilities, 492–496
binary systems
ASK, 648, 650–653
bandpass noise and, 673–677
BPSK and, 653–655
coherent, 663–670
FSK and, 655–658
GMSK (gaussian minimum shift keying), 662–663
MSK (minimum shift keying), 658–663
noncoherent, 673–682
OOK and, 650–653
optimum detection and, 663–668
PSK and, 653–655
synchronization and, 670–671
binomial distribution, 371–372
bipolar choppers, 183, 262
bipolar signals, 482, 490
bit robbing, 570
bit synchronization, 524–526
Black, H. S., 22
black boxes, 25
blanking pulses, 320
block codes
cyclic, 611–616
M-ary, 616
matrix representation of, 604–608
syndrome decoding and, 608–611
block diagram analysis, 102–104
Bode diagram, 130
Boltzmann constant, 413
(bit also LPFs (lowpass filters))
BPSK (binary phase shift keying), 653–655
differentially coherent, 679–680
DSSS and, 723, 726–728
OOK and, 668
UWB, 757
BSC (binary symmetric channel), 784–790, 800
coding for, 788–791
systems comparison and, 799–803
burst type errors, 333, 595, 616
Butterworth LPF, 129–131
cable TV, 20, 23
Campbell, G. A., 22
Campbell, R., 292
carrier delay, 109, 170
carrier wave, 6
Carson, J. R., 22, 212
carson's rule, 225–226
cascade connection, 102–103
catastrophic error propagation, 627
causal energy, 48
causal signals, 47–50, 76, 95, 100
CCIR (International Radio Consultative Committee), 320
CCIT (International Telegraph and Telephone Consultative Committee), 576–579
CDF (cumulative distribution function), 355–358
CDMA (code-division multiple access), 4, 11, 17–18, 728–729
FHSS and, 733–734
PCS and, 749–751
pseudonoise and, 733–734
CDMA 2000, 730–751
CDs (compact disc), 571–575
cellular phones, 9, 11, 23, 746–751
central limit theorem, 371, 379–380
channel bank, 576–578
channel capacity, 6, 768, 782, 786, 791, 794, 797, 801
channel coding, 6. See coding
channel diversity. See diversity, multiple access
characteristic functions, 370–371
Chebyshev's inequality, 366–368
check bits, 11, 592–600, 604–616
chips, 723, 738, 742–744
chopper sampling, 258–263
CIRC (Cross Interleave Reed-Solomon Error Control Code), 572–573
circuit switching, 17–18, 583
cladding layer, 120
clipper, 230–231
cNR (carrier-to-noise ratio), 454. See also S/N (signal-to-noise ratio)
cochannel signal, 245
coding, 3, 8, 11–12, 483, 545–547, 592–596
ARQ systems and, 592, 600–604
BCH, 619, 616–617
BSCs and, 784–789, 800
CDs and, 571–575
continuous channels and, 791–803
convolutional, 617–635
correlative, 506, 517–523
CRCs, 616
cyclic, 611–616
data compression, 335, 781
decoding, 608–611, 629–635 (see also decoding
delay, 796
DSSS and, 733–729
terminal filters and, 506–513
termination, 775
FEC systems and, 597–600
FHSS and, 733–738
free distance and, 623–628, 705–708
gain, 633–628, 656, 708
Gold codes and, 741–742
Hamming and, 592–596, 606–607, 610
HDTV and, 333
high density bipolar, 491
interleaving and, 575, 595, 700
Kraft inequality and, 775
linear block, 604–617
M-ary, 573, 616 (see also M-ary signals and coding)
matrix representation and, 604–608
memory channels and, 778–782
memoryless channels and, 774–778
noise and, 554–559
optimum digital detection and, 803–818
parity check and, 592–594
PCM and, 544–547
precoding, 490–491, 518–523
predictive, 778–782
Reed-Solomon, 616
RSC, 635–637
scrambling and, 526–531
Shannon-Fano, 578
speech synthesis and, 560–570
synchronization and, 522–533
syndrome decoding and, 608–611
systems comparison and, 791
trees, 619–621, 776
trellis-coded modulation (TCM) and, 333,
704–712
turbo, 635–637
vectors and, 595–596
coherent binary systems
BPSK and, 668–670
FSK and, 668–670
OOK and, 668–670
 optimum detection and, 663–668
synchronization and, 670–671
coherent detection, 195–198
color, 327–332
comb filter, 151–152
com雾al system, 376
communication systems, analog, 287–335
 angle CW modulation and, 208–249
bandpass digital transmission, 647–713
baseband digital transmission and, 479–533
coding and, 11–12, 591–637
(see also coding)
computer networks and, 12, 17–19, 24, 751–754
coherence and, 141–147
delta modulation and, 559–567
detection theory and, 808–822
digital audio recording and, 571–575
digital signal processing and, 567
(see also signal processing)
digital, 648–663
DTX system response and, 92–105
distance and, 796–799
information theory and, 796–799
limitations of, 5–6
linear CW modulation, 161–200
LT1 system response and, 92–105
modulation and, see modulation
multiplexing and, 10–19, 297–311, 403, 702, 728–729, 733–737, 760
noise and, 412–432 (see also noise)
PA M and, 272–275
PDM and, 544–559
PLL and, 311–319
point-to-point, 12, 122–126, 464
PM and, 275–278
pulse-time modulation, 275–280
radio wave propagation, 12–17, 122–126
random signals and, 393, 403–412
random variables and, 355–365
sampling theory and, 258–272
signal spectra and, 29–84
signal transmission and, 105–126
societal impact of, 20–21
spectral density and, 147–152
spread spectrum systems and, 722–738
wireless phones, 746–751
wireless networks, 751–754
 ultra-wideband (UWB), 754–760
commutators, 303
compact discs, 571–575
companding, 113–114, 550–554
complex-conjugate pairs, 31, 36
complex modulation, 58–60
compressors, 115, 552–554
computer networks, 12, 17–19, 24, 751–754
conditional entropy, 779
conditional probability, 351–353
constant amplitude, 76, 211, 216, 219, 231–232
constant envelope, 208, 654, 669
constant time delay, 208
constraint length, 608–612, 635
continuity. See Fourier series
cutoff frequencies, 126
CVSDM (continuously variable slope delta modulation), 567
CW (continuous-wave) modulation, 7–8, 10, 24, 162–200, 208–249
AM methods and, 162–200
angle, 208–243, 454–464
balanced modulators and, 180–183
bandpass frequency response and, 163–172
digital, 648–663
distortion and, 226–232
double sideband AM and, 172–173
DSSS interference and, 725–729
evelope detection and, 198–200
FHSS interference and, 735–737
FM signals and, (see angle modulation)
frequency conversion and, 193–195
interference and, 243–249
linear, 173–193, 448–454
modulators, 179–185, 188–191, 232–239
multiplexing and, 297–303
noise and, 448–464
nonlinear distortion and, 229–232
PA M and, 274
PM signals and, (see angle modulation)
product modulators and, 180
receivers for, 288–297
square-law modulators and, 180–182
suppressed sideband AM and, 186–191
switching modulators and, 184–185
synchronous detection and, 195–198, 449–451
systems comparison and, 464–467, 557–559
threshold effect and, 451–453, 460–464
transmission bandwidth and, 172–173, 174–176, 185, 192, 223–226
cyclic codes, 611–616
CRCs (cyclic redundancy codes), 616
Galois fields and, 612
shift-register encoding and, 613–615
(cyclic) prefix, suffix, postfix, 702
(cyclical) frequency, 29–30
DAC (digital-to-analog converter), 544–548
Daltch, P. B., 20
data compression, 781
data multiplexers, 582–584
db (decibels), 116–119
DC block, 233
DC component, 482–485, 490, 530
DC impulse, 74–75
dCT (Discrete Cosine Transform), 335
DDS (direct digital synthesis), 547–548
decision directed equalization, 517
decision feedback equalizer, 517
decision function, 812–813
decision regions, 810
decision rule, 493, 503
decision threshold, 503, 506
decoding, 4, 11, 608–810, 629. See also coding
MAP, 637
maximum-likelihood, 609, 629–634
sequential, 629–632
syndrome, 608–614, 633–634
decoding— Cont.

table lookup, 609–610

Viterbi algorithm, 629–630
decompressors, 305

demodulation, 304–323
deemphasis filtering, 243, 245–248, 454–462
De Forest, Lee, 22
delay distortion, 106–109, 130–131, 138, 140
delay spread, 112–113, 121, 697, 701–702
delta modulation, 559–569
delta sigma modulation, 565–566
demodulation. See detectors and modulation density. See also PDF (probability density function)
coding and, 491
noise and, 597–598
quadrature components and, 444
spectral, 51, 141–151, 404–405, 408, 413–429, 442–458, 467
detection theory, 808
error probabilities and, 815–818
MAP receivers and, 809–815
orthogonal signaling and, 818–822
signal selection and, 818–822
detectors
balanced discriminator, 239
correlation, 501–506, 694–696
discriminator, 243–245
envelope, 198–200
FM, 239–243
Foster-Seeley discriminator, 242
matched filter, 666
phase comparison, 679
phase shift discriminator, 240
PLL (phase locked loop), 317–319
quadrature, 241
ratio, 242
slope, 239
synchronous, 195–198
declination ratio, 225
directional, 239–243
digital, 3
eda, 575
energy.
encoding.
empty set, 349
envelope detection, 193, 198–200
AM and, 198
bandpass signals and, 165–166, 448–449
circuit, 199
delay and, 109
diagonally coherent PSK, 679–680
decoding, 608–611, 629–635
digital AM, 171–179
differential detection, 508–509
differential PCM, 567–568
differential signaling, 69
digital CW modulation, 649–663
digital PAM modulation, 649–663
digital PAM signals, 481–483, 487–490
digital signals, 481–484, 487–490, 649–663
dirac delta function, 69
direct FM, 220–222
directly detected synchronous signal, 504
discrete channel capacity, 786–787
discrete convolution, 83–84, 513, 702
distortionless transmission, 105–106
dM (delta modulation), 560–565
Doppler, 126
envelope detection, 198–200
equalization, 110, 113, 513–517
equation, 81
error threshold, 492–505, 557, 664–666, 675–676, 686, 689, 691
Euclidian distance, 597, 703
false alarm probability, 506
FEC systems, 597–600
FHSS, 733–735
FM capture effect, 248
forced response, 93–97
Fourier series, 29–33
Fourier transforms, 43–50
frame synchronization, 531–533
free distance, 623, 705–709
free-space loss, 123
frequency conversion, 194–195
frequency detection, 239–240
frequency modulation (FM), 209–223
frequency response, 98
Gaussian PDF, 374–375
Gold code sequence, 741
Gram-Schmidt procedure, 806–807
Hamming codes, 606, 613
Hayden-Shannon law, 6, 795
Hilbert transform, 138–141
horseshoe function, 772
ideal communication, 796–797
ideal sampling, 262–263
IDFT (inverse discrete Fourier transform), 81–84, 697–700
image frequency, 289
image rejection, 295
impulse response, 83, 93–96
impulses in frequency, 71–72
impulses in time, 76–77
indirect FM, 234–237
information measure, 770–771
information rate, 771–773
input–output, 99, 625
integrated model, 61
interference, 243–245, 672–673
Kerr factor, 323
Kraft inequality, 775
linear CW with noise, 448–454
linear distortion, 107–110, 227–229
lowpass equivalent transfer function, 168, 187
lowpass filter, 127, 130, 132–133
lumped parameter, 93, 99
M-ary codes, 616–617
M-ary FSK, 655–656, 660–662
M-ary PSK systems, 653, 685–689
M-ary QAM systems, 683, 689–690
matched filtering, 498–500, 666
memoryless channels, 786–788
modulation theorem, 59
multipath distortion, 113
mutual information, 783
narrowband FM, 212–213, 220
noise figure, 295, 838
noncoherent binary systems, 673–682
corrected signal, 597–600
nonlinear distortion, 114–115, 229–232
Nyquist pulse shaping, 507–508
OFDM (orthogonal frequency division multiplexing), 696–702
optimization, 809–815
orthogonal signaling, 818–819
orthonormal basis functions, 819
PAM, 272–273, 481–483
parity check codes, 594
Parseval’s theorem, 42
PCM, 544–564, 556–569
PDM, 275–278
periodic signals, 33–34
phase-locked loop, 311–319
phasors, 29–32, 97
Poisson distribution, 373
power correlation, 141–144
power gain, 116–117
PPM, 275–280
practical sampling, 266–268
preceding, 490–491
probability, 347–354, 359, 369–370
quadrature carrier systems, 302–303, 682–685, 689–691, 694–697
quantization, 545–554
random processes, 393–403, 409–412
ranging, 742
Rayleigh PDF, 376–377
Rayleigh’s theorem, 50–51
real filters, 129–133
regenerative repeaters, 497
relevant data vector, 810
Rician distribution, 674
equations—cont.
risetime, 135
scale change, 56, 71
Schwarz's inequality, 142
scrambling, 527–531
signal energy, 43
signal-to-noise ratios, 294, 423, 425–426, 443, 468–469
signal vectors, 806–807, 810–811, 816
sine integral function, 135
source coding theorem, 775
spectral density functions, 147–148
square law modulator, 180–182
stationary process, 398–401
statistical averages, 365–369
step and signum functions, 74–76
step response, 94–96, 134–136
Stirling's approximation, 790
superposition, 55–57
stretch, 132, 291, 303
switched capacitor, 132
signal-to-noise ratio for a RC LPF, 431–432
synchronization, 670–671, 196–198
symmetric signals, 47–48
suppressed sideband AM, 186–191
superior noise information, 417
superunary codes, 55–60
synchronizer, 127
synthesis, 198
system steady state, 91–92
time response, 95
transfer function, 97
transmission limitations, 484, 486
trellis-coded modulation, 704, 708, 711
triangle inequality, 804
triangular function, 62
triangular wave FM, 237
video signals, 319–324
Wiener-Kinchine theorem, 149, 404
equiripple filters, 131
equivocation, 784
ergodic processes, 397–399, 401, 404, 422–424
error(s), 6, 11, 24, 492–506. See also coding
ARQ systems and, 600–604
average probability and, 494 (see also probability
binary, 491–496
BSCs and, 789–790
burst type, 333, 595, 614–616, 701
 catastrophe propagation, 627
coding and, 517–523
DSSS and, 727–729
equalization and, 515–517
FEC systems and, 597–600
FHSS, 735–737
Hamming distance and, 595–596
interleaving and, 595
M-ary probabilities, 502–506
matched filtering and, 498–500
mean squared, 515
minimum mean squared, 515–516
Nyquist pulse shaping and, 506–509
optimum digital detection and, 815–818
optimum terminal filters and, 509–512
parity check and, 592–594
predictive coding and, 570, 780
propagation, 521–528
quantization and, 549
random, 593–595, 597
repeaters and, 497–498
scrambling and, 528
synchronization and, 532
TCM and, 705, 711
threshold, 554–559
Euclidean distance, 597, 703–705, 708–710
Euler's theorem, 29, 57
even symmetry, 31, 47
expanders, 115–116, 552–553
exponential Fourier series, 35–39
exponential series, 35–39
expansion factor, bandwidth, 724
eyes and, 486–487
fading, 299, 309, 311, 737–738
fast hop SS, 733, 737, 899
fast Fourier transform, 81–82
codes and, 526–528
forward error correction, 592, 597–600
fractional Fourier transforms, 711–712
gabor filters, 132
gain, 74–76
Gaussian noise, 428–430
Gaussian quadrature, 138–141
garbage, 73
Gauss–Markov model, 137
generating, 181–182
geometric mean, 48
geometrical coding, 197
geometrical mean, 48
good codes, 449–450
harmonic density, 92
harmonic distortion, 132
HDI, 196
Hadamard transform, 357–358
half-cycles, 129
Hall's inequality, 57
hallucinations, 268
handshaking layers, 724
hazardous, 495
hazardous area, 495
hazardous area, 495
hazardous conditions, 495
hazardous conditions, 495
hazardous conditions, 495
INDEX
917

rectangular pulse train, 37–39
sampling and, 259–260
television and, 320–321
Wiener–Khinchine theorem and, 404–405
Fourier transforms, 43–54
angle modulation and 213–223
block diagram analysis and, 102–104
causal signals and, 47–50
complex modulation and, 58–60
continuous spectra and, 43–45
correlation and, 141–147
differentiation and integration, 60–62
digital CW modulation and, 19
imaging and, 302–308
interpolation and, 5–6
integration and, 47–48
linear CW modulation and, 162–196
multi-tone modulation and, 220–223
parity and, 56–58
PAM and, 273–275
rectangular pulse train, 37–39
rectangular pulse train, 37–39
transfer function and, 97–102
transmission, 7–8, 162, 172, 189, 193, 650
frequency modulation (FM), 7–8, 10, 22, 208–204
AM conversion and, 228, 239–240, 654
bandwidth estimation, 223–226
capture effect and, 243, 247–249
cellular telephones and, 746–749
commercial bandwidth, 226
detectors and, 239–243
direct, 233–234
discriminators and, 239–243
interference and, 244
linear distortion and, 226–229
linear distortion and, 226–229
multiplexing and, 300–302, 305
multitone, 220–223
narrowband, 212–213
nonlinear distortion and, 229–232
PLL models and, 317–319
S/N comparisons to PCM, 557–559
S/N (signal-to-noise) ratio and, 454–458, 461–463
systems comparisons and, 464–467, 557–559
threshold effect and, 460–464
tone modulation and, 213–220
triangle wave, 237–239
FSK (frequency shift keying), 655–663, 690–691
binary systems and, 656–657, 669
coherent, 669–670
continuous phase, 655–657
fast FSK, 658–663
FMSS and, 733–737
GMSK (gaussian MSK), 662–663, 669, 696, 747
M-ary coding and, 657, 690–693
MSK (minimum shift keying), 658–663
noncoherent, 677–679, 773
orthogonal, 657, 677
Sunde’s 656–657, 677–679
fundamental limitations, 5–6
Galois fields, 612
Gaussian
central limit theorem, 379–380
distribution, 374–376, 378–379
MSK (GM SK), 662–663
noise, 424 (see also AWGN (additive white gaussian noise))
PDF, 374–376
process, 402, 446–448
generalized functions, 68–71
generating function, 624
generator matrix, 605, 610, 632
generator polynomial, 612–616
Gibbs phenomenon, 39–41
go-back-N scheme, 601
GMSK (Gaussian Filtered MSK), 662–663, 673, 733
Gold codes, 740–742
GPRS (general packet radio system), 750
GPS (global positioning system), 9, 742, 746
Gram–Schmidt procedure, 806–808
Gray code, 483–484, 504, 653, 693–694
group delay, 109–110
GSM (Group Special Mobile), 299, 309–311, 747, 749–750
guard band, 298–299, 307, 324, 671
guard times, 307–308, 671, 702
Hall effect devices, 180
Hamming codes, 606–608, 610–611
Hamming distance, 596–604, 609, 626, 629–630
Hamming sphere, 789–790
hard decision, 712, 800
hardwire, 5, 10–11, 19, 223, 229, 296, 300–301, 309, 600, 602, 606, 608, 611, 617, 622, 629, 632, 733, 750
harmonics, 35, 39, 115, 221, 230
Hartley, R. V. L., 22, 768
Hartley–Shannon law, 6, 10, 24, 791, 796–797
information theory and, 768–769, 791, 796–797
trellis-coded modulation and, 703
Heaviside, Oliver, 22
heterodyne detection, 196
hersmitian symmetry, 45
Hertz, Heinrich, 22
heterodyne receiver, 293
HDLS (high bit rate digital subscriber line), 579
HDTV (high definition television), 319–320, 332–335
HDX (half-duplex) transmission, 5
Hilbert transforms, 138–141, 187–188
color signals and, 330
correlation functions and, 446–447
random signals and, 412
heterodyne receivers, 196, 292
horseshoe function, 772
HPF (highpass filter), 101, 127
ideal communication systems, 796–799
ideal hard limiter, 230–231
ideal lowpass filter, 126–127
ideal sampling, 263–265
IDFT (inverse discrete Fourier transform), 81, 697–701
IFFT (inverse fast Fourier transform), 81
idle time, 601
IF strip, 289–291
image frequency, 289
image rejection, 295
impulse radio, 754, see also UWB
impulses, 69–73, 76–77. See also pulses
impulse response, 754, see also UWB
impulses, 69–73, 76–77. See also pulses
improper integrals, 71–73
in frequency, 71–73
noise and, 421
properties of, 58–61
sampling and, 262–264
step and signum function, 74–78
superposition integral and, 93–96
in time, 76–78
IMT-2000 (International Mobile Telecommunications-2000), 750
maximum likelihood decoder, 609, 626
maximum information transfer, 786–787
matrices,
modified duobinary signaling, 521–523
modems, 712–713
MMSE (minimum mean squared-error), 515
ML (maximal-length) sequences, 529
mixing, 194
M, (maximal-length) sequences, 529
M M S E (minimum mean squared-error), 515
modeling, 3. See also specific types
analog pulse, 272–280
angle, 208–243
applications, 8–11
balanced and, 180–183
benefits, 8–11
complex, 58–60
cross talk and, 115, 120, 298–300, 307–309, 696, 729, 749
delta, 559–569
delta sigma, 565–566
demodulation, 4, 7, 193–200, 239–243, 314–319, 326, 331, 335
double-sideband AM, 173–179
exponential (see angle)
frequency, 200–222
index, 174
linear CW, 173–193
methods of, 6–8
multicarrier (MC), 299, 690–693, 696
periodic, 220–223
phase, 208–223
product modulators and, 180
pulse code, (PCM), 554–559
square-law modulators and, 180–182
suppressed sideband (SSB), 185–191
switching and, 184–185
systems comparison and, 461–466, 557–559, 692–696
theorem, 59
VSB (vestigial), 191–193
modulo arithmetic, 527, 604
moments, 369–371
monochrome signals, 319–324
monotonic functions, 362–363
Morse, Samuel, 2, 22, 777
MPEG (Motion Picture Expert Group), 335
MSK (minimum shift keying), 658–663
MTSO (mobile telephone switching office), 747
multicarrier modulation (MC), 299, 696
M–ary FSK, 690–693
OFDM, 696–703
mutlipath, 112–113, 134, 721, 728–731, 737–738, 759–760
mutlipath distortion, 113
multiple access (MA),
Aloha, 403
CDMA (code division), 18, 297, 728–729, 735–737, 751
CSMA (carrier sense), 752
FDMA (frequency division), 18, 297, 309–311
networks, 751–752
OFDM A (orthogonal frequency division), 702, 751
phone systems, 746–751
TDMA, 18, 297, 309–311
UWB, 759–760
MUX (multiplexing), 10, 19, 24. See also
diversity and multiple access
code division (see CDMA)
color signals and, 328–329
correlations, 309
cross talk and, 307–308
data and, 582–584
digital, 575–584
DSL and, 579–580
frequency division, 297–302
GSM, 309–311
guard times and, 307–308
hierarchies and, 575–579
OFDM (orthogonal frequency division), 696–703
quadrature carrier, 302–303
SONET and, 580–582
spatial, 297
time division, 303–308
multitone modulation, 220–223
multivariate expectations, 334–336
mutual information, 782–785, 794–796
N A K (negative acknowledgement), 600–601
NAMPS (narrowband AMPS), 747–748
narrowband tone modulation, 214
NBFM (narrowband frequency modulation), 212–215, 219–220, 235
NBPM (narrowband phase modulation), 212–215
near-far problem, 751
net area, 45
N I S T, 9
noise, 4–6, 412–422. See also AWGN (additive white gaussian noise)
1/f, 1/f², 832–833
additive, 422–423
amplifier, 835–845
analog modulation and, 448–464
angle CW modulation and, 454–464
available power gain, 835
bandpass, 440–448
baseband signal and, 422–432
binary error and, 492–496
burst, 832
cable repeaters, 844–845
calculations, 840–844
CDs and, 472
circuit and devices, 828–835
colored, 417
CW systems comparison and, 464–466
decoding of, 554–556
D S S S and, 725–729
effective noise temperature, 836
entropy, 784
equalization and minimum mean squared
error, 514–517
equivalent bandwidth and, 378–380
error, 789–790
F H S S, 735–737
figure, 295, 837–839
filtered, 416–419, 429–432, 498–501 (see also filters)
flicker, 832
floor, 729
Friis formula, 841–842
gaussian, 413, 417, 424
granular, 562
independent additive, 794
irrelevant, 809
jitter, 467

noise—Cont.
linear CW modulation and, 448–454
margin, 486–487
M-ary error and, 502–506
measurement, 839–840
modulation and, 10–11
Nyquist pulse shaping and, 506–509
PCM and, 554–560
phase-locked loop performance and, 467–468
PN (pseudonoise), 524, 529, 722–746, 761
popcorn, 832
postdetection, 454–457
predeection, 442–443
pulse measurement and, 427–431
quantization and, 545, 548–550
quieting, 457
repeaters and, 426–427, 844–845
repeating, 424–425, 431–434
sinusoid envelope and, 673–674
signal ratio and, 422–424, 431–434
scrambling and, 529–530
repeaters and, 426–427, 844–845
quieting, 457
quantization and, 546, 548–550
pulse measurement and, 427–431
predetection, 442–443
postdetection, 454–457
parabolic function, 456
parallel connection, 102–103
Parseval’s theorem, 42–43, 50
parabolic function, 456
parallel connection, 102–103
parity check, 593–594, 608, 632–634, 636
Pierce’s theorem, 42–43, 50
passband, 108–109
parallel, 102–103
parity check, 593–594, 608, 632–634, 636
Pierce’s theorem, 42–43, 50
passband, 100, 126–132
pattern recognition, 146
PCC (parallel concatenated codes), 635–637
PCM (pulse-code modulation), 544–559
analog modulation, comparison with, 557–559
CDs and, 571–575
channel bank and, 576–579
error threshold and, 554, 556–557
generation and reconstruction, 545–548
quantization, 548–554
systems comparison and, 799–803
with noise, 554–559
PCS (personal communications systems), 747
PDF (probability density function), 470
binary error and, 493–495
binomial, 371–373
continuous channels and, 791–795
gaussian, 374–376
MAP receivers and, 811
marginal, 364
M-ary error and, 502–504
Poisson, 373
Rayleigh, 376–379
Rician, 674
uniform, 360–361
PDM (pulse-duration modulation), 275–278, 470
periodic modulation, 220–223
periodic signals, 33–34
periodic triangular function, 237
periodic waveforms, 221
periodograms, 405
Pg (process gain), 727–729, 734, 737
phase, angle, 29
bandpass noise and, 445–446
BPSK and, 653
color signals and, 330–331
correlation of, 144
distortion and, 244
coherence and, 455
tone modulation and, 178–180
Pierce, J. R., 23
pilot carrier, 196
Pinto, João, 332n
Poisson, 373
Planck constant, 413
PLL (phase-locked loop), 311–319
bit synchronization and, 526
color signals and, 330–331
Costas loop, 315
FM detection, 317–319
color signals and, 330–331
linearized, 317–319
lock-in and, 311–315
M-ary PSK systems and, 688
noise and, 467–468
synchronous detection and, 314–315
tracker, 333
PM (phase modulation), 7
angle CW and, 184–223
deemphasis filter and, 245
digital CW modulation and, 653–655
indirect FM and, 234–236
interference and, 244
linear distortion and, 226–229
narrowband, 212–213
S/N (signal-to-noise) ratio and, 458
systems comparison and, 464–466
tone modulation and, 213–222
INDEX

921

PN (pseudonoise), 527–531, 724, 738–740

coding and, 738–742
DSSS and, 723–733
FHSS and, 733–737
ranging and, 742
synchronization and, 527–531, 743–746
time hop, 737
POH (path overhead), 582
point-to-point communication, 464
Poisson distribution, 373, 403
Polarization – circular, horizontal, vertical, 297
polar signal, 482–483, 496
postdetection noise, 454–451
POT (plain old telephone), 579

carrier, 176

correlation of, 141–145

time and, 793

FM and PM signals, 210, 236
gain, 116–117
jamming and DSSS, 726–728
jamming and FHSS, 735–737
loss (or attenuation), 118, 123
noise and, 413–415, 419–420
peak envelope, 177
per sideband, 176
postdetection noise and, 442
quadrature components and, 443
random signals and, 398, 403–408
spectral density and, 149
superposition and, 42, 408–409

PPM (pulse-position modulation), 275–280
orthogonal signaling and, 820
S/N (signal-to-noise) ratio and, 470
spectral analysis and, 278–280
systems comparisons and, 801–803
practical sampling, 266–269
preamble, 744
preceding, 490–491, 518, 522. See also coding
precursors, 130, 135
predictive d, 444–442
prediction error, 559–560, 567
prediction gain, 568
predictive coding, 569–571, 778–782
preemphasis filtering, 245–247, 459
preferred pairs, 740–741
prefix, 531–533, 702
principle of superposition, 93–94
P/R (phase-reversal keying), 653 See also BPSK.

probability. See also coding; information theory

APP, 637
binomial, 371–373
coding and, 788–789
discrete channels and, 782–790
DSSS and, 726–729
ever, 815–816
FHSS, 736–737
forward transition, 783
Gaussian, 374–376

joint, 364, 368, 371, 378
letter occurrence and, 777–778
marginal, 364
M-ary, 502–506
models for, 371–378
optimum digital detection and, 815–818
Poisson, 373
random variables and, 355–365
Rayleigh, 376–379
Rayleigh curve, 674
Rician distribution and, 674
sample space and, 347–354
statistical averages and, 365–371
three fundamental axioms of, 349
uniform, 360–361
word errors, 593, 601
product modulators, 180
projection, 805
propagation
diffraction, 12–15
ground wave, 14–15
line of sight, 8–9, 12–13, 122–125
reflection, 12–15
refraction, 12–17
scattering, 12
skywave, 9, 12–17
pseudo-trinary inversion, 482–483
PSK (phase-shift keying), 653–655
BPSK, 653
DSSS and, 723–726
M-ary systems and, 685–690
noncoherent, 673, 679–682
QPSK, 654
systems comparison and, 692–696
TCM and, 703–712
PTE (path terminating element), 580–581
pulses
analog modulation and, 468–471
detection and filters and, 429–432 (see also filters)
false, 471
measurement in noise and, 427
Nyquist shaping and, 506–509
raised cosine, 78–80
synchronization and, 486, 523–533
pulse-time modulation, 275–280
puncturing, 636
PWM (pulse-width modulation), 275–278
QAM (quadrature amplitude modulation),
302–303, 651–652
bandpass digital transmission and, 682–685
digital CW and, 651–655
M-ary systems and, 689–692
OFDM systems, 696–699
systems comparison and, 692–696
QPSK (quadrature phase-shift keying), 654,
682–684, 692–696
TCM and, 704–712
quadrature detector, 241
quadrature filters, 138–141
bandpass noise and, 443–444
quantization, 544–546
DPCM (differential PCM) and, 560, 567–569

noise and, 548–550
nonuniform, 550–554
quasi-static approximation, 228, 242
quaternary signal, 483
radar, 9, 22
radian frequency, 29
radios,
parameters of, 289
software defined, 19–20
specifications, 294–295
transmission loss and, 116–125
raised cosine pulse, 78–80
receiver, 721, 729–733
ramp generator, 295–296, 315
random signals,
binary error probabilities and, 492–496
coding and, 744–746

correlation functions and, 393–397
ensemble averages and, 393–397
ergodic processes and, 397–403
filtered, 409–412
modulation and, 408–409
power spectrum and, 403–407
stationary processes and, 398–403
superposition and, 408–409
ranging, 742
raster lines, 323
rate distortion theory, 803
rate or data reduction, 781
ratio detector, 242
Rayleigh curve, 674
Rayleigh PDF, 376–378
Rayleigh’s theorem, 50–52, 98
real symmetry, 48
receivers,
color, 331
direct conversion, 292–293
double conversion, 294
HDTV, 335
heterodyne, 293
homodyne, 292
impulse, 756, 758
monochrome, 326
scanning spectrum analyzers, 295–296
software defined, 19
special-purpose, 293–294
specifications of, 294–295
superheterodyne, 288–292
TRF (tuned RF), 292–293
ultra-wideband, 756, 758

regeneration, 484, 492–493, 496–498
INDEX

sensitivity, receiver, 294
selectivity, receiver, 295
resolution,
 frequency, 81, 696
 video, 519–521
RF (radio frequency), 233
RFC (radio frequency choke), 233
RFI (radio-frequency interference), 4, 754
Rician distribution, 674–675, 677, 679, 681
risetime, 135–138
rolloff, 508, 651, 657, 659, 662
RMS (root mean squared) bandwidth, 564
RLC (resistance-inductance-capacitance) load, 328
risetime, 135–138
ring modulators, 182
Rician distribution, 674–675, 677, 679, 681
RFI (radio-frequency interference), 4, 754
RFC (radio frequency choke), 233
RMS (root mean squared) bandwidth, 564
Rolloff, 508, 651, 657, 659, 662
Run, 529
r.v. (random variables)
 characteristic functions, 370–371
 conditional probability and, 363–365
 continuous, 358–359
 definition of, 355
 discrete, 355–358
 joint probability and, 363–365
 statistical averages and, 365–370
 theoretical, 370–371
RZ (return-to-zero) format, 482
sampling, 8, 12, 24
 chopper, 258–263
 DFT (discrete Fourier transform), 80
 function, 37, 70–71
 ideal, 263–266
 oscilloscopes, 269–271
 oversampling, 269
 practical, 266–269
 S/H (sample-and-hold) technique, 266–267, 272–276
 space, 347–351
 upsampling, 271
 satellite, 17, 22, 124–125, 299–300
 SAW bandpass filter, 291
 SCA (Subsidary Communication
 A authorization), 301
 scalar products, 142
 scale change, 55–58
 scanning spectrum analyzer, 295–296
 scattering, 12, 122–123 (see also propagation)
 Schwarz’s inequality, 142–143, 145, 430, 805
 scrambling, 526–531
 SDH (Synchronous Digital Hierarchy), 580
 SDL (symmetrical digital subscriber line), 579
 selectivity, receiver, 295
 self-information, 770
 sensitivity, receiver, 294
 sequential decoding, 629, 631–635
 Shannon, Claude, 22, 768. See also information
 theory
 fundamental theorem for noisy channel, 786
 SIR (signal-to-interference ratio), 671
 sliding correlator, 744
 slope detection, 239
 slope loading factor, 564
 slope overload, 562, 564
 slow hop, 55, 733–735
 smoothing, 64
 (see also noise)
 analog pulse, 80, 430, 468–471
 angle CW with noise, 454–464
 baseband, 423–427, 430, 496
 coding and, 599
 comparisons, 465, 558
 continuous channels and, 791–799
 destination, 416–417
 linear CW modulation, 448–454
 M-ary error and, 502–506
 RC LPF, 431–432
 Relation to \(\gamma = E_b / N_0 \), 682
 repeaters and, 426–427, 496–498, 837–838
 synchronization detection and, 449–450
 soft decision, 712, 800
 software radio, software defined radio, 19–20
 SONET (Synchronous Optical NETwork), 575, 580–582
 SPE (synchronous payload envelope), 582
 special-purpose receivers, (see receivers)
 spectra, 24
 AM signals and, 173–176
 AM with digital CW modulation, 650–653
 available density and, 416
 bandlimited digital PAM, 506–509
 bandwidth, 165
 binary FSK, 657
 continuous, 43–54
 convergence conditions and, 39
 convolution and, 62–68
 cosine rolloff, 408
 cross density and, 408
 density functions, 147–152
 digital CW modulation, 649–663
 digital PAM, 487–490
 discrete time, 60–84
 discrete time monostate, 82–85
 DSB signals and, 176–178
 DSI, 580
 DSSS, 723–725
 FHSS, 733–735
 FM stereo, 301
 FM with tone modulation, 215–222
 Fourier series and, 35–42
 Fourier transforms
 Gram-Schmidt procedure and, 806–808
 Laplace transform and, 92–104
 MAP receivers and, 809–815
 modulation (see modulation)
 multiplexing (see also multiplexing)
 nonlinear compression and, 115, 552
 Nyquist, 509
 orthogonal, 36, 139, 302, 502, 672, 697, 728, 754, 760, 805
 partial response, 517–523
 periodic, 33–34
 polar, 482–483
 pseudo-trinary, 482
 quaternary, 483
 random, 392–412 (see also random signals)
 rate, 482
 sampling and, 258–272 (see also sampling)
 scale change and, 56–58
 shape of, 4–5
 space and, 803–808
 split phase Manchester, 483
 strength and, 4
 synchronization and, 523–533
 television, 319–324
 time delay and, 55–56
 transmission and, 105–126
 unipolar, 482–484, 487, 489–490
 UPB, 754–755, 757, 759
 as vectors, 803–806
 sign inversions, 482
 signum functions, 74–76
 Simulink, 19–20
INDEX

FSK, 656–658
Gibbs phenomenon and, 41
GM SK, 662–663
impulses, 68–79
interference, 245
message, 163–164, 175, 189
MSK, 658
NBFM, 213
optimum terminal filters and, 509–511
Parceval’s theorem and, 42–43
periodic signals and, 33–34
phasers and, 29–33
PPM and, 278–280
precoding and, 490–491
PSK, 654–655
precoding and, 490–491
PPM and, 278–280
phasors and, 29–33
periodic signals and, 33–34
spectrum analyzer
scanning analyzer, 295–296
random signals and, 403–408
scanning analyzer, 295–296
SSB (single-sideband modulation)
Sunde’s FSK, 656–657, 659, 669
superhetrodyne receivers, 244
superposition, 55
average power, 42
reversal and, 291
multiplexing and, 305–306
interference and, 244
generation, 188–191
collection, 17–18, 746–751
MUXs, N-AMPS, 746–748
cellular concept, 17–18, 746–751
circuit versus switching, 17–18, 583–584
companding, 552–554
DSLs, 579–580
M odems, 712–713
VOIP, 17, 754
wireless standards, 747, 751
teleypewriter, 22
THUWB (time-hopping ultra-wideband), 760
thermal noise, 374, 413–416
Thevenin model, 415
threshold effect
envelope detection, 451–454
extension, 463–464
false-pulse, 471
FM (frequency modulation) and, 460–463
PCM and, 556
optimum digital detection and, 822
thresholds, 492–496, 503, 521, 532, 664,
667–669, 675–680, 686, 689–691
error, 556–559
THSS (time hopping spread spectrum), 737–738
time
average, 34
causal, 48–49
complex modulation and, 58–60
convolution and, 62–68
delay, 55–58, 108–109, 112, 121
DLL, 745
duality theorem and, 52–53
effective pulse duration, 157
first-order system response and, 45–53
Fourier transforms and, 43–54
frequency and, 54–62
hopping, 737–738, 760
impulses and, 76–78
limiting, 43, 128–129
sampling and, 80, 258–273
scale change, 55–57
superposition and, 93
symmetry and, 47–48
TOH (transport overhead), 582

orthogonal, 395
standard deviation, 366–367
uncorrelated, 378, 395–397, 402, 408,
416, 423
variance, 369–370
step functions, 74–77
Striling’s approximation, 790
stochastic processes, 392
stop-and-wait scheme, 601–603
stopband, 127
STTC (synchronous transport signal), 581–582
stuff bits, 577
Sunde’s FSK, 656–657, 659, 669
superheterodyne receivers, 288–292
superposition, 55
average power, 42
reversal and, 291
multiplexing and, 305–306
interference and, 244
generation, 188–191
collection, 17–18, 746–751
MUXs, N-AMPS, 746–748
cellular concept, 17–18, 746–751
circuit versus switching, 17–18, 583–584
companding, 552–554
DSLs, 579–580
M odems, 712–713
VOIP, 17, 754
wireless standards, 747, 751
teleypewriter, 22
THUWB (time-hopping ultra-wideband), 760
thermal noise, 374, 413–416
Thevenin model, 415
threshold effect
envelope detection, 451–454
extension, 463–464
false-pulse, 471
FM (frequency modulation) and, 460–463
PCM and, 556
optimum digital detection and, 822
thresholds, 492–496, 503, 521, 532, 664,
667–669, 675–680, 686, 689–691
error, 556–559
THSS (time hopping spread spectrum), 737–738
time
average, 34
causal, 48–49
complex modulation and, 58–60
convolution and, 62–68
delay, 55–58, 108–109, 112, 121
DLL, 745
duality theorem and, 52–53
effective pulse duration, 157
first-order system response and, 45–53
Fourier transforms and, 43–54
frequency and, 54–62
hopping, 737–738, 760
impulses and, 76–78
limiting, 43, 128–129
sampling and, 80, 258–273
scale change, 55–57
superposition and, 93
symmetry and, 47–48
TOH (transport overhead), 582
INDEX

tone modulation, 162–163
angle CW, 213–223
linear CW and, 178–179
total instantaneous angle, 208
tracking, 745–746. See also synchronization
trailing edge modulation, 275
transducers, 3
transfer functions, 93
convolutional coding, 624–625
correlative coding and, 518
discrete, 83
frequency response and, 96–97
transform functions. See also Fourier transforms
block diagram analysis and, 102–104
distortion and, 105–106
filters and, 126–128
Hilbert, 138–141
transforms in the limit, 141
impulse properties and, 68–71
in frequency, 71–73
in time, 76–78
step and signum functions, 74–76
transmission bandwidth, 141
angle CW, 223–226
linear CW, 172, 174, 185, 191–192
PCM (pulse-code modulation), 526
spread spectrum, 725–726, 733–737
wireless phones, 747, 751
ultra-wideband, 755
transmission. See also modulation; signals
analog, 424–427
baseband pulse with noise, 381–391
channel capacity and, 6, 786–788, 791, 794–796, 882
distortion and, 105–112
fiber optics and, 119–122
full-duplex, 5
half-duplex, 5
limitations in digital, 484–487
linear distortion and, 107–110, 226–229
loss, 116–126
nonlinear distortion and, 113–116, 229–232
radio, 122–125
simplex, 5
television, 324–325, 330, 334–335
transponders, 124, 194–195
transversal filter, 111–112, 513–519
trapezoidal pulse, 66
tree code, 776
TRF (tuned-RF), 292
triangular function, 61–62
triangular wave FM, 237–239
troposphere, 13–17
tuning ratio, 291
turbo codes, 635–637
TV (television), 2, 3, 10, 12, 17, 21–23, 31–33, 319–324
bandwidth and, 319–324
color, 324–327
code, 327–332
digital, 23
high definition, 332–335
monochrome, 324–327
signal properties and, 319–324
twinned binary format, 482
uncorrelated, 378, 395–396, 402, 408, 416, 423
USSB (upper single sideband), See SSB, and modulation
UWB (ultra-wideband), 19, 754–760
comparison with DSSS, 760–761
union bond, 817
union event, 349
unipolar signals, 482–483, 489–490, 492, 496
uniquely decipherable, 775
unit impulse, 68–69. See also impulses
unit step, 74
upsampling, 271, 574
variable-reactance element, 233–234
variable transconductance multiplier, 180–181
variance, 366. See also statistics
VCC (voltage-controlled clock), 524–526
VCO (voltage-controlled oscillators), 233–234, 237
Costas loop, 315
quadrature carrier receivers, 684
PLLs, 311–317
spectrum analyzers and, 295
threshold effect and, 463–464
tracking and, 745–746
VHDL, 19
VDSL (very-high bit rate digital subscriber line), 579
vector, 579
block codes and, 604–608
code, 595–597
MAP receivers and, 809–815
optimum digital detection and, 809–822
signals as, 803–808
signal selection and, 818–822
symmetry decoding and, 608–611
weight, 605
vestigial symmetry theorem, 507
VHDL, 19
VHSIC, 19
video, 319–324
VIR (vertical-interval reference), 327
Viterbi algorithm, 629–631, 707
VITS (vertical-interval test signal), 294
VLSI technology, 269, 309
vocoders, 570
VOIP (voice over internet protocol), 17–18, 20–21, 754
voltage-tunable bandpass amplifier, 295
VSB (vestigial sideband modulation), 191–193
bandpass noise, 445
for TVs, 324–325
VSB for HDTV and, 333–334
spectra and, 191–193
synchronous detection and, 450, 452, 464–466
systems comparison and, 464–466
VT (virtual tributary), 581
waveform encoders, 570
waves. See signals
weighted-resistor decoder, 547
WCDMA, 750–751
white noise, 413, 416–420, 424, 426, 431, 829–839. See also AWGN (additive white gaussian noise), CDs and, 572
correlation detector, 501–502
DSSS and, 626
matched filtering and, 498–500
mean square value reduction of, 485
PN (pseudonoise) and, 529–530
speech synthesizer, 569–570
wideband noise reduction, 8, 10, 416–417
Wiener-Kinchine theorem, 131–132, 362–363
Wi-Fi (wireless-fidelity), 19, 751–754
W/MA (wireless-multiplex access), 19, 751–754
wireless networks, 751–754
Wi-Fi (IEEE 802.11), 19, 752
WIMAX (IEEE 802.16), 19, 752
wireless phones, (see telephones)
Wolfowitz, J., 635
word error, 593
WSS (wide-sense stationary) process, 398
zero crossing, 211, 231, 239, 242, 486–487
bit synchronization and, 524–526
zero-forcing equalizer, 514
zero IF receiver, 292
ZOH (zero-order hold), 103–104
REFERENCES

Blahut, R. E. (1987), Principles and Practice of Information Theory, Addison-Wesley, Reading, MA.
REFERENCES

Daitch, P. (1973), Introduction to College Engineering, Addison-Wesley, Reading, MA.

http://www.ieee802.org This is the IEEE web site for IEEE 802.11 and IEEE 802.16 standards. Retrieved October 30, 2008.

Kennington, P. (2005), RF and baseband techniques for software defined radio, Artech House, Boston.

McEliece, R. J. (1977), The Theory of Information and Coding, Addison-Wesley, Reading, MA.
SUPPLEMENTARY READING

Listed below are books and papers that provide expanded coverage or alternative treatments of particular topics. Complete citations are given in the References.

Communication Systems

Fourier Signal Analysis

Expanded presentations of signal analysis and Fourier methods are contained in Lathi (1998) and Stuart (1966). Two graduate texts dealing entirely with Fourier transforms and applications are Bracewell (1986), which features a pictorial dictionary of transform pairs, and Papoulis (1962), which strikes a nice balance between rigor and lucidity.

Advanced theoretical treatments will be found in Lighthill (1958) and Franks (1969). The article by Slepian (1976) expounds on the concept of bandwidth.

Probability and Random Signals

The classic reference papers on noise analysis are Rice (1944) and Rice (1948). Bennett (1956) is an excellent tutorial article.

CW Modulation and Phase-Lock Loops

Goldman (1948), one of the earliest books on CW modulation, has numerous examples of spectral analysis. More recent texts that include chapters on this subject are Stremler (1990), Ziemer and Tranter (1995), and Haykin (2001).

Detailed analysis of FM transmission is found in Panter (1965), a valuable reference work. Taub and Schilling (1986) gives clear discussions of FM noise and threshold extension. The original papers on FM by Carson (1922) and Armstrong (1936) remain informative reading.

The theory and applications of phase-locked loops are examined in depth in Brennan (1996), which also includes a discussion of noise in PLLs.
Sampling and Coded Pulse Modulation

Oliver, Pearce, and Shannon (1948) is a landmark article on the philosophy of PCM, while Reeves (1965) recounts the history of his invention. The book by Cattermole (1969) is entirely devoted to PCM. Jayant and Noll (1984) covers the full range of digital encoding methods for analog signals.

Digital Communication and Transmission Methods

Of the many papers that could be mentioned here, the following papers have special merit: Arthurs and Dym (1962), on optimum detection; Lender (1963) on duobinary signaling; Lucky (1965) and Qureshi, (1985) on adaptive equalization; Gronemeyer and McBride (1970) on MSK and OQPSK; Murota and Hirade (1981) on GMSK and Oeting (1979) on digital radio.

Wireless Phone and Network Systems

Coding and Information Theory

Abramson (1963), Hamming (1986), and Wells (1999) provide very readable introductions to both coding and information theory. Also see Chaps. 4–6 of Wilson (1996) and Chaps. 4, 7, and 8 of L afrance (1990).
Mathematically advanced treatments are given by Gallager (1968) and McEliece (1977).

Texts devoted to error-control coding and applications are Wiggert (1978), Lin (1970), and Adámek (1991) at the undergraduate level, and Berlekamp (1968), Peterson and Weldon (1972), Lin and Costello (1983), Sweeney (1991), and Wicker (1995) at the graduate level.

Introductions to information theory are given by Blahut (1987) and Cover and Thomas (1991). The classic papers on the subject are Nyquist (1924, 1928a), Hartley (1928), and Shannon (1948, 1949). Especially recommended is Shannon (1949), which contained the first exposition of sampling theory applied to communication. A fascinating nontechnical book on information theory by Pierce (1961) discusses implications to art, literature, music, and psychology.

Detection Theory

The concise monograph by Selin (1965) outlines the concepts and principles of detection theory. Applications to optimum receivers for analog and digital communication are developed in Sakrison (1968), Van Trees (1968), and Wozencraft and Jacobs (1965). The latter includes a clear and definitive presentation of vector models. Viterbi (1966) emphasizes phase-coherent detection. Tutorial introductions to matched filters are given in the papers by Turin (1960, 1976).

Electrical Noise

There are relatively few texts devoted to electrical noise. Perhaps the best general reference is Pettai (1984). Useful sections on system noise are found in Freeman (1997), Johns and Martin (1997), and Ludwig and Bretchko (2000). Noise in microwave systems is described by Siegman (1961) using the informative transmission-line approach. Electronic device noise is treated by Ambrózy (1982) and Van der Ziel (1986).

Communication Circuits and Electronics

The design and implementation of filter circuits are detailed in Hilburn and Johnson (1973), Van Valkenburg (1982), and Williams and Taylor (2006). Recent introductory treatments of communication electronics are found in texts such as Van der Puije (2002), Tomasi (1998), and Miller (1999). More advanced details are given by Clarke and Hess (1971), Krauss, Bostian, and Raab (1980), Smith (1986), Freeman (1997), Johns and Martin (1997), and Ludwig and Bretchko (2000).